DOI: 10.11931/guihaia.gxzw201911016

廖珂, 沈芳芳, 刘文飞, 等. 长期氮沉降下杉木人工林凋落物与土壤的 C、N、P 化学计量特征 [J]. 广西植物, 2020, 40(11): 1551-1562. LIAO K, SHEN FF, LIU WF, et al. C, N and P stoichiometric characteristics of litterfall and soil in a Chinese fir plantation under long-term nitrogen deposition [J]. Guihaia, 2020, 40(11): 1551-1562.

长期氮沉降下杉木人工林凋落物与 土壤的 C、N、P 化学计量特征

廖 珂1, 沈芳芳1, 刘文飞1, 孟庆银2, 童 浩3, 陈官鹏1, 徐 晋1, 樊后保1*

(1.南昌工程学院,生态与环境科学研究所/江西省退化生态系统修复与流域生态水文重点实验室,南昌 330099;
 2.福建省沙县官庄国有林场,福建 沙县 365503; 3.福建省三明市郊国有林场,福建 三明 365000)

摘 要:为研究长期氮沉降条件下林木凋落物与土壤养分之间的关系,该文以亚热带杉木(Cunninghamia lanceolata)人工林为研究对象,分析了模拟氮沉降处理第12年时杉木林凋落物不同组分(叶、枝、果)与不同 土层土壤(0~20 cm、20~40 cm、40~60 cm)的C、N、P 含量及其化学计量比。氮沉降处理分4个水平,分别 为NO(0 kg N·hm²·a⁻¹)、N1(60 kg N·hm⁻²·a⁻¹)、N2(120 kg N·hm⁻²·a⁻¹)、N3(240 kg N·hm⁻²·a⁻¹), 每处理重复3次。结果表明:(1)凋落物各组分的C、N、P 含量及其化学计量比均高于土壤;凋落物和土壤 化学计量比均表现为C/P>C/N>N/P;凋落物不同组分的C、N含量表现为叶>果>枝,而P含量表现为叶> 枝>果。(2)12 a氮沉降增加了凋落物叶、枝和果的N含量,增幅分别为4.24%、15.97%、6.47%;同时增加了 凋落物枝 N/P,降低了凋落物枝C含量、C/N和C/P;中-高氮沉降(N2、N3)增加了土壤N含量,低氮沉降 (N1)增加了土壤C/P、N/P。(3)相关性分析表明凋落物N与土壤N显著正相关,土壤C/P与凋落物C/P、 N/P显著负相关,土壤P与凋落物N/P显著负相关。综上结果说明凋落物N是土壤N的重要N素来源之 一,而土壤N可能是决定长期氮沉降后凋落物N/P的主要因素。

关键词:氮沉降,生态化学计量,凋落物,土壤,杉木人工林

中图分类号: Q948.15 文献标识码: A

文章编号:1000-3142(2020)11-1551-12

开放科学(资源服务)标识码(OSID):

C, N and P stoichiometric characteristics of litterfall and soil in a Chinese fir plantation under long-term nitrogen deposition

收稿日期: 2019-11-12

基金项目:国家自然科学基金(31960308,31360175);福建省三明市林业科学技术研究项目(2018-N-6);南昌工程学院 2019 年国 家大学生创新创业训练计划项目(201902);南昌工程学院 2019 年度研究生创新计划项目(201904)[Supported by the National Natural Science Foundation of China (31960308, 31360175); Sanming Forestry Science and Technology Research Program of Fujian Province(2018-N-6); 2019 National Innovation and Entrepreneurship Training Program for College Student in Nanchang Institute of Technology (201902); 2019 Gradute Innovation Program of Nanchang Institute of Technology (201904)]。

作者简介:廖珂(1999-),男,海南海口人,学士,研究方向为森林生态学,(E-mail)275774853@qq.com。

通信作者:樊后保,博士,教授,研究方向为植被恢复与重建和全球变化生态学,(E-mail)hbfan@nit.edu.cn。

LIAO Ke¹, SHEN Fangfang¹, LIU Wenfei¹, MENG Qingyin², TONG Hao³, CHEN Guanpeng¹, XU Jin¹, FAN Houbao^{1*}

(1. Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology/Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, China; 2. Guanzhuang National Forest Farm of Shaxian, Shaxian 365503, Fujian, China; 3. Shijiao National Forest Farm of Sanming, Sanming 365000, Fujian, China)

Abstract: To reveal the relationship between forest litterfall and soil under long-term nitrogen (N) deposition, litterfall and soil samples were collected in the 12th year of nitrogen deposition in a Chinese fir (Cunninghamia lanceolata) plantation. C, N, and P concentrations and stoichiometric characteristics of litterfall (leaf, branch and fruit) and soil (0-20 cm, 20-40 cm, 40-60 cm) were analyzed. Four simulated nitrogen deposition treatment levels were N0 (0 kg N · $hm^{-2} \cdot a^{-1}$, N1 (60 kg N $\cdot hm^{-2} \cdot a^{-1}$), N2 (120 kg N $\cdot hm^{-2} \cdot a^{-1}$) and N3 (240 kg N $\cdot hm^{-2} \cdot a^{-1}$), respectively. Each treatment comprised three replicate plots of 20 m \times 20 m which were sprayed with use on the forest floor at the beginning of each month. The results were as follows: (1) C, N and P contents and stoichiometric ratios of litterfall were higher than that of soil. The stoichiometric ratios of litterfall showed the same order as soil of C/P>C/N>N/P; The C, N contents of litterfall decreased in the order of leaf > fruit > branch, while P decreased in the order of leaf > branch > fruit. (2) N deposition promoted N content in litterfall leaf (+4.24%), branch (+15.97%), and fruit (+6.47%). respectively; N deposition increased N/P while decreased C content, C/N and C/P in litterfall branch; Medium-high level of N deposition (N2 and N3) increased soil N content, and low level of N deposition (N1) increased soil C/P and N/P. (3) Significant positive correlation existed between litterfall N and soil N, while negative correlation between soil C/P and litterfall C/P, N/P, and between soil P and litterfall N/P. It is indicated that litterfall N was one of the important soil N sources, and soil N content mainly influencing the ratio of litterfall N/P after long-term N deposition. Key words: nitrogen deposition, ecological stoichiometry, litterfall, soil, Cunninghamia lanceolata plantation

生态化学计量(ecological stoichiometry)结合 了生物学、化学和物理学等基本原理,利用生态过 程中多重化学元素的平衡关系,在碳(C)、氮(N)、 磷(P)生物地球化学循环的研究中得到了广泛应 用(Elser et al.,2000; 王绍强和于贵瑞,2008; 贺 金生等,2010; 卢同平等,2016; Shen et al., 2019)。基于生态系统中地上和地下组分间 C、N、 P等养分元素的循环利用、元素之间的耦合机制及 其对环境变化的响应是当前深入开展森林生态学 研究的有利工具和研究热点(王绍强和于贵瑞, 2008; 贺金生等,2010; Shen et al.,2019)。

在过去的一个世纪中,氮沉降量增加了 3~5 倍(IPCC,2007),且在未来的一段时期内可能持 续增加(Kanakidou et al.,2016; Wang et al., 2017),威胁着全球许多生态系统。我国氮沉降 量自 20 世纪 80 年代以来急剧增加,是世界最高 沉降区之一(Liu et al.,2013)。近年来观测到 N:P沉积率的增加使生态系统中的 N 和 P 输入 失衡,导致了陆地生态系统中 C-N-P 养分的不 平衡,其化学计量比发生改变(Bobbink et al., 2010; Chapin et al., 2011; Yang et al., 2019) N 添加通过改变 C、N、P 含量和化学计量比影响植 物的生长(Chapin et al., 2011)。添加少量的氮 有利于使受 N 限制的生态系统得到缓解,因为氮 沉降可以增加陆地生态系统碳汇(Yan et al., 2018)。但是,过量的慢性氮沉降引发了很多潜 在的有害影响,如氮饱和(Magill et al., 2000)、土 壤酸化、盐基离子的损失(Tian & Niu, 2015)、土 壤氮素淋失增加(Matson et al., 2002)、生物多样 性减少(吴建平等,2014)等,从而削弱陆地生态 系统碳贮存(鲁显楷等,2019)。在受N限制的 森林中,氮的输入可以大部分被植物保留和吸 收,少部分固定在植物组织中,且具有较高的C/N 值。人为氮沉积导致了美国中部的大多数中龄 和成熟森林出现了 P 限制 (Goswami et al., 2018)。然而,不是所有的生态系统对氮沉降会

做出相同的响应,这取决于生态系统类型、氮沉 降速率、时间和类型等因素。因此,有必要对森 林生态系统对氮的响应进行更多的研究。

土壤 C/N 和 C/P 可以指示土壤有机质分解 与土壤养分供给情况。有研究表明.氮沉降对亚 热带森林土壤 C/N 影响显著(Yue et al., 2017)。 相比植物叶和枯落物的C:N:P,土壤C:N:P 对氮的反应更敏感,比植物叶的 C:N:P 更早 响应,这说明关于化学计量特征相关的森林生态 系统因子中土壤 C:N:P 化学计量可能是随氮 沉降增加引起 N:P 沉积变化的一个更好的指标 (Yang et al., 2019)。从元素平衡的角度而言, 长期过量的氮输入促使植物、凋落物和土壤中关 键元素的比例失衡,例如增加了 N/P 比值 (Sardans et al., 2016)。森林凋落物分解是连接 生态系统地上部分、地下部分的关键环节,影响 着生态系统的养分循环(林成芳等,2017)。"植 物-凋落物-土壤"中C、N、P之间存在耦联作用. 当其中一种或多种元素发生改变时,其他元素也 随之发生变化,甚至成为限制性元素而影响植物 的生长(卢同平等,2016)。2003年12月选择亚 热带地区主要造林用材树种-杉木 (Cunninghamia lanceolata)为研究对象,2004年1 月开始模拟氮沉降试验,持续至2016年已有12 a。本文分析长期氮沉降(>10年)条件下不同凋 落物组分(叶、枝、果)和不同土壤深度(0~20 cm、20~40 cm、40~60 cm)的C、N、P含量及其化 学计量变化特征,以期为长期气候变化条件下林 木凋落物与土壤养分之间的关系提供科学数据, 丰富森林生态系统养分循环。

1 研究区概况与研究方法

1.1 研究区概况

试验地设在福建省三明市沙县官庄国有林场 (117°43′29″E、26°30′47″N)。属中亚热带季风 气候,四季分明,温暖适中,日照充足,年平均气温 19.2℃,年平均降水量1628 mm,无霜期271 d (樊后保等,2007)。试验林设在该林场的白溪工 区 21 林班 8 小班南坡上,平均海拔200 m,土壤为 山地红壤。试验林为 1992 年营造的杉木人工林, 面积 6 hm²。林下植被稀疏,以五节芒(*Miscanthus floridulus*)、芒 萁(*Dicranopteris olichotoma*)、蕨 (*Pteridium aquilinum* var. *latiusculum*)等为主,盖度 在 3%~5%之间。选择立地和林分条件相似的杉 木人工林建立 12 块固定试验样地,样地面积均为 20 m × 20 m,内设 15 m × 15 m 中心区域,以便破 坏性试验在中心区外围的处理区进行。本研究于 2003 年 12 月进行了本底值调查,主要林分的平均 密度、平均胸径、平均树高和平均坡度分别为1 664 株・hm⁻²、16.1 cm、12.07 m 和 31.15°,土壤理化性 质 pH、C、N 和 P 分别为 4.6、18.39 g・kg⁻¹、0.79 g・kg⁻¹和 0.17g・kg⁻¹(吴建平等,2014)。

1.2 模拟氮沉降试验

模拟氮沉降实验即以人工喷氮的方式对未来 的氮沉降趋势进行模拟。本研究参照国外同类研 究,如 NITRE(NITRogen saturation Experiment)(Fenn et al., 1998), EXMAN (Experimental Manipulation of Forest Ecosystem in Europe)(Wright et al., 1998)项目和 北美 Harvard Forest(Gundersen et al., 1998; Aber et al., 1998)等类似研究设计.氮沉降量的确定参照了当 地氮的沉降量以及杉木对氮的年需求量。按氮施 用量的高低,分4种处理,从低到高分别标记为N0 (0 kg N · hm⁻² · a⁻¹, 对照)、N1 (60 kg N · hm⁻² · a⁻¹) 、N2 (120 kg N ・ hm⁻² ・ a⁻¹) 和 N3 (240 kg N ・ hm⁻² · a⁻¹),每种处理重复3次。2003年12月建 立样地后,于2004年1月开始进行模拟氮沉降处 理,每月月初以溶液的形式在样地地面喷洒。按 照处理水平的要求,将尿素 [CO(NH₂)₂]溶解在 20 L 水中, 以背式喷雾器在林地人工来回均匀喷 洒。对照样地(N0)喷施同样量的水,以减少因外 加的水而造成对林木生物地球化学循环的影响。

1.3 样品采集、处理及分析

1.3.1 凋落物的收集 自 2004 年 1 月建立样地开始,在各样地内随机设置 10 个 1 m × 1 m 的凋落物收集框,每月底收集一次收集框上的凋落物,将同一个样地内 10 个收集框中的凋落物混合成一个样品。仅取 2016 年 3 月底收集的凋落物,装入塑料袋带回实验室。N0、N1、N2 和 N3 处理的凋落物现存量平均分别为 172.77、203.41、219.91 和

187.56 kg・hm⁻²。在室内区分凋落物叶(落叶)、 凋落物枝(落枝)和凋落物果(落果)3个组分,共
36个植物样品(4种处理×3个重复×3个凋落
物组分),在65℃恒温条件下烘干至恒重,研磨后
过100目筛,测定有机碳(C)、全氮(N)和全磷
(P)含量。

1.3.2 土壤采集 2016 年 3 月底(与凋落物样品收 集时间相同)用土壤采样器进行多点混合采集土 壤原状样品,分 3 个土壤层(0~20 cm、20~40 cm、 40~60 cm)混合,共 36 个土壤样品(4 种处理 × 3 个重复 × 3 个土层)。将土样密封后带回实验室, 剔除凋落物、根系和大于 2 mm 的石砾等杂物,在 室内风干,研磨后过 100 目筛,测定 C、N 和 P 含量。

1.3.3 测定方法 凋落物和土壤 C、N 和 P 含量采 用同样方法测定。C 采用重铬酸钾-油浴外加热 法;N 和 P 经 H₂SO₄-H₂O₂消煮后,N 采用半微量 凯氏定氮法,P 采用酸溶-钼锑抗比色法。

1.4 统计分析

凋落物和土壤数据均采用 Excel 2013 预处理, SigmaPlot 12.5 作图。采用 SPSS 19.0 统计软件进 行最小差异显著法(LSD)、单因素方差分析(Oneway ANOVA)、双因素方差分析(Two-way ANOVA) 以及凋落物-土壤之间的 C、N、P 生态化学计量关 系采用 Pearson 相关分析。

2 结果与分析

2.1 双因素分析

双因素方差分析(表1)表明,凋落物组分显著 影响凋落物 N、P、C/N 和 N/P(P<0.05);氮处理对 凋落物 C、N、P 及化学计量比没有显著影响;凋落 物组分 × 氮处理显著影响凋落物 P、C/N 和 N/P (P<0.05)。土层显著影响土壤 C、C/P 和 N/P (P<0.05);氮处理显著影响土壤 N 和 P 含量 (P<0.05);但土层 × 氮处理交互作用对土壤全量 及化学计量比影响不显著。

2.2 凋落物不同组分 C、N、P 含量及生态化学计量 特征

调落物各组分养分含量均呈现为 C>N>P,且

凋落物叶中的 C、N 和 P 含量均高于枝和果(图 1)。总体来说,不同氮沉降水平下凋落物叶和果 养分含量在统计上均未达到显著性差异。凋落物 生态化学计量的氮沉降处理(N1、N2 和 N3)的平 均值与对照处理(N0)的比值(其中 N0/N0 = 100%)见图 2(左)。氮沉降增加了叶、枝和果的 N 含量,增幅分别为4.24%、15.97%、6.47%。氮沉降 显著降低了落叶 C(-3.98%)、P(-6.10%),落枝 C(-27.42%)、P(-11.72%)、C/N(-7.66%)、C/P (-17.09%)和落果 C/P(-9.64%);增加了落叶 C/N(+8.59%),落枝 N/P(+31.45%)和落果 P (+21.57%)、C/N(+8.81%);落叶和落果的生态 化学计量没有达到显著性差异水平。

不同氮沉降水平下.C平均含量呈现为叶> 果>枝。凋落物叶C含量为262.50~285.61g· kg-1,且随着氮沉降水平增加表现为 N0>N3>N2> N1,但未达到显著性差异。凋落物枝 C 含量范围 为187.19~284.90g·kg⁻¹,与叶C含量有着类似 的趋势:N0处理最高,N1处理最低,差异性显著 (P<0.05)。而凋落物果C含量的变化趋势与叶C 含量相反,即 N0 处理最低,表现为 N1>N2>N3> NO。不同氮沉降水平下,N含量均表现为叶>果> 枝,其含量分别为叶(13.93~15.17g·kg⁻¹)、果 (11.02~12.03 g · kg⁻¹) 和枝(8.10~10.48 g · kg⁻¹)。叶、枝和果中的 N 含量均表现为 N3 处理最 高。P 平均含量在凋落物各组分总体上表现为 叶>枝>果,其含量分别为叶(1.32~1.56 g⋅kg⁻¹)、 枝 $(0.98 \sim 1.30 \text{ g} \cdot \text{kg}^{-1})$ 、果 $(1.02 \sim 1.32 \text{ g} \cdot \text{kg}^{-1})$ 。 叶和枝 P 含量表现为 N1 处理最高。果 P 含量随 着氮沉降水平增加表现为 N3>N2>N1>N0。这说 明不同组分对氮沉降的响应不同,且以叶的敏感 性最强。

凋落物各组分生态化学计量比大小顺序为 C/P>C/N>N/P(图1)。C/N值与C/P值变化趋 势一致:叶<果<枝,N/P值呈现枝组分最低。不同 氮沉降水平下,叶C/P和N/P值均表现出N2处 理最高,但未达到显著性差异。枝C/N和C/P值 表现出N0>N2>N3>N1(P<0.05)。相比N0处理, N1、N2和N3处理的凋落物枝的N/P值显著增加 (P<0.05)。果C/N值以N0处理最低,与N0处理

表 1 凋落物和土壤 C、N、P 生态化学计量双因素分析

Table 1 Two-way analysis on litterfall and soil C, N, P ecological stoichiometry

组分 Component	因子 Factor	F 值(P) F value (P)					
		С	Ν	Р	C/N	C/P	N/P
凋落物	凋落物组分	2.120	112.604	13.037	6.606	1.453	12.338
Litterfall	Litterfall component	(0.142)	(<0.001)	(<0.001)	(0.005)	(0.254)	(<0.001)
	氮处理	0.639	2.537	0.468	2.946	0.622	0.263
	N treatment	(0.597)	(0.081)	(0.707)	(0.053)	(0.608)	(0.852)
	凋落物组分 × 氮处理	0.621	1.712	2.712	2.774	0.682	3.095
	Litterfall component × N treatment	(0.712)	(0.161)	(0.037)	(0.034)	(0.666)	(0.022)
土壤	土层	4.489	1.146	3.145	2.801	5.092	5.368
Soil	Soil layer	(0.022)	(0.335)	(0.061)	(0.081)	(0.014)	(0.012)
	氮处理	0.474	3.236	4.162	0.108	1.655	0.898
	N treatment	(0.703)	(0.040)	(0.017)	(0.955)	(0.203)	(0.457)
	土层 × 氮处理 Soil layer × N treatment	0.808 (0.574)	0.553 (0.763)	1.738 (0.155)	1.242 (0.321)	$0.481 \\ (0.816)$	1.577 (0.197)

注:粗体为显著性差异(P<0.05)。

Note: Values in bold are statistically significant (P < 0.05).

下 C 含量最低有关。果 C/P 和 N/P 值均表现为 N3> N2> N1> N0,但未达到显著性差异。

2.3 土壤 C、N、P 含量及生态化学计量特征

从图 3 可以看出,不同土层的土壤 C、N、P 含量均表现为 C>N>P。三个土层的 C 含量均以 N0 处理最低,且随着氮沉降水平的增加而增加,但未达到显著水平。三个土层 N 含量均以 N0 处理最低,0~20 cm 土层表现为随氮沉降水平的增加先升高后下降,以 N2 处理最高(P<0.05);20~40 cm 土层氮沉降增加了土壤 N 含量,但差异不显著;40~60 cm 土层 N 含量表现为 N3>N2>N1>N0(P<0.05)。三个土层 P 含量均以 N1 处理最低,0~20 cm 土层表现为 N3>N2>N0>N1(P<0.05);20~40 cm 土层表现为 N3>N2>N0>N1(P<0.05);20~40 cm 土层表现为 N3>N2>N0>N1(P<0.05);20~40 cm 土层表现为 N2>N3>N0>N1(P<0.05);10~40 cm 土层表现为 N2>N3>N0>N1(P<0.05);10~40 cm 土层表现为 N2>N3>N0>N1(P<0.05);10~40 cm 土层表现为 N2>N3>N0>N1(P<0.05);10~40 cm 土层土壤 P 含量在各氮沉降处理下无显著性差异。

不同土层的土壤 C、N、P 生态化学计量表现为 C/P>C/N>N/P(图 3)。土壤 C/N 和 C/P 值在不 同土层和氮沉降水平下均无显著差异。三个土层 的 C/N 平均值分别为 6.81、8.04 和 5.54。C/P 表 现出随着土层加深而降低,平均值分别为 30.79、 25.53 和 18.33。N/P 表现 0~20 cm> 40~60 cm> 20~40 cm,且在 20~40 cm 土层中,N1 和 N3 处理 的 N/P 值较 N0 处理增加了 36.80% 和 13.03%。

土壤生态化学计量的氮沉降处理(N1、N2和N3)的平均值与对照处理(N0)的比值(其中N0/N0=100%)见图2(右)。氮沉降条件下,0~20 cm、20~40 cm、40~60 cm 土层C含量的增幅分别为21.17%、19.05%、11.10%;N含量的增幅为20.55%、23.36%、31.70%;40~60 cm 土层C/N的增幅为2.75%、C/P的增幅为11.03%和N/P的增幅为24.43%。

2.4 凋落物与土壤 C、N、P 生态化学计量相关性

通过 Pearson 相关分析凋落物生态化学计量 相关性(表2)、土壤生态化学计量相关性(表3)和 凋落物与土壤之间的相关性(表4),以探明凋落 物和土壤 C、N、P 生态化学计量间的相关关系。

由表2可知,凋落物C与N、C/N和C/P之间 显著正相关;凋落物N与P和N/P极显著正相 关,而与C/N显著负相关;凋落物P与C/P和N/P 显著负相关;C/N与C/P极显著正相关,而与N/P 显著负相关;C/P与N/P显著正相关。

由表 3 可知, 土壤 C 与 N、C/N 和 C/P 均显著 正相关; 土壤 N 与 C/N 显著负相关, 而与 P 和 N/P 显著正相关; 土壤 P 与 C/P 和 N/P 显著负相关; C/N 与 C/P 显著正相关, 而与 N/P 显著负相关;

图中数据为平均值±标准误差(n=3),不同字母表示氮沉降处理下的显著性差异水平 P<0.05。N0、N1、N2、N3分别表示加氮量为0、60、120、240 kg N·hm⁻²·a⁻¹。下同。

Data = $\bar{x} \pm s_{\bar{x}}(n=3)$. Different lowercase letters indicate significant differences for the same life span leaf or branch under different nitrogen deposition treatment levels (P < 0.05). N0, N1, N2, N3 means nitrogen addition 0, 60, 120, 240 kg N \cdot hm⁻² \cdot a⁻¹, respectively. The same below.

图 1 不同氮沉降水平条件下凋落物各组分(叶、枝、果)C、N、P 含量及其生态化学计量特征 Fig. 1 C, N and P contents and stoichiometry of litterfall (leaf, branch and fruit) of Chinese fir under different nitrogen deposition levels

C/P 与 N/P 显著正相关。

凋落物与土壤的 C、N、P 及其生态化学计量的 Pearson 相关分析结果表明, 凋落物 N 与土壤 N 显 著正相关; 凋落物 C/P 与土壤 C/P 显著负相关; 凋 落物 N/P 与土壤 N、C/N 显著正相关, 而与土壤 P、C/P 显著负相关(表4)。 3 讨论与结论

3.1 氮沉降对凋落物和土壤 C、N、P 生态化学计量 特征的影响

模拟氮沉降 12 a 后, 凋落物不同组分的 C、N

	Table 2	Pearson analysis of	of litterfall C, N,	N, P contents and its stoichiometry				
土壤 Soil	С	Ν	Р	C/N	C/P	N/P		
С	1							
Ν	0.364 *	1						
Р	0.141	0.559 **	1					
C/N	0.578 **	-0.523 **	-0.268	1				
C/P	0.762 **	-0.052	-0.504 **	0.676 **	1			
N/P	0.242	0.579 **	-0.338 *	-0.360 *	0.423 *	1		

表 2 凋落物 C、N、P 含量及其生态化学计量相关性

注: * 表示 P<0.05, ** 表示 P<0.01。下同。

Note: * means P < 0.05, ** means P < 0.01. The same below.

Table 3 Pearson analysis of soil C, N, P contents and its stoichiometry							
土壤 Soil	С	Ν	Р	C/N	C/P	N/P	
С	1						
Ν	0.361 *	1					
Р	0.100	0.087	1				
C/N	0.838 **	-0.422 *	0.311	1			
C/P	0.644 **	-0.038	-0.437 **	0.572 **	1		
N/P	-0.169	0.486 **	-0.773 **	-0.418 *	0.468 **	1	

表 3 土壤 C、N、P 含量及其生态化学计量相关性

凋落物-土壤 C、N、P 生态化学计量相关性 表 4

Table 4 Correlation between litterfall and soil C, N, P contents and its stoichiometry

土壤	调落物 Litterfall						
Soil	С	N	Р	C/N	C/P	N/P	
С	-0.200	-0.061	-0.199	-0.142	-0.043	0.111	
Ν	-0.050	0.351 *	-0.504	-0.275	0.340	0.623 *	
Р	0.007	-0.455	0.407	0.312	-0.304	-0.601 *	
C∕N	0.141	0.331	-0.501	-0.037	0.551	0.672 *	
C/P	-0.340	-0.450	0.309	-0.075	-0.582 *	-0.592 *	
N/P	-0.260	0.096	-0.234	-0.366	-0.104	0.177	

含量表现为叶>果>枝,而P含量表现为叶>枝> 果,这与杉木不同器官对 C、N、P 的需求量不同有 关。氮的添加使凋落物中的C、N、P含量发生变 化,其生态化学计量比也相应发生了变化。凋落 物C含量平均范围为187.19~285.61g・kg⁻¹,低 于广东鼎湖山(王晶苑等,2011)、湖南会同(高吉 权等,2016)等地区凋落物 C 含量。氮沉降的增加 对凋落物叶和枝的 C 含量呈现出抑制作用.这是 因为氮沉降的增加改变了 C/N 值导致凋落物的分

解速率加快(刘文飞等,2011), 凋落物 N 含量与 C/N 值呈显著负相关关系也证明了这一点(P< 0.01),这也与本研究中 N0 处理下凋落物叶和枝 C和 C/N 值较长期氮沉降(N1、N2、N3)处理高的 结论相吻合。凋落物 N、P 含量平均范围分别为 8.10~15.17 g·kg⁻¹、0.98~1.56 g·kg⁻¹,比湖南会 同地区的凋落物 N、P 含量低(曹娟等,2015),但 高于全球(Kang et al., 2010) 凋落物 N、P 含量的平 均水平。氮沉降降低了凋落物叶和果 N、P 含量,

Fig. 2 Mean percentage changes of measured parameters (C, N, P, C/N, C/P, N/P) of Chinese fir litterfall (leaf, branch and fruit) (left) and soil (0-20 cm, 20-40 cm, 40-60 cm) (right) after N deposition treatment to these values under control (N0) (N0/N0=100%)

但对凋落物枝 N、P 含量有着显著的促进作用。 Aber(1989)研究发现氮输入生态系统的量有一临 界值,这是因为少量的氮沉降能提高植物体各器 官的 N、P 含量,但当氮输入量超过植物体器官所 需 N、P 的临界值时,又会表现出抑制作用。C/N 值可以反映凋落物的分解速率,本研究中凋落物 C/N 值变化范围为 17.85~35.16,要低于大部分地 区 C/N 值(高吉权等,2016),表明研究区凋落物 的分解速率较高,出现凋落物 C 含量较低的结果。 叶的 C/P、N/P 值均表现为 N2 处理最大,这与 N2 处理下叶 P 含量较低所致。凋落物 N/P 值的变化 范围在 6.37~11.43 之间,低于全球凋落物 N/P 值 的平均水平,这可能是与研究区土壤中氮素降低 导致凋落物和土壤 N/P 值低有关。王晶苑等 (2011)对不同森林类型凋落物的 C:N:P 生态 化学计量特征研究表明,亚热带人工林凋落物 (1950:27:1)高于亚热带常绿阔叶林、热带季雨 林和温带针阔混交林凋落物。本研究中杉木人工 林凋落物 C:N:P 比值约为 200:9:1。Zhang et al.(2018)通过分析 803 种中国森林植物,发现

Fig. 3 C, N and P contents and stoichiometry of soil of Chinese fir under different nitrogen deposition levels

凋落物和土壤的 C:N:P 化学计量比的平均值分 别为 714:21:1 和 73:5:1。

土壤中的 C、N 主要受凋落物的养分归还和分 解速率的影响,养分聚集在土壤表层并经淋溶作 用迁移至深层土壤。本研究中,土壤 C 含量平均 范围为 16.24~31.42 g·kg⁻¹,土壤 C 含量随氮沉 降的增加而增加,但未达到显著性水平,与郭虎波 等(2014)等在模拟氮沉降 7 a 的研究结果类似, 这是因为长期氮沉降会促使矿物质中难分解的碳 组分发生分解的结果(熊莉等,2015)。此外,本研 究的杉木于 1992 年栽种,至今 24 a,为近熟林,近 熟林具有较快的矿化作用(曹娟等,2015),从而使 C/N降低。由于不同土层土壤中 C 含量变化不明 显,土壤中 N 含量增加幅度较小,使土壤 C/N 值在 不同处理和土层间均无显著性差异。本研究中土 壤 P 含量(0.64~1.43 g·kg⁻¹)显著低于全球平均 水平(2.8 g·kg⁻¹)(姜沛沛等,2016),这是因为土 壤中 P 则主要受土壤母质风化作用的影响(曹娟 等,2015),P在土壤中表现较为稳定(Manzon et al., 2010), 而氮的输入能增加植物对 P 元素的吸 收,从而增加了对土壤 P 元素的需求,使得表层土 壤中 P 含量减少(刘兴诏等,2010)。研究表明,热 带和亚热带森林土壤通常具有较低的土壤 P 含量 和 P 有效性(Vitousek et al., 2010), 成熟林中, 高 风化土壤 P 是限制性养分(Huang et al., 2015)。 土壤 C/P 值是衡量微生物矿化土壤有机物质释放 磷或吸收固持磷素潜力的一个指标,它主要是由 土壤 C 含量决定(曹娟等,2015)。土壤 C/P 值平 均范围为18.62~41.22,低于我国土壤 C/P 值平均 水平,说明研究区中微生物在矿化土壤有机质中 释放磷的潜力较大。本研究中,氮沉降增加了土 壤 N/P 值,但仍低于我国土壤 N/P 值的平均水平 (曹娟等,2015),这可能与土壤中难以被植物吸收 利用的闭蓄态 P 较多(竹万宽等,2017)有关,其中 内在的变化机制有待进一步研究。

3.2 氮沉降对凋落物-土壤 C、N、P 生态化学计量 特征相关关系的影响

相关性分析可以揭示不同组分C、N、P生态化 学计量比指标变量之间的协调关系,有助于对养 分之间的耦合过程做出合理的解释。土壤中的养 分受凋落物中的 N 和木质素含量的影响,其中凋 落物 N 是凋落物养分元素(K、Mn、N 等)最晚释放 的元素(廖利平等,1997)。本研究中, 凋落物 N 含 量与土壤 N 含量有着显著正相关关系, 凋落物分 解时促使土壤 N 含量的增加,改变了土壤 C/N 值, 这是氮沉降导致凋落物分解速率和土壤碳库发生 变化,使得研究区土壤矿化能力增加的结果(王绍 强等,2008)。土壤 C/P 值与凋落物 C/P、N/P 值 呈显著负相关关系,土壤 P 含量与凋落物 N/P 值 也呈显著负相关关系,说明凋落物的分解速率会 受到土壤 N 含量的影响。研究表明,土壤 N 的可 利用性可能是决定氮沉降对植物凋落物分解效果 (促进、无影响或抑制)影响的关键因素(莫江明 等,2004)。本研究中凋落物 N 含量与凋落物 N/P 值有着显著正相关关系。有研究表明,N/P 值是 制约凋落物分解速率以及养分归还的主要因素,

较低的 N/P 值促使凋落物更快分解(潘复静等, 2011;姜沛沛等,2016)。凋落物 N/P 值与土壤 C/P值呈显著负相关关系,这可能是由于氮的输 入,使凋落物 N/P 值升高和土壤 C/P 值较低的结 果。凋落物中的 N、P 含量较分解者要求的 N、P 养分低,分解者可以从环境中固定养分,直到凋落 物中的养分浓度达到临界值发生净释放(Manzon et al., 2010)。

"植物-凋落物-土壤"养分的循环机制表明, 当土壤中某养分含量较低时,植物对其的吸收产 生限制,影响了植物的再吸收利用,间接影响凋落 物的养分状况。植物从土壤中吸收 N 和 P,在叶 片凋落之前对 N 和 P 再吸收,凋落物中的 C/N 和 C/P 均高于土壤(曾昭霞等,2011;赵月等,2016)。 凋落物中的养分主要是通过土壤微生物的分解途 径重新回归到土壤中,而土壤中的养分对凋落物 养分含量也有着直接/间接的限制作用(潘复静 等,2011)。本研究中凋落物各组分 C、N、P 全量 及化学计量比均明显高于土壤,这也反映出了植 物对 C、N、P 元素的再吸收利用特征。

连续 12 a 野外模拟氮沉降改变了杉木人工林 "凋落物-土壤"的生态化学计量格局。氮沉降增 加凋落物枝 N/P,降低凋落物枝 C 含量、C/N、 C/P。中-高水平氮沉降增加土壤 N 含量,低水平 氮沉降增加土壤 C/P、N/P。凋落物 C、N、P 含量 及其生态化学计量比均高于土壤。凋落物与土壤 的相关性表明,凋落物 N 与土壤 N 显著正相关,土 壤 C/P 与凋落物 C/P、N/P 显著负相关,土壤 P 与 凋落物 N/P 显著负相关。说明凋落物 N 是土壤 N 的重要 N 素来源之一,而土壤 N 可能是决定长期 氮沉降后凋落物 N/P 的主要因素。生态化学计量 关系提供了有利的依据来判断和预测养分的限制 情况对全球变化的响应,而氮沉降对生态系统影 响是一个长期的过程,仍需要更为长期的工作。

参考文献:

ABER J, MCDOWELL W, NADELHOFFER K, et al., 1998. Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited [J]. Bioscience, 48(11): 921-934.

- ABER JD, NADELHOFFER KJ, STEUDLER P, et al., 1989. Nitrogen saturation in northern forest ecosystems: Excess nitrogen from fossil fuel combustion may stress the biosphere [J]. Bioscience, 39(6): 378-386.
- BOBBINK R, HICKS K, GALLOWAY J, et al., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis [J]. Ecol Appl, 20(1): 30–59.
- CAO J, YAN WD, XIANG WH, et al., 2015. Stoichiometry characterization of soil C, N, and P of Chinese fir plantation at three different ages in Huitong, Hunan Province, China [J]. Sci Sil Sin, 51(7):1-8. [曹娟, 闫文德, 项文化, 等, 2015. 湖南会同 3 个林龄杉木人工林土壤碳、氮、磷化 学计量特征 [J]. 林业科学, 51(7):1-8.]
- CHAPIN FS, POWER ME, COLE JJ, 2011. Coupled biogeochemical cycles and earth stewardship [J]. Front Ecol Environ, 9(1): 3.
- ELSER JJ, STERNER RW, GOROKHOVA E, et al., 2000. Biological stoichiometry from genes to ecosystems [J]. Ecol Lett, 3(6):540-550.
- FAN HB, LIU WF, LI YY, et al., 2007. Tree growth and soil nutrients in response to nitrogen deposition in a subtropical Chinese fir plantation [J]. Acta Ecol Sin, 27(11):4630– 4642. [樊后保,刘文飞,李燕燕,等,2007. 亚热带杉木 (*Cunninghamia lanceolata*)人工林生长与土壤养分对氮沉 降的响应 [J].生态学报,27(11):4630–4642.]
- FENN ME, POTH MA, ABER JD, et al., 1998. Nitrogen excess in north American ecosystems: predisposing factors, ecosystem responses, and management strategies [J]. Ecol Appl, 8(3): 706-733.
- GAO JQ, ZHOU GX, WANG GJ, et al., 2016. The relationships between Chinese fir forest litter fall and soil C:N:P stoichiometry [J]. Hunan For Sci Technol, 43 (4):1-6. [高吉权,周国新,王光军,等,2016. 杉木林 凋落物与土壤 C:N:P 生态化学计量学的相关关系 [J]. 湖南林业科技,43(4):1-6.]
- GOSWAMI S, FISK MC, VADEBONCOEUR MA, et al., 2018. Phosphorus limitation of above-ground production in northern hardwood forests [J]. Ecology, 99(2):438-449.
- GUNGERSEN P, EMMETT BA, KJØNASS OJ, et al., 1998. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data [J]. For Ecol Manag, 101(1/3): 37-55.
- GUO HB, WU JP, YUAN YH, et al., 2014. Effects of N deposition on soil stoichiometric characteristics of Chinese fir plantation [J]. J Fujian For Sci Technol, 41(1): 1-5. [郭 虎波, 吴建平, 袁颖红, 等, 2014. 氮沉降对杉木人工林 土壤化学计量特征的影响 [J]. 福建林业科技, 41(1): 1-5.]
- HUANG Z, LIU B, DAVIS M, et al., 2015. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability [J]. New Phytol, 210: 431-442.
- HE JS, HAN XG, 2010. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems [J]. Chin

J Plant Ecol, 34(1):2-6. [贺金生, 韩兴国, 2010. 生态 化学计量学:探索从个体到生态系统的统一化理论 [J]. 植物生态学报, 34(1):2-6.]

- IPCC, 2007. Climate Change 2007: the physical science basis: summary for policy makers [M]. Cambridge, UK: Cambridge University Press.
- JIANG PP, CAO Y, CHEN YM, et al., 2016. Variation of C, N, and P stoichiometry in plant tissue, litter and soil during stand development in *Pinus tabulaeformis* plantation [J]. Acta Ecol Sin, 36(19):6188-6197. [姜沛沛,曹扬,陈云 明,等,2016. 不同林龄油松(*Pinus tabulaeformis*)人工林 植物、凋落物与土壤 C、N、P 化学计量特征 [J]. 生态学 报, 36(19):6188-6197.]
- KANAKIDOU M, MYRIOKEFALITAKIS S, DASKALAKIS N, et al., 2016. Past, present and future atmospheric nitrogen deposition [J]. J Am Math Soc, 73(5): 2039–2047.
- KANG HZ, XIN ZJ, BERG B, et al., 2010. Global pattern of leaf litter nitrogen and phosphorus in woody plants [J]. Ann For Sci, 67(8): 811–811.
- LIAO LP, LINDLEY DK, YANG YH, 1997. Decomposition of mixed foliar litter I: Amicrocosm study [J]. ChinJ Appl Ecol, 8(5): 459-464. [廖利平, LINDLEY DK, 杨永辉, 1997. 森林叶凋落物混合分解的研究 I. 缩微实验 [J]. 应 用生态报, 8(5): 459-464.]
- LIN CF, PENG JQ, HONG HB, et al., 2017. Effect of nitrogen and phosphorus availability on forest litter decomposition [J]. Acta Ecol Sin, 37(1):54-62. [林成芳, 彭建勤, 洪 慧滨, 等, 2017. 氦、磷养分有效性对森林凋落物分解的 影响研究进展 [J]. 生态学报, 37(1):54-62.]
- LIU WF, FAN HB, 2011. Impacts of nitrogen deposition on C, N, and P fluexs in the litterfall of Chinese fir plantation [J]. Sci Silv Sin, 47(3):89-95. [刘文飞, 樊后保, 2011. 杉木人工林凋落物 C, N, P 归还量对氮沉降的响 应[J]. 林业科学, 47(3):89-95.]
- LIU XJ, ZHANG Y, HAN WX, et al., 2013. Enhanced nitrogen deposition over China [J]. Nature, 494 (7438): 459-462.
- LIU XZ, ZHOU GY, ZHANG DQ, et al., 2010. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China [J]. Chin J Plant Ecol, 34(1):64-71. [刘兴诏,周国逸,张德强,等,2010. 南亚 热带森林不同演替阶段植物与土壤中 N、P 的化学计量特 征 [J]. 植物生态学报, 34(1):64-71.]
- LU TP, SHI ZT, NIU H, et al., 2016. Research progresses and prospects of terrestrial ecological stoichiometry in China [J]. Soils, 48(1):1-7. [卢同平,史正涛,牛洁,等, 2016. 我国陆地生态化学计量学应用研究进展与展望 [J]. 土壤, 48(1):1-7.]
- LU XK, MO JM, ZHANG W, et al., 2019. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview [J]. J Trop Subtrop Bot, 27(5):500-522. [鲁显楷, 莫江明, 张炜, 等,2019. 模拟大气氮沉降 对中国森林生态系统影响的研究进展 [J]. 热带亚热带 植物学报, 27(5):500-522.]

- MANZON S, TROFYMOW JA, JACKSON RB, et al., 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter [J]. Ecol Monogr, 80(1):89-106
- MAGILL AH, ABER JD, BERNTSON GM, et al., 2000. Longterm nitrogen additions and nitrogen saturation in two temperate forests [J]. Ecosystems, 3(3): 238-253.
- MATSON P, LOSHE KA, HALL SJ, 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems [J]. Ambio, 31(2):113-119.
- MO JM, XUE JH, FANG YT, 2004. Litter decomposition and its response to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecol Sin, 24(7):1413-1420. [莫江明,薛璟花,方运霆,2004. 鼎湖山主要森林植物凋落物分解及其对 N 沉降的响应 [J]. 生态学报, 24(7):1413-1420.]
- PAN FJ, ZHANG W, WANG KL, et al., 2011. Litter C:N:P ecological stoichiometry character of plant communities in typical kast peak-cluster depression [J]. Acta Ecol Sin, 31 (2):335-343. [潘复静,张伟,王克林,等,2011. 典型喀斯特峰丛洼地植被群落凋落物 C:N:P 生态化学计量特征 [J]. 生态学报, 31(2):335-343.]
- SARDANS J, ALONSO R, JANSSENS IA, et al., 2016. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European *Pinus sylvestris* forests: relationships with climate, N deposition and tree growth [J]. Funct Ecol, 30(5): 676–689.
- SHEN FF, WU JP, FAN HB, et al., 2019. Soil N/P and C/P regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest [J]. Plant Soil, 436:91–107.
- TIAN DS, NIU SL, 2015. A global analysis of soil acidification caused by nitrogen addition [J]. Environ Res Letters, 10(2): 24019.
- VITOUSEK PM, PORDER S, HOULTON BZ, et al., 2010. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 20: 5-15.
- XIONG L, XU ZF, YANG WQ, et al., 2015. Aboveground litter contribution to soil respiration in a subalpine dragon spruce plantation of western Sichuan [J]. Acta Ecol Sin, 35 (14):4678-4686. [熊莉, 徐振锋,杨万勤, 等, 2015. 川 西亚高山粗枝云杉人工林地上凋落物对土壤呼吸的贡献 [J]. 生态学报, 35(14):4678-4686.]
- WANG R, GOLL D, BALKANSKI Y, et al., 2017. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100 [J]. Glob Change Biol, 23: 4854–4872.
- WANG SQ, YU GR, 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements [J]. Acta Ecol Sin, 28(8):3937-3947. [王绍强,于贵瑞, 2008. 生态系统碳氮磷元素的生态化学计量学特征 [J]. 生态学报, 28(8):3937-3947.]

- WANG JY, WANG SQ, LI RL, et al., 2011. C: N: P stoichiometric characteristics of four forest types' dominant tree species in China [J]. Chin J Plant Ecol, 35(6): 587– 595. [王晶苑, 王绍强, 李纫兰, 等, 2011. 中国四种森林 类型主要优势植物的 C: N: P 化学计量学特征 [J]. 植 物生态学报, 35(6): 587–595.]
- WRIGHT RF, RASMUSSEN L, 1998. Introduction to the NITREX and EXMAN projects [J]. For Ecol Manag, 101 (1/3): 1-7.
- WU JP, LIU WF, YUAN YH, et al., 2014. Response of understory plant diversity to nitrogen deposition in subtropical Chinese fir plantation forest [J]. Bull Soil Water Conserv, 34(4):87-90. [吴建平, 刘文飞, 袁颖红, 等, 2014. 亚热带杉木人工林下植物多样性对氮沉降的响应 [J]. 水土保持通报, 34(4):87-90.]
- YAN GY, XING YJ, WANG JY, et al., 2018. Sequestration of atmospheric CO₂ in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition [J]. Agric For Meteorol, 248: 70–81.
- YANG DX, SONG L, JIN GZ, 2019. The soil C : N : P stoichiometry is more sensitive than the leaf C : N : P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a *Pinus koraiensis* plantation [J]. Plant Soil, 442:183-198.
- YUE K, FORNARA DA, YANG W, et al., 2017. Effects of three global change drivers on terrestrial C : N : P stoichiometry: A global synthesis [J]. Glob Change Biol, 23(6): 2450-2463.
- ZENG ZX, WANG KL, LIU XL, et al., 2014. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol, 39(7):682-693. [曾昭霞,王克林,刘孝利,等,2014. 桂 西北喀斯特森林植物-凋落物-土壤生态化学计量特征 [J]. 植物生态学报, 39(7):682-693.]
- ZHANG JH, ZHAO N, LIU CC, et al., 2018. C : N : P stoichiometry in China's forests: From organs to ecosystems [J]. Funct Ecol, 32(1): 50–60.
- ZHAO Y, WANG GJ, CHEN C, et al., 2016. Relationship of N:P stoichiometry of different organs and soil of *Cunninghamia lanceolate* in Huitong [J]. J Cent S Univ For Technol, 36 (11):73-79. [赵月, 王光军, 陈婵, 等, 2016. 杉木不同器官与土壤的 N:P 生态化学计量相关性 [J]. 中南林业科技大学学报, 36(11):73-79.]
- ZHU WK, CHEN SX, WANG ZC, et al., 2017. Ecological stoichiometric characteristrics of carbon, nitrogen and phosphorus in litter and soil of *Eucalyptus urophylla* × *E.* grandis plantation at different forest ages [J]. J Trop Subtrop Bot, 25(2):127-135. [竹万宽,陈少雄,王志超,等, 2017. 不同林龄尾巨桉人工林凋落物和土壤 C、N、P 化学计 量特征 [J]. 热带亚热带植物学报, 25(2):127-135.]

(责任编辑 何永艳)