DOI: 10.11931/guihaia.gxzw201805023

引文格式: 秦政,郑永杰,桂丽静,等. 樟树叶绿体基因组密码子偏好性分析 [J]. 广西植物, 2018, 38(10): 1346-1355 QIN Z, ZHENG YJ, GUI LJ, et al. Codon usage bias analysis of chloroplast genome of camphora tree (*Cinnamomum camphora*) [J]. Guihaia, 2018, 38(10): 1346-1355

樟树叶绿体基因组密码子偏好性分析

秦 政¹,郑永杰²,桂丽静²,谢谷艾²,伍艳芳^{2*}

(1. 江西农业大学林学院, 南昌 330045; 2. 江西省林业科学院 国家林业局樟树工程技术研究中心, 南昌 330032)

摘 要:为分析樟树(Cinnamonum camphora)叶绿体基因组密码子偏好性使用模式,该研究利用 CodonW、 EMBOSS、R语言等软件和程序,对 53条樟树叶绿体基因组密码子使用模式及偏好性进行了系统分析。结 果表明:樟树叶绿体基因的有效密码子数(ENC)在 36.82~59.30之间,表明密码子的偏好性较弱。相对同 义密码子使用度(RSCU)分析发现 RSCU>1的密码子有 32个,其中 28个以A、U 结尾,表明第3位密码子偏 好使用A和U碱基。中性绘图分析发现 GC₃与 GC₁₂的相关性不显著,回归曲线斜率为0.049,说明密码子偏 好性主要受到自然选择的影响。ENC-plot分析发现大部分基因落在曲线的下方,同样表明选择是影响密码 子偏好性的主要因素。该研究发现共有 9个密码子(UUU、CUU、UCA、ACA、UAU、AAU、GAU、UGA、GGA)被 鉴定为樟树叶绿体基因组的最优密码子。

关键词: 樟树, 叶绿体基因组, 密码子偏好性

中图分类号: Q943.2 文献标识码: A 文章编号: 1000-3142(2018)10-1346-10

Codon usage bias analysis of chloroplast genome of camphora tree (*Cinnamomum camphora*)

QIN Zheng¹, ZHENG Yongjie², GUI Lijing², XIE Gu'ai², WU Yanfang^{2*}

(1. Jiangxi Agricultural University, College of Forestry, Nanchang 330045, China; 2. Jiangxi Academy of Forestry, Camphora Engineering and Technology Research Center of State Forestry Administration, Nanchang 330032, China)

Abstract: In order to analyze the codon usage patterns of the chloroplast genome of camphora tree, 53 CDS(coding DNA sequences) were selected from the chloroplast genome of camphora tree and the codon usage pattern and bias were analyzed by CodonW, EMBOSS, R language and other softwares. The results showed that the effective codon number (ENC) of the chloroplast gene ranged from 36.82 to 59.30, indicating that bias of codons was weak. There were 32 co-dons with relative codon usage greater than 1, of which 28 were rich in A and U, indicating that the 3rd position of co-don prefers A and U genetic bases. Neutral analysis found that the correlation between GC₃ and GC₁₂ was not significant, and the slope of the regression curve was 0.049, suggesting that codon bias was mainly affected by natural selection, while the ENC-plot analysis found that most genes fell below and around the curve. It was shown that the mutation also affected the formation of codon bias. Eventually, nine codons (UUU, CUU, UCA, ACA, UAU, AAU, GAU, UGA,

收稿日期: 2018-07-13

基金项目:国家自然科学基金(31460209);江西省林业科学院青年科技人才培养项目(2018522701) [Supported by the National Natural Science Foundation of China(31460209); Jiangxi Training Program for Youth Science and Technology Talents from Academy of Forestry (2018522701)]。

作者简介:秦政(1994-),男,江西南昌人,硕士研究生,主要从事植物分子生物学研究,(E-mail)qinzheng_qz@126.com。

通信作者: 伍艳芳,博士,副研究员,主要从事林木遗传育种研究,(E-mail)yanfangwu2012@163.com。

GGA) were identified as the optimal codons for the chloroplast genome of camphora tree.

Key words: Cinnamoum camphora, chloroplast genome, codon bias

编码相同氨基酸的不同密码子被称为同义密 码子。在生物体中,同义密码子的出现具有非随 机性,即某一物种通常倾向于使用一种或几种特 定的密码子,该现象被称为密码子使用偏好性(codon usage bias, CUB) (Grantham et al, 1980; Marín et al, 1989)。密码子使用模式的分析从分子生物 学层面揭示了基因调控、基因表达、蛋白质二级结 构、选择性转录等现象。其中,不同生物体密码子 使用产生偏好性是突变压力和自然选择下的结果 (Duret & Mouchiroud, 1999; Gu et al, 2004; Mg & De Farias, 2006)。利用不同物种在密码子使用上 的偏好性,可以提高蛋白表达的效率和准确性 (Gerrit & Diarmaid, 2016; Lee et al, 2009)。叶绿 体是植物生命活动的代谢中心,在植物光合作用 和生物合成中具有重要作用(Neuhaus & Emes, 2000)。植物叶绿体基因组规模小、拷贝数多,且 在分子水平上多个基因的功能得到验证,已成为 当今生物学领域的研究热点(Xu et al, 2011)。 1986年首次公布了烟草(Nicotiana tabacum)(Shinozaki et al, 1986) 和地钱(Ohyama et al, 1986) (Marchantia polymorpha)的叶绿体基因组。目前, 在 NCBI 网站上的细胞器基因组数据库中已有包 括拟南芥(Arabidopsis thaliana)(Sato et al, 1999)、 水稻(Oryza sativa)(Hiratsuka et al, 1989)、草莓 (Fragaria × ananassa) (Cheng et al, 2017) 和连翘 (Forsythia suspensais) (Wang et al, 2017) 等在内的 约800种植物完整的叶绿体基因组信息。

樟属植物全世界有 250~300 种,我国约有 46 种,主要分布在南方各省区。这些植物不仅可用 于提取精油作为化工及医药上的重要原料,同时 还是重要家具、建筑及雕刻等用材树种。作为樟 属植物中的代表性植物,樟树(*Cinnamomum camphora*)集材用、药用、香料、油用、生态环境建设和 生态文化等于一体,极具开发和利用价值。Chen et al(2017)的研究表明樟树叶绿体基因组全长 152 570 bp,具有特征性的保守四联体结构,在编 码区和非编码区都检测到共 40 个重复结构和 83 个简单重复序列。目前,关于樟树叶绿体密码子 使用偏好性的研究还未见报道。本研究通过对樟 树叶绿体基因组中 53 个基因的密码子使用偏好 性进行分析,在揭示影响密码子偏好性最主要因 素的同时还找出了最优密码子,旨在为樟科植物 叶绿体基因组学的研究奠定基础。

1 材料与方法

1.1 序列的获取

在 NCBI 数据库 (https://www.ncbi.nlm.nih. gov/)中下载樟树及其他樟科植物的叶绿体基因 组信息。樟树叶绿体基因组序列的 GenBank 登录 号为 MF156716.1,共注释 83 条蛋白质编码基因序 列。为避免计算密码子偏好性时出现样本偏差, 在剔除重复序列后,最终获得 53 条编码区长度大 于 300 bp 且以 ATG 为起始密码子,TAA、TGA 或 TAG 为终止密码子的基因序列用于后续分析。

1.2 方法

1.2.1 密码子偏好性分析 用 CodonW1.4.2(http:// sourceforge.net/projects/codonw)和 Excel 2013 统计 各基因的密码子出现次数(codon number, CN)、有 效密码子数(effective number of codon, ENC)(Novembre, 2002)和同义密码子相对使用度(relative synonymous condon usage, RSCU)(Sharp & Li, 1986)。用 EMBOSS(http://imed.med.ucm.es/EM-BOSS/)中的 CUSP 程序分析樟树叶绿体基因组中 各基因的 GC 总含量和密码子第 1 位、第 2 位、第 3 位的 GC 含量,分别用 GC_{all}、GC₁、GC₂和 GC₃表示。 GC_{3S}表示同义密码子第 3 位的 GC 含量。樟树叶 绿体基因组中各基因的部分参数的相关性及显著 性用 R 语言分析。

1.2.2 中性绘图分析 中性绘图法的作用为初步 判断选择或突变对密码子使用偏好性的影响。在 Origin 9.1 软件中,绘制散点图并做直线拟合分析。 在直线拟合分析中,当回归系数接近1时,表明 GC₁₂与 GC₃间的相关性显著,密码子的碱基组成在 3 个位置上无差异,密码子偏好性的主要决定因素 为突变;当回归系数接近 0 时,GC₁₂与 GC₃之间相 关性不显著,说明密码子 3 个位置上的碱基组成 不同,密码子的使用更多地受到选择影响。

1.2.3 ENC-plot 绘图分析 ENC-plot 绘图用于分析 突变在密码子使用模式中的作用。当实际 ENC 值 与预期 ENC 值差异较小时,表明突变对密码子偏 好性影响较大,反之选择为影响密码子偏好性的 主要因素。此外,还可根据 ENC 值的高低推断密 码子偏好性的强弱。ENC 值的理论范围在 20~ 60,值越小表示偏好性越强。当 ENC 值为 20 和 60 两个极值时,表示同义密码子具有完全偏好性 或没有偏好性。用 R 语言绘制二维散点图,并在 图中构建出 ENC 值的期望曲线。

1.2.4 PR2-plot 分析 为了避免密码子第3位的 AT和GC之间突变不平衡,PR2偏好性分析(PR2bias plot analysis)仅对4种密码子编码的氨基酸做 密码子第3位上A、T、C和G这4种碱基的组成情 况分析(Sueoka, 1999),并以A₃/(A₃+T₃)|4和 G₃/(G₃+C₃)|4的值进行绘图。其中,"|4"表示 四密码子氨基酸,分别为丙氨酸、精氨酸(CGA, CGT,CGG,CGC)、甘氨酸、亮氨酸(CTA,CTT, CTG,CTC)、脯氨酸、丝氨酸(TCA,TCT,TCG, TCC)、苏氨酸和缬氨酸。PR2-plot图的中心点为 A=T,C=G,以该点发出的矢量表示碱基偏移的程 度和方向。

1.2.5 最优密码子分析 对前期筛选出的 53 条基 因的 ENC 值从小到大进行排序,两端各选出 10% 的基因建库,在高低两个基因库中将对应密码子 的 RSCU 值相减得到 Δ RSCU,选取 Δ RSCU > 0.08 的密码子作为高表达密码子。将前文分析中 RSCU 值大于1的高频率密码子与 Δ RSCU > 0.08 高表达密码子的结果相结合,从而确定出最优密 码子(胡莎莎等, 2016; 罗洪等, 2015)。

1.2.6 系统进化树的构建与分析 使用 MAFFT 7.397 (Katoh & Standley, 2013) (https://mafft. cbrc.jp/alignment/software/)将樟树与其他八种樟 科植物的叶绿体基因组序列做多序列比对分析。 选择银杏和云杉作为外类群。用 BioEdit 手工校正 比对结果后导入 MEGA7.0 中用系统邻接法 (Neighbor-Joining, NJ)构建进化树。用 Bootstrap method 进行重复检验 1 000 次得出结果。

2 结果与分析

2.1 樟树叶绿体基因组密码子偏好性分析

利用 CodonW1.4.2 分析樟树叶绿体基因组中 53 条候选基因的密码子组成(表1)。表1结果显 示,平均 GC 含量为 39.1%,且分布趋势为 GC₁ (46.81%)>GC₂(38.77%)>GC₃(31.77%),表明在 密码子的3个位置上 GC 并不是均匀分布,且第3 位密码子偏好使用 A 和 U 碱基。叶绿体基因组 ENC 的取值范围为 36.82~59.3,且大部分在 45 以 上,说明樟树叶绿体基因组密码子偏好性较弱。

图 1 结果显示, RSCU 值大于 1 的密码子数目 为 34 个。其中, 第 3 位上的碱基为 U、A 和 G 的数 目分别为 16、13 和 2, 说明 U 和 A 为叶绿体基因组 密码子的偏好碱基。53 条基因的 GC 含量、ENC 和 CN 间相关性分析结果(表 2)显示, GC_{all}与 GC₁、GC₂ 和 GC₃呈极显著相关, 但 GC₁、GC₂和 GC₃的相关性 水平不显著。ENC 与 GC₃相关系数为 0.27, 呈显著 相关, 说明密码子的使用偏好性受第 3 位碱基的影 响较大。CN 与 GC₃、ENC 显著相关, 表明 GC₃和密 码子的偏好性受基因序列长度的影响。

2.2 中性绘图分析

中性绘图分析结果(图2)显示,GC₁₂和GC₃的 分布范围都较为集中,GC₁₂的范围在0.3431~ 0.5458,GC₃在0.2244~0.5214。GC₁₂与GC₃的相 关系数为0.143,回归系数为0.049,说明两者的相 关性不显著,密码子第3位与第1位、第2位的进 化方式可能存在一定差异。因此,樟树叶绿体基 因密码子偏好性主要受到选择的影响。

2.3 ENC-plot 绘图

从图3可以看出,大部分基因落在期望曲线的下方,表示 ENC 实际值与 ENC 预期值之间差异较大,说明樟树叶绿体基因组密码子偏好性更多受选择的影响。

2.4 PR2-plot 分析

通过 PR2-plot 绘图进一步分析樟树叶绿体基 因组密码子偏好性的影响(图4)。当A、T、C和G

表 1 樟树叶绿体基因组各基因密码子不同位置的 GC 含量

Table 1 GC content of different positions of each gene in the chloroplast genome of Cinnamonum camphora

基因 Gene	GC 含量 GC content(%)				ENC	基因	GC 含量 GC content(%)				ENG
	GC _{all}	GC_1	GC_2	GC_3	- ENC	Gene	GC _{all}	GC_1	GC_2	GC_3	ENC
rps12	41.94	51.61	48.39	25.81	42.31	rpl20	40.11	39.83	51.69	28.81	47.04
psbA	42.28	49.72	43.79	33.33	42.62	rps12	41.46	47.90	48.74	27.73	45.19
matK	36.18	43.88	32.62	32.04	52.93	clpP	43.07	58.91	37.62	32.67	55.32
atpA	42.39	56.30	40.55	30.31	49.82	psbB	44.86	54.81	45.97	33.79	52.93
atpF	39.28	51.35	35.14	31.35	50.25	petB	40.90	49.54	41.67	31.48	45.28
atpI	39.25	50.00	37.50	30.24	46.54	petD	40.08	51.53	39.26	29.45	44.72
rps2	39.38	41.35	43.46	33.33	52.53	rpoA	36.67	46.47	34.12	29.41	49.35
rpoC2	38.72	46.61	38.31	31.24	51.18	rps11	44.53	54.20	54.96	24.43	49.29
rpoC1	39.67	51.02	39.04	28.95	50.58	rps8	36.59	42.11	40.60	27.07	48.44
rpoB	40.56	50.33	39.30	32.05	51.43	rpl14	40.38	55.28	36.59	29.27	44.71
psbD	42.84	51.69	43.50	33.33	45.37	rpl16	44.44	51.11	54.81	27.41	36.98
psbC	44.80	54.22	45.99	34.18	47.31	rps3	37.25	50.23	33.48	28.05	53.47
rps14	42.24	43.56	47.52	35.64	37.89	rpl22	38.12	41.49	42.55	30.32	50.08
psaB	42.27	49.12	42.72	34.97	51.27	ycf2	37.38	41.27	33.82	37.05	53.72
psaA	43.63	53.00	43.54	34.35	51.09	rps7	39.96	53.21	44.23	22.44	47.57
ycf3	39.05	47.34	40.24	29.59	54.44	<i>ycf</i> 68	50.43	47.86	51.28	52.14	47.88
rps4	39.11	50.00	40.59	26.73	51.35	ycf1	32.75	38.31	30.31	29.62	49.50
ndhJ	42.14	51.57	38.36	36.48	54.1	ndhH	39.68	52.03	36.29	30.71	51.94
ndhK	38.81	42.31	43.71	30.42	50.81	ndhA	37.86	46.20	40.76	26.63	45.48
ndhC	38.29	49.59	34.71	30.58	47.37	ndhI	35.73	39.78	39.23	28.18	51.4
atpE	41.73	50.37	40.74	34.07	50.24	ndhG	37.29	46.89	35.59	29.38	46.18
atpB	43.02	56.91	41.68	30.46	48.63	ndhE	34.31	40.20	35.29	27.45	48.23
rbcL	45.73	58.61	43.91	34.66	51.37	ccsA	34.60	34.70	40.06	29.02	50.14
accD	37.04	41.27	39.88	29.96	47.01	ndhF	34.81	38.26	37.99	28.19	47.90
ycf4	40.72	43.78	42.16	36.22	59.30	ycf1	34.90	38.78	31.63	34.29	53.62
petA	41.12	53.27	36.14	33.96	54.99	rps7	39.96	53.21	44.23	22.44	47.57
rps18	34.64	35.29	43.14	25.49	36.82	合计 Total	40.62	49.04	40.99	31.84	49.24

四种碱基的使用频率,即A=T,C=G时,密码子使 用偏好性不受选择和突变影响(Sueoka, 2001)。 图4显示,4个区域中的基因位点分布不均匀,左 上方位置的个数较多,说明在第3位碱基的选择 上密码子具有偏好性,且碱基A的使用频率高于 T,碱基C的使用频率高于G。因此,可推论选择 是樟树叶绿体基因组密码子偏好性的主要影响 因素。

2.5 最优密码子的确定

对 53 个候选基因的 ENC 值进行排序后,先从 两端各选取 10%的基因建立高、低表达基因库;然 后计算两个表达库中密码子的 RSCU 值和两个库 中的 ΔRSCU 值(表 3);最后确定了 26 个密码子为 樟树叶绿体基因组高表达密码子。对 26 个密码 子的第3 位碱基进行分析,其中,以 U 结尾的有5 个,以 A 结尾的有5个,以 C、G 结尾的分别为6个 和10个。结合26个高表达密码子和图1的32个 高频密码子,选取两者的公共部分,最后确定了9 个樟树叶绿体基因组最优密码子,分别为 UUU、 CUU、UCA、ACA、UAU、AAU、GAU、UGA、GGA。其 中,所有密码子均以 U 或 A 结尾。

2.6 系统进化树的构建与分析

比较叶绿体基因组序列可以揭示近缘物种类 群之间的系统进化关系,同时阐明植物的进化模 式(Kim et al, 2015)。为深入了解樟树在樟科 植物的进化规律和关系,将樟树与其他8种樟科植

38 =	卷
------	---

氨基酸	密码子	数目	RSCU	氨基酸	密码子	数目	RSCU
AA	Codon	Number	RSCO	AA	Codon	Number	RSCO
Phe	UUU	675	1.2	Pro	CCU	322	1.45
	UUC	449	0 .8		CCC	209	0.94
Leu	UUA	620	1.78		CCA	238	1.07
	UUG	45 <mark>4</mark>	1.3		CCG	118	0.53
	CUU	430	1.23	Thr	ACU	3 98	1.49
	CUC	144	0.41		ACC	230	0.86
	CUA	291	0.83		ACA	311	1.17
	CUG	155	0.44		ACG	126	0.47
Ile	AUU	826	1.45	Ala	GCU	511	1.77
	AUC	366	0.64		GCC	190	0.66
	AUA	520	0.91		GCA	343	1.18
Met	AUG	481	1		GCG	114	0.39
Val	GUU	431	1.45	Tyr	UAU	608	1.58
	GUC	154	0.52		UAC	162	0.42
	GUA	419	1.41	TER	UAA	25	1.42
	GUG	187	0.63		UAG	10	0.57
Ser	UCU	409	1.54	His	CAU	410	1.5
	UCC	276	1.04		CAC	137	0.5
	UCA	323	1.22	Gln	CAA	563	1.46
	UCG	178	0 .67		CAG	206	0.54
Arg	CGU	296	1.36	Asn	AAU	761	1.54
	CGC	75	0.34		AAC	230	0.46
	CGA	293	1.34	Lys	AAA	792	1.48
	CGG	87	0.4		AAG	280	0.52
	AGA	3 99	1.83	Asp	GAU	669	1.57
	AGG	160	0.73		GAC	185	0.43
Ser	AGU	322	1.21	Glu	GAA	840	1.47
	AGC	85	0.32		GAG	302	0.53
Gly	GGU	456	1.26	Cys	UGU	181	1.49
	GGC	180	0.5		UGC	62	0.51
	GGA	542	1.49	TER	UGA	18	1.02
	GGG	274	0.75	Trp	UGG	367	1

注: Phe. 苯丙氨酸; Leu. 亮氨酸; Ile. 异亮氨酸; Met. 蛋氨酸; Val. 缬氨酸; Ser. 丝氨酸; Arg. 精氨酸; Gly. 甘氨酸; Pro. 脯氨酸; Thr. 苏氨酸; Ala. 丙氨酸; Tyr. 酪氨酸; His. 组氨酸; Gln. 谷氨酰胺; Asn. 天冬酰胺; Lys. 赖氨酸; Asp. 天冬氨酸; Glu. 谷氨酸; Cys. 半胱氨酸; Trp. 色氨酸; TER 表示有空白或内部终止符号的氨基酸。下同。 Note: Phe. Phenylalanine; Leu. Leucine; Ile. Isoleucine; Met. Methionine; Val. Valine; Ser. Serine; Arg. Argnine; Gly. Glycine; Pro. Proline; Thr. Threonine; Ala. Alanine; Tyr. Tyrosine; Hls. HIstidine; Gln. Glutamine; Asn. Asparagine; Lys. Lysine; Asp. Aspartic acid; Glu. Glutamic acid; Cys. Cysteine; Trp. Tryptophane; TER indicates an amino acid with a blank or internal termination symbol. The same below.

图 1 樟树叶绿体基因组同义密码子使用频率分析

Fig. 1 Relative synonymous codons usage analysis on the chloroplast of Cinnamomum camphora

物的叶绿体基因组序列共同构建系统进化树,选取裸子植物的银杏和云杉为外类群(图5)。图5

结果显示,樟科植物的叶绿体基因组单独聚为一枝,与外类群区分明显。樟树与沉水樟的叶绿体

樟树叶绿体基因组中各参数的相关性

Table	2 Correlation a	nalysis of each p	parameter in the chl	loroplast genome	of Cinnamomum c	amphora
项目 Item	GC_{all}	GC1	GC2	GC3	ENC	CN
$\mathrm{GC}_{\mathrm{all}}$	1.000					
GC1	0.722 * *	1.000				
GC2	0.662 * *	0.193	1.000			
GC3	0.487 * *	0.058	0.020	1.000		
ENC	-0.066	0.074	-0.428 * *	0.274 *	1.000	
CN	-0.207	-0.165	0.355	0.186	0.262 *	1.000

注:*表示相关性达到显著水平(P<0.05);**表示相关性达到极显著水平(P<0.01)。

表 2

Note: * stands for significant correlation at the 0.05 level; ** stands for significant correlation at the 0.01 level.

Cinnamomum camphora

基因组亲缘关系最近,且两者均为樟科樟属植物 的成员,因此推测两者可能具有相似的密码子偏 好性模式。用相同方法对沉水樟叶绿体基因组进 行中性绘图(图 6)和 ENC-plot 绘图(图 7)发现, GC1,与 GC3的回归系数接近 0(为 0.053),同样在 ENC-plot 绘图中,大部分基因落在期望曲线的下 方,两者都说明选择是影响沉水樟叶绿体基因组 密码子偏好性的主要因素。这与樟树的分析结果 类似,表明樟科或樟属植物在进化过程中自然选 择因素对叶绿体基因组密码子偏好性的影响 较大。

讨论 3

同义密码子在不同物种间和同一物种的不同 基因间使用都具有一定偏好性,高表达量的基因通 常具有最优密码子且其密码子偏好性往往更强 (Ghaemmaghami et al, 2003; Goetz & Fuglsang, 2005; Ingvarsson, 2007)。Zhou et al(2008b)的研究 发现植物叶绿体基因组中密码子结尾处的碱基更 偏好使用A或T。本研究发现在樟树叶绿体基因组 中 GC3与 GC1、GC2相关不显著,且 GC3的比例为三 者中最低,因此得到类似结果,即偏好密码子多以 A 或T结尾,这与苹果(Malus × domestica)(金桂花 等, 2014)、杉木(Cunninghamia lanceolata)(郑薇玮 等, 2016)和柿(Diospyros kaki)(傅建敏等, 2017) 等植物密码子偏好性研究结果一致。

密码子偏好性的形成原因受多种因素影响, 除了最主要的突变和自然选择外(Rao et al, 2011),碱基组成差异(Romero et al, 2000)、基因 编码结构(Rao et al, 2011)、tRNA 丰度(Novoa & Pouplana, 2012)等多种因素也会影响其偏好性。 其中 tRNA 的表达丰度最高,相应的密码子偏好性 就越强(Duret, 2002; Hershberg & Petrov, 2008)。 本研究通过对樟树叶绿体基因组三个不同位置上 的密码子碱基组成及密码子相关系数进行研究. 经中性分析、ENC-plot 分析和 PR2-plot 等分析后 发现,选择是影响樟树叶绿体基因组密码子偏好 性的主要因素,突变对密码子的偏好性影响较小。 在陆地棉(Gossypium hirsutum)(尚明照等, 2011)、 糜子(Panicum miliaceum)(刘慧等, 2017)、普通油 茶(Camellia oleifera)(王鹏良等, 2018)等植物的 叶绿体基因组密码子偏好性分析中,也得到了与 本研究相似的结果。然而,在对拟南芥和杨树 (Zhou et al, 2008a, b) 叶绿体基因组密码子偏好

表 3 樟树叶绿体基因组最优密码子分析

Table 3 Optimal codons analysis in the chloroplast genome of Cinnumonum camphora

氨基酸	密码子	高表过 High expre	达基因 essed gene	低表达 Low expres	ABCCU	
Amino acid	Codon	数量 Number	RSCU	数量 Number	RSCU	ΔRSCU
Phe	UUU *	28	1.08	16	0.84	0.24
-	UUC	24	0.92	22	1.16	-0.24
Leu	UUA	19	1.34	19	1.84	-0.5
	UUG	19	1.34	17	1.65	-0.31
		23	1.02	15	1.45	0.17
		6	0.42	10	0 07	0.42
	CUC * * *	9	0.64	1	0.1	0.55
Ile	AUU	34	1 15	33	1.52	-0.37
no	AUC *	26	0.88	16	0.74	0.14
	AUA *	29	0.98	16	0.74	0.24
Met	AUG	26	1	22	1	0
Val	GUU	28	1.53	18	1.53	0
	GUC	6	0.33	6	0.51	-0.18
	GUA	23	1.26	20	1.7	-0.44
	GUG * * *	16	0.88	3	0.26	0.62
Ser	UCU	20	1.82	21	2	-0.18
	UCC	10	0.91	12	1.14	-0.23
	UCA * *	11	1	7	0.67	0.33
D	UCG	5	0.45	5	0.48	-0.03
Pro		17	1.15	18	1.07	-0.52
		21	1.42	15	1.21	0.21
	CCC *	10	0.34	1	0.00	0.00
Thr	ACU	11	1.16	19	1.65	-0.49
1111	ACC	11	1.16	15	1.3	-0.14
	ACA *	10	1.05	11	0.96	0.09
	ACG * * *	6	0.63	1	0.09	0.54
Ala	GCU	27	1.66	32	2.21	-0.55
	GCC * *	12	0.74	6	0.41	0.33
	GCA	21	1.29	18	1.24	0.05
	GCG *	5	0.31	2	0.14	0.17
Tyr	UAU * *	45	1.76	17	1.42	0.34
	UAC	6	0.24	7	0.58	-0.34
TER	UAA	2	1.2	4	2.4	-1.2
II.	UAG * * *	1	0.0	0	0	0.0
HIS	CAC	5	1.58	13	0.64	-0.01
Cln	CAA	30	1.36	19	1.36	0.01
Om	CAG	14	0.64	9	0.64	0
Asn	AAU * * *	38	1.73	20	1.18	0.55
	AAC	6	0.27	14	0.82	-0.55
Lys	AAA	25	1.28	29	1.53	-0.25
	AAG *	14	0.72	9	0.47	0.25
Asp	GAU * *	37	1.72	11	1.38	0.34
	GAC	6	0.28	5	0.63	-0.35
Glu	GAA	54	1.5	28	1.6	-0.1
C	GAG	18	0.5	7	0.4	0.1
Cys	UGU UCC m m m	5	1	/	1.75	-0.75
TER	UGC * * * UCA * * *	2	1 2	1	0.25	0.75
		18	1.2	1	1	0.0
Arg	CGU	14	1 25	22	1 67	-0.42
1118	CGC *	5	0.45	4	0.3	0.15
	CGA	15	1.34	18	1.37	-0.03
	CGG * *	6	0.54	2	0.15	0.39
	AGA	16	1.43	27	2.05	-0.62
	AGG * * *	11	0.99	6	0.46	0.53
Ser	AGU	14	1.27	13	1.24	0.03
	AGC	6	0.55	5	0.48	0.07
Gly	GGU	22	1.19	29	1.71	-0.52
	GGC	11	0.59	9	0.53	0.06
	GGA * GGC *	50 11	0.59	23 7	0.41	0.27
	0000 **	1 1	0.57	'	0.71	0.10

注: *表示 ΔRSCU>0.08, **表示 ΔRSCU>0.3, ***表示 ΔRSCU>0.5。

Note: * means $\Delta RSCU > 0.08$, ** means $\Delta RSCU > 0.3$, *** means $\Delta RSCU > 0.5$.

Cinnamomum camphora

图 4 樟树叶绿体基因组 PR2-plot 分析 Fig. 4 Analysis of PR2-plot in the chloroplast of *Cinnamomum camphora*

性的研究中发现,突变是主要的影响因素。由此 可见,植物密码子偏好性受多重因素共同影响且 影响不同植物密码子偏好性的主要因素也不同。

强正向选择和突变压力作用下往往会形成大量的最优密码子,相反纯化选择和突变压力作用 下最优密码子数目相对较少(Hershberg & Petrov, 2008; 宋辉等, 2015)。本研究将高频密码子和高 表达密码子分析相结合,共筛选出 9 个樟树叶绿 体基因组中的最优密码子,且这些密码子都以 A 和 U 碱基结尾,该结果与前人在蒺藜苜蓿(杨国锋 等, 2015)、水稻(Zhou et al, 2008a)等植物中的研 究相吻合。在系统进化树中,分枝越长的物种表 明其进化速率相对更快,进化树中异色土楠自成 一枝且分枝相对较长,这与前人发现它是在进化 中首先与其他樟科植物分离的物种的观点相吻合(Hinsinger & Strijk, 2017)。同时,通过分析发现 樟树与沉水樟的密码子偏好性都主要受到选择的 影响,说明亲缘关系越近的物种可能具有越相似 的密码子偏好性。本研究对今后提高目的基因的 表达效率具有重要作用,而樟科植物叶绿体基因 组密码子分析也将为今后被子植物的系统发育研 究提供重要的参考价值(Moore et al, 2007; Ruhfel et al, 2014)。

参考文献:

- CHEN C, ZHENG Y, LIU S, et al, 2017. The complete chloroplast genome of *Cinnamomum camphora* and its comparison with related Lauraceae species [J]. Peer J, 5(2): e3820.
- CHENG H, LI J, ZHANG H, et al, 2017. The complete chloroplast genome sequence of strawberry (*Fragaria* × *ananassa* Duch.) and comparison with related species of Rosaceae [J]. Peer J, 5(10): e3919.
- DURET L, 2002. Evolution of synonymous codon usage in metazoans [J]. Curr Opin Genet Dev, 12(6): 640–649.
- DURET L, MOUCHIROUD D, 1999. Expression pattern and, surprisingly, gene length shape codon usage in *Caenorhabdi*tis, Drosophila, and Arabidopsis [J]. Proc Natl Acad Sci USA, 96(8): 4482–4487.
- FU JM, SUO YJ, LIU HM, et al, 2017. Analysis on codon usage in the chloroplast protein-coding genes of *Diospyros* spp. [J]. Econom For Res, 35(2): 38-44. [傅建敏, 索玉 静, 刘慧敏, 等, 2017. 柿属植物叶绿体蛋白质编码基因 密码子用法 [J]. 经济林研究, 35(2): 38-44.]
- GERRIT B, DIARMAID H, 2016. The selective advantage of synonymous codon usage bias in *Salmonella*[J]. Plos Genet, 12(3): e1005926.
- GHAEMMAGHAMI S, HUH WK, BOWER K, et al, 2003. Global analysis of protein expression in yeast [J]. Nature, 425 (6959): 737-741.
- GOETZ R, FUGLSANG A, 2005. Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from *Escherichia coli* [J]. Biochem Biophy Res Comm, 327(1): 4–7.
- GRANTHAM R, GAUTIER C, GOUY M, et al, 1980. Codon catalog usage and the genome hypothesis [J]. Nucl Acid Res, 8(1): r49.
- GU W, ZHOU T, MA J, et al, 2004. Analysis of synonymous codon usage in SARS coronavirus and other viruses in the nidovirales [J]. Virus Res, 101(2): 155-161.
- HERSHBERG R, PETROV DA, 2008. Selection on codon bias [J]. Ann Rev Genet, 42(42): 287–299.
- HINSINGER DD, STRIJK JS, 2017. Toward phylogenomics of Lauraceae: The complete chloroplast genome sequence of *Litsea glutinosa* (Lauraceae), an invasive tree species on Indian and Pacific Ocean Islands [J]. Plant Gene, 9: 71–79.

注: NCBI 登录号:潺槁木姜子 KU382356.1;沉水樟 NC_035802.1;滇润楠 KT348516.1;鳄梨 KX437771.1;锡兰肉桂 NC_035236.1; 锈毛润楠 KT348517.1;异色土楠 KX674308.1;银杏 JN867585.1;云杉 NC_032367.1;樟树 MF156716.1;桢楠 NC_036143.1。 Note: ID number in NCBI: Litsea glutinosa KU382356.1; Cinnamomum micranthum NC_035802.1; Machilus yunnanensis KT348516.1; Persea americana KX437771.1; Cinnamomum verum NC_035236.1; Machilus balansae KT348517.1; Endiandra discolor KX674308.1;

Ginkgo biloba JN867585.1; Picea asperata NC_032367.1; Cinnamomum camphora MF156716.1; Phoebe zhennan NC_036143.1).

图 5 樟科叶绿体基因组系统进化树

- HIRATSUKA J, SHIMADA H, WHITTIER R, et al, 1989. The complete sequence of the rice (*Oryza sativa*) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals [J]. Mol Gen Genet, 217(2-3): 185-194.
- HU SS, LUO H, WU Q, et al, 2016. Analysis of codon bias of chloroplast genome of tartary buckwheat [J]. Mol Plant Breed, 14(2): 309-317. [胡莎莎, 罗洪, 吴琦, 等, 2016. 苦荞叶绿体基因组密码子偏爱性分析 [J]. 分子植 物育种, 14(2): 309-317.]
- INGVARSSON PK, 2007. Gene expression and protein length influence codon usage and rates of sequence evolution in *Pop*ulus tremula [J]. Mol Biol Evol, 24(3): 836.
- JIN GH, CHEN SY, YIN TS, et al, 2014. Characterization of the complete chloroplast genome of apple (*Malus* ×

图 7 沉水樟叶绿体基因组 ENC-plot 分析

Fig. 7 Analysis of ENC-plot of Cinnamomum micranthum

- domestica, Rosaceae) [J]. J Plant Classif Resour, 36(4): 468-484. [金桂花, 陈斯云, 伊廷双, 等, 2014. 苹果叶绿 体基因组特征分析 [J]. 植物分类与资源学报, 36(4): 468-484.]
- KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772–780.
- KIM K, LEE SC, LEE J, et al, 2015. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species [J]. Sci Rep-uk, 5: 15655.
- LEE SF, LI YJ, HALPERIN S A, 2009. Overcoming codonusage bias in heterologous protein expression in *Streptococcus* gordonii [J]. Microbiology, 155(Pt 11): 3581–3588.
- LIU H, WANG MX, YUE WJ, et al, 2017. Analysis of codon usage in the chloroplast genome of Broomcornillet (*Panicum miliaceum* L.) [J]. J Plant Sci, 35(3): 2-371. [刘慧, 王

梦醒,岳文杰,等,2017. 糜子叶绿体基因组密码子使用 偏性的分析 [J]. 植物科学学报,35(3):362-371.]

- LUO H, HU SS, WU Q, et al, 2015. Analysis of buckwheat chloroplast gene codon bias [J]. Gen Appl Biol, 34(11): 2457-2464. [罗洪, 胡莎莎, 吴琦, 等, 2015. 甜荞叶绿体 基因密码子偏爱性分析 [J]. 基因组学与应用生物学, 34(11): 2457-2464.]
- MARÍN A, BERTRANPETIT J, OLIVER JL, et al, 1989. Variation in G + C content and codon choice: differences among synonymous codon groups in vertebrate genes [J]. Nucl Acid Res, 17(15): 6181-6189.
- MG VDL, FARIAS ST, 2006. Correlation between codon usage and thermostability [J]. Extremophiles, 10(5): 479–481.
- MOORE MJ, BELL CD, SOLTIS PS, et al, 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms [J]. Proc Natl Acad Sci USA, 104(49): 19363-19368.
- NEUHAUS HE, EMES MJ, 2000. Nonphotosynthetic metabolism in plastids [J]. Ann Rev Plant Physiol Plant Mol Biol, 51(1):111-140
- NOVEMBRE JA, 2002. Accounting for background nucleotide composition when measuring codon usage bias [J]. Mol Biol Evol, 19(8): 1390.
- NOVOA EM, POUPLANA LRD, 2012. Speeding with control: codon usage, tRNAs, and ribosomes [J]. Trends Genet, 28(11): 574.
- OHYAMA K, FUKUZAWA H, KOHCH T, et al, 1986. Chloroplast gene organization deduced from complete sequence of liverwort *Marchantia polymorpha* chloroplast DNA [J]. Nature, 322(6079): 572–574.
- RAO Y, WU G, WANG Z, et al, 2011. Mutation bias is the driving force of codon usage in the *Gallus gallus* genome [J]. DNA Res, 18(6): 499-512.
- ROMERO H, ZAVALA A, MUSTO H, 2000. Codon usage in chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucl Acid Res, 28(10): 2084–2090.
- RUHFEL BR, GITZENDANNER MA, SOLTIS PS, et al, 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes [J]. BMC Evol Biol, 14(1): 23.
- SATO S, NAKAMURA Y, KANEKO T, et al, 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana [J]. DNA Res, 6(5): 283.
- SHANG MZ, LIU F, HUA JP, et al, 2011. Analysis on codon usage of chloroplast genome of *Gossypium hirsutum* [J]. Chin J Agric Sci, 44(2): 245-253. [尚明照, 刘方, 华金平, 等, 2011. 陆地棉叶绿体基因组密码子使用偏性的分析 [J]. 中国农业科学, 44(2): 245-253.]
- SHARP PM, LI WH, 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J Mol Evol, 24(1-2): 28-38.

SHINOZAKI K, OHME M, TANAKA M, et al, 1986. The

complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. Embo J, 5(9): 111-148.

- SONG H, WANG PF, MA DC, et al, 2015. Analysis on codon usage of WRKY transcription factor of *Medicago truncatula* [J]. J Agric Biotechnol, 23(2): 203-212. [宋辉, 王鹏飞, 马登超, 等, 2015. 蒺藜苜蓿 WRKY 转录因子密码子使用偏 好性分析 [J]. 农业生物技术学报, 23(2): 203-212.]
- SUEOKA N, 1999. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position [J]. Gene, 238(1): 53 -58.
- SUEOKA N. 2001. Near homogeneity of pr2-bias fingerprints in the human genome and their implications in phylogenetic analyses [J]. J Mol Evol, 53(4-5): 469.
- WANG PL, YANG LP, WU HY, et al, 2018. Condon preference of chloroplast genome in *Camellia oleifera* [J]. Guihaia, 38(2):135-144. [王鹏良,杨利平,吴红英,等, 2018. 普通油茶叶绿体基因组密码子偏好性分析 [J]. 广西植物, 38(2):135-144.]
- WANG W, YU H, WANG J, et al, 2017. The complete chloroplast genome sequences of the medicinal plant *Forsythia suspensa* (Oleaceae) [J]. Int J Mol Sci, 18(11): 2288.
- XU C, CAI X, CHEN Q, et al, 2011. Factors affecting synonymous codon usage bias in chloroplast genome of *Oncidium* Gower Ramsey [J]. Evol Bioinform, (7): 271–278.
- XU C, BEN AL, CAI XN, et al. 2010. Analysis of synonymous codon usage in chloroplast genome of *Phalaenopsis aphrodite* subsp. *formosana* [J]. Mol Plant Breed, 8(5): 945–950. [续 晨, 贲爱玲, 蔡晓宁, 等, 2010. 蝴蝶兰叶绿体基因组密码 子使用的相关分析 [J]. 分子植物育种, 8(5):945–950.]
- YANG GF, SU KL, ZHAO YR, et al, 2015. Analysis on codon usage of chloroplast genome of *Medicago truncatula* [J]. J Pratac Sin, 24(12): 171–179. [杨国锋, 苏昆龙, 赵怡然, 等, 2015. 蒺藜苜蓿叶绿体密码子偏好性分析 [J]. 草业 学报, 24(12): 171–179.]
- ZHANG X, XIN W, WANG S, et al, 2005. Optimizing the codon usage of HIV-1 gag gene according to the codon bias of vaccinia virus improves the gag gene expression [J]. Chin J Virol, 21(3): 210–216.
- ZHENG WW, CHEN JH, HAO ZD, et al, 2016. Analysis on codon usage bias of chloroplast genes from five conifers including *Cunninghamia lanceolata* [J]. Mol Plant Breed, 14(5):1091-1097. [郑薇玮,陈金慧,郝兆东,等, 2016. 杉木等 5 种针叶树叶绿体密码子偏好性分析 [J]. 分子植物育种,14(5):1091-1097.]
- ZHOU M, LONG W, LI X, 2008a. Patterns of synonymous codon usagebias in chloroplast genomes of seed plants [J]. For Stud Chin, 11(4):235-242.
- ZHOU M, WEI L, XIA L, 2008. Patterns of synonymous codon usagebias in chloroplast genomes of seed plants [J]. For Ecosy, 10(4): 235–242.