水稻幼苗根质膜氧化还原系统活性与抗冷性的关系

李美茹 刘鸿先 王以柔(中国科学院华南植物研究所,广州 510650)

摘 要 本试验以水稻幼苗为材料、研究冷胁迫和钙浸种、低温锻炼、低温锻炼结合钙浸种预处理分别对幼苗根质膜 $Fe(CN)^3_c$ 还原活性的影响。 实验结果表明:冷胁迫降低了质膜 $Fe(CN)^3_c$ 还原活性,钙浸种、低温锻炼、低温锻炼结合钙浸种预处理均提高了质膜 $Fe(CN)^3_c$ 还源活性,尤其是削减了冷胁迫降低质膜 $Fe(CN)^3_c$ 还原活性的作用。 根质膜 $Fe(CN)^3_c$ 还原活性与水稻幼苗抗冷力密切相关。

关键词 水稻幼苗: 根质膜 Fe(CN) 6-还原活性; 抗冷性

STUDY ON THE RELATIONSHIP BETWEEN THE ACTIVITY OF ROOT PLASMA MEMBRANE Fe (CN)₆³⁻ REDUCTION AND COLD TOLERANCE IN RICE SEEDLINGS

Li Meiru Liu Hongxian Wang Yirou

(South China Institute of Botany, The Chinese Academy of Sciences, Guangzhou 510650)

Abstract Rice seedlings were used as experimental material to study effects of chilling stress and pretreatments of $CaCl_2$ treatment, cold hardening and cold hardening combined with $CaCl_2$ treatment on the activity of plasma membrane Fe $(CN)_6^{3-}$ from roots. Results indicated that the activity of plasma membrane Fe $(CN)_6^{3-}$ reduction was decreased by chilling stress; The activity of plasma membrane Fe $(CN)_6^{3-}$ reduction was increased by $CaCl_2$ treatment, cold hardening and cold hardening combined with $CaCl_2$ treatment, especially, the decrease of plasma membrane Fe $(CN)_6^{3-}$ reduction activity caused by chilling stress was inhibited by the above pretreatments. It is suggested that not plasma membrane Fe $(CN)_6^{3-}$ reduction activity is closely associated with cold tolerance of rice seedlings.

Key words Rice seedlings; root plasma membrane Fe $(CN)_6^{3-}$ reduction; cold tolerance

质膜氧化还原系统是质膜中除 ATP 酶外的另一重要的能量转换系统,它在能量传递、营养物质的吸收和运转、生长发育、信息传导和抵御病原物等方面起着重要的作用 $^{[1]}$ 。该系统对逆境胁迫很敏感。Barr 等 $^{[7]}$ 曾发现盐胁迫下萝卜细胞质膜氧化还原系统对盐胁迫极为敏感,质膜 NADH 氧化、Fe $(CN)_6^{3-}$ 还原以及 H^+ 分泌等受到抑制,同时细胞的生长也受到影响。邱全胜等也发现水分胁迫下小麦根细胞质膜 NADH 和 NADPH 的氧化速率及 Fe $(CN)_6^{3-}$ 和

¹⁹⁹⁷⁻⁰⁴⁻⁰⁷ 收稿

EDTA— Fe^{3+} 的还原速率明显降低。Zhao 等 $^{[10]}(1995)$ 首次报道冷锻炼提高了黑松幼苗根细胞质膜氧化还原系统的活性,推测质膜氧化还原系统在植物冷锻炼中可能起着重要的调节作用。植物遭受冷胁迫伤害时,其质膜氧化还原系统活性变化如何,目前还没见这方面的报道。通常以 NAD(P)H 为电子供体,还原 Fe (CN) $^{3-}_6$,但不能还原 $EDTA-Fe^{3+}$,被称为标准系统(standard system),本文研究冷胁迫对水稻幼苗根细胞质膜氧化还原系统活性(Fe (CN) $^{3-}_6$ 还原活性)的影响,以及钙浸种、低温锻炼等对该活性、该活性冷适应性的影响,阐明水稻幼苗根细胞质膜氧化还原系统活性与抗冷性的关系。

1 材料和方法

- 1.1 材料的培养、处理 同前文[3,4]
- 1.2 NADH 氧化还原速率的测定

按焦新之等 $^{[5]}$ 方法, 3 ml 含蔗糖 0 . 25 mol $^{\circ}$ L $^{-1}$ 和 $^{\circ}$ Tris $^{-1}$ MES 10 mmol $^{\circ}$ L $^{-1}$ pH 10 8 的反应介质置石英比色杯中,依次加入 15 $^{\mu}$ l NADH 10 0 mmol $^{\circ}$ L $^{-1}$ 2 10 0 10 1 10 1 10 2 10 2 10 3 10 4 10 5 10 6 mmol 10 6 10 7 记录 10 7 记录 10 8 10 9 加入 10 9 以不加膜蛋白的为空白,按 NADH 10 1 mmol 10 2 L $^{-1}$ 1消光系统为 10 3 计算被氧化的 NADH 10 3 。

1.3 Fe (CN) 5 还原速率的测定

测定方法与测定 NADH 的氧化还原速率相同,测定波长改为 420 nm,按 Fe(CN 3_6 1 mmol $^{\circ}$ L $^{-1}$ 消光系数为 1 计算被还原的 Fe(CN 3_6 量。

2 结 果

2.1 膜制剂的氧化还原活性

当向反应系统加入 $0.25 \text{ mmol} \circ \text{L}^{-1}$ NADH 时,NADH 即被缓慢地氧化,而当加入人工电子受体 $\text{Fe}(\text{CN})_{\delta}^{3-}$ 时,NADH 被氧化的速率迅速提高。同样地,当向反应系统单独加入 $\text{Fe}(\text{CN})_{\delta}^{3-}$ 时, $\text{Fe}(\text{CN})_{\delta}^{3-}$ 被还原的速率比较低,加入 NADH 则可显著地促进 $\text{Fe}(\text{CN})_{\delta}^{3-}$ 的还原(表 1),这表明了水稻根质膜具有氧化 NADH、还原 $\text{Fe}(\text{CN})_{\delta}^{3-}$ 的氧化还原活性。

表 1 外源 NADH和 Fe (CN)³-对水稻幼苗根细胞质膜氧化还源活性的作用
Table 1 Effects of NADH and Fe (CN)³- on
the plasma membrane redox activity
from roots of rice seedlings

	NADH oxidation (nmo1/ mg Prot min)	Fe (CN) ₆ ³⁻ reduction (nmo1/mg Prot min)
NA DH	30	
NADH+Fe (CN) ₆ ³⁻	229	1300
Fe (CN) ₆ ³⁻		70

2.2 钙与低温锻炼对水稻幼苗根细胞质膜还原 $Fe(CN)^{3-}$ 活性的影响

实验结果表明冷胁迫处理明显降低了质膜还原 $Fe(CN)^3$ 的能力; 钙浸种明显提高了质膜还原 $Fe(CN)^3$ 的能力, 而且冷胁迫后, 这种效果仍然明显存在, 说明钙浸种有提高和稳定冷胁迫下质膜氧化还原活性的作用(图 1), 低温锻炼和低温锻炼结合钙浸种也表现出钙浸种的效果, 并对该系统有更明显的激活作用(图 2)。

3 讨 论

以上实验表明水稻根细胞质膜也具有氧化 NADH 和还原 Fe (CN) 3 的活性(表 1), 冷胁 迫明显降低了质膜 Fe (CN) 3 还原活性(图 1)。 Qiu 和 Liang [8] (1995)证明质膜氧化还原系统产生的活性氧自由基引发了膜脂过氧化,因此,推测由于水分胁迫中断了质膜氧化还原系统的电子传递^[28],使产生大量活性氧,引发膜脂过氧化,损伤细胞膜。 冷胁迫致使质膜氧化还原活性受损,是否因此导致了膜脂过氧化程度的加重,尚有待进一步的研究。

冷锻炼能提高某些植物的抗冷力, Zhao 等报道冷锻炼提高了黑松幼苗根细胞质膜氧化还原 Fe (CN)³ 的活性。前文^[3,4]报道钙浸种、低温锻炼、低温锻炼结合钙浸种均有提高水稻幼

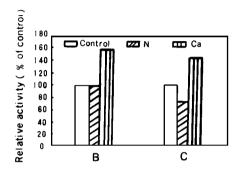


图 1 冷胁迫及钙浸种对水稻幼苗根细胞质膜 还原 Fe (CN) 3 活性的影响

Fig. 1 Effects of chilling stress and CaCl₂

treatment on the activity of plasma membrane Fe $(CN)_6^{3-}$ reduction from roots of rice seedlings Control—control seedlings N—untreated with CaC_2 but

treated with chilling stress; Ca—treated by CaCl₂;

B—before chilling stress; C—after chilling stress

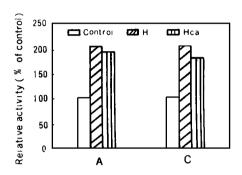


图 2 低温锻炼及结合钙浸种对水稻幼苗根 细胞质膜还原 Fe (CN) 3 活性的影响

Fig. 2 Effects of cold hardening and $CaCl_2$ treatment on the activity of plasma membrane Fe $(CN)_{3}^{6}$ reduction

from roots of rice seedlings
H—pretreated by cold hardening HCa—pretreated by CaC2
combined with cold hardening A—after cold hardening
Control and C are as same as Fig. 1.

苗的抗冷力。本实验的这几种提高水稻幼苗抗冷力的方法亦均相同地有提高质膜 $Fe(CN)^{3-1}$ 活性,特别是消除冷胁迫削减该系统活性的作用,维持或稳定了该系统结构的完整,使该系统活性在冷胁迫后仍处于高水平(图 1, 2)。提高水稻幼苗抗冷力的措施也表现了有提高细胞内源抗氧化剂(抗坏血酸(AsA),还原型谷胱甘肽(GSH))含量的作用 $^{(3,4)}$,现已证明 $GSH \times AsA$ 可以充当质膜氧化还原系统的电子供体 $^{(6)}$ 。据此,推测提高水稻幼苗抗冷力的方法(钙浸种、低温锻炼等)提高了质膜氧化还原系统活性可能与这些方法有提高细胞中 $GSH \times AsA$ 的含量有关。Rubinstein 和 Luster $^{(9)}$ 认为质膜氧化还原系统活性氧的产生可能为逆境信号诱导所致,并且成为逆境信号传导的一部分而共同完成细胞的防御功能。质膜氧化还原系统是否有积极调节细胞冷适应性的代谢,它在植物冷适应或冷反应中的作用如何,尚有待进一步深入的研究。

参 考 文 献

- 1 陈思学, 焦新之, 植物质膜氧化还原系统的生理作用, 生命科学, 1995, 7(4): 24~31
- 2 <mark>邱全胜、李 琳、梁厚果等,水分胁迫对小麦根细胞质膜氧化还原系统的影响. 植物生理学报,1994, **20** (2): 145~151</mark>

- 3 李美茹,刘鸿先,王以柔等,水稻幼苗冷锻炼过程中钙的效应,植物学报,1996,**38** (9);735~742
- 4 李美茹, 刘鸿先, 王以柔等. 钙对水稻幼苗抗冷性的影响. 植物生理学报, 1996, **22** (4): 379~384
- 5 焦新之,李 琳,倪晋山,花生幼苗下胚轴质膜氧化还原系统,植物生理学报,1992,18(1);63~68
- 7 Barr R. The possible role of redox—associated protons in growth of plant cells. J Bioenerg Biomembr, 1991, 23: 443~450
- 8 Qiu Q S. Liang H G. Lipid peroxidation caused by the redox system of plasma membrane from wheat roots. J Plant Physiol 1995, 145; 261~265
- 9 Rubinstein B, Luster D G. Plasma membrane redox activity: components and role in plant processes. Ann Rev Plant Physiol Plant Mol Biol. 1993, 44: 131~155
- 10 Zhao S, Colombo S J, Blumwald E. The induction of freezing tolerance in jack pine seedlings: the role of root plasma membrane H⁺— ATP ase and redox activities. *Physiol Plant*, 1995. **93**; 55~60