广步植物 Guihaia Oct. 2023, 43(10): 1892-1906

DOI: 10.11931/guihaia.gxzw202207033

施晓静,程子丹,张颖敏,等,2023. 基于全叶绿体基因组分析的栽培黄草乌基源研究 [J]. 广西植物,43(10): 1892-1906.

SHI XJ, CHENG ZD, ZHANG YM, et al., 2023. Complete chloroplast genome analysis based study on origins of cultivated addited ad

基于全叶绿体基因组分析的栽培黄草乌基源研究

施晓静1,程子丹1,张颖敏2,李国栋1,3,马晓霞1*

(1. 云南中医药大学 中药学院, 昆明 650500; 2. 云南中医药大学 第一临床医学院, 昆明 650500;3. 云南中医药大学 云南省傣医药与彝医药重点实验室, 昆明 650500)

摘 要:为探究云南伤科用毒性药材黄草乌(Radix Aconitum Vilmoriniani)栽培品质量的影响因素,该研究 利用 Illumina HiSeq 4000 高通量测序平台对来自 10 个不同栽培基地黄草乌样品的叶绿体基因组展开测序, 经过对测序数据的组装、注释,利用生物信息学工具对其叶绿体基因组特征展开分析并构建系统发育树。 结果表明:(1)10个栽培品的叶绿体基因组全长155744~155937bp,大单拷贝区和小单拷贝区分别为 86 363~86 548 bp、16 921~17 007 bp,反向重复区大小为 26 170~26 236 bp,均注释到 131 个基因。(2)序 列鉴定出 60~73 个 SSR 位点,基因组比较分析发现,10 个栽培品叶绿体基因组显示出一定的扩张,并在其 中发现了 tmK-UUU-tmQ-UUG 等变异热点区域。(3) 基于 2 个数据集的系统发育分析均表明, JS-1-4、QJ-1-2、LX-1-3、LJ-3-2 与黄草乌(Aconitum vilmorinianum)亲缘关系较近:LQ-1-3、GJ-1-3、NL-1-3、DC-2-2 和滇南草 乌(A. austroyunnanense)关系较近;基于全叶绿体基因组序列构建的系统进化树中 LJ-4-3 与马耳山乌头 (A. delavavi)亲缘关系近,LJ-1-2 与宾川乌头(A. duclouxii)的亲缘关系较近;而基于蛋白质编码基因序列构 建的系统进化树中,LJ-4-3 与西南乌头(A. episcopale)亲缘关系近,LJ-1-2 则与苍山乌头(A. contortum)关系 较近。综上认为,黄草乌的栽培种植存在种源混杂的客观问题,主要有黄草乌和滇南草乌两种植物,个别栽 培基地还掺混了乌头属(Aconitum)的其他物种,这可能是黄草乌栽培品质量不稳定的因素之一。 关键词:栽培黄草乌,叶绿体基因组,序列特征,系统发育分析,物种鉴定 中图分类号: 0943 文献标识码:A 文章编号: 1000-3142(2023) 10-1892-15

Complete chloroplast genome analysis based study on origins of cultivated Radix Aconitum Vilmoriniani

SHI Xiaojing¹, CHENG Zidan¹, ZHANG Yingmin², LI Guodong^{1,3}, MA Xiaoxia^{1*}

(1. College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; 2. First College for Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; 3. Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China)

收稿日期: 2022-08-26

基金项目:国家自然科学基金 (82160746);云南省"万人计划"青年拔尖人才专项 (YNWR-QNBJ-2019-011)。

第一作者:施晓静(1998-),硕士,研究方向为中药资源开发与利用,(E-mail)sxj18787818499@ aliyun.com。

^{*}通信作者:马晓霞,博士,副研究员,研究方向为中药资源开发与利用,(E-mail)13708763980@163.com。

Abstract; To study the influencing factors on the quality of cultivated varieties of Radix Aconitum Vilmoriniani, a toxic medicinal material for traumatology in Yunnan Province, the chloroplast genomes of samples from 10 different cultivation bases were sequenced by Illumina HiSeq 4000 high-throughput sequencing platform. Then the sequencing data were assembled and annotated followed by analysis of the characteristics of the chloroplast genomes by bioinformatics tools and construction of the phylogenetic trees. The results were as follows: (1) The full length of chloroplast genome of the 10 cultivated varieties from different regions were 155 744-155 937 bp, the large single copy region (LSC) and small single copy region (SSC) were 86 363-86 548 bp and 16 921-17 007 bp, respectively, the size of the inverted repeat region (IR) was 26 170-26 236 bp. The GC content of chloroplast genome of 10 cultivated varieties was 38.1%, with obvious AT preference, and 131 genes were annotated, including 85 protein-coding genes, 37 tRNA genes and 8 rRNA genes. (2) These sequences identified 60-73 SSR sites, and genome comparative analysis found that the length of chloroplast genome of 10 cultivated varieties ranged from 155 744 to 155 937 bp with moderate expansion. Some variation hot spots were found, such as trnK-UUU-trnQ-UUG, trnY-GUA-trnE-UUC, trnC-GCA-trnT-GGU, ycf4-cemA, ycf1 and ndhF, etc. (3) Phylogenetic analysis based on the two datasets showed that JS-1-4, OJ-1-2, LX-1-3, LJ-3-2 were closely related to Aconitum vilmorinianum and LQ-1-3, GJ-1-3, NL-1-3, DC-2-2 were closely related to A. austroyunnanense. In the phylogenetic tree, which was constructed based on the complete chloroplast genomes, LJ-4-3 was closely related to A. delavayi and LJ-1-2 was closely related to A. duclouxii; while in the phylogenetic tree which was constructed based on the protein coding gene sequences (PCGs), LJ-4-3 was closely related to A. episcopale and LJ-1-2 was closely related to A. contortum. In summary, the hybrid origins of cultivation of Radix Aconitum Vilmoriniani include at least the two original plants: A. vilmorinianum and A. austroyunnanense, and other species of Aconitum even existed in individual cultivation bases. The mixed origins of cultivation may be one of the influencing factors on instability of the quality of Radix Aconitum Vilmoriniani.

Key words: cultivated Radix Aconitum Vilmoriniani, chloroplast genome, sequence characteristics, phylogenetic analysis, species identification

黄草乌(Aconitum vilmorinianum)为毛茛科 (Ranunculaceae) 乌头属 (Aconitum) 蔓乌头系 (Ser. Volubilia)多年生草本植物,分布于云南中 部、四川(会理)及贵州西部,生于海拔2100~ 2 500 m 的山地灌丛中(中国植物志编辑委员会, 1979)。其药用部位为根,有剧毒,主要含有滇乌 碱等多种二萜类生物碱,具有祛风散寒、活血止 痛、解毒消肿等作用(李雪佩等,2017),是云南红 药、虎力散和百宝丹等云南著名伤科类药物的主 要原料药之一(曾礼芳等,2021),有极高的药用价 值。黄草乌用药需求大,最初主要依靠野生资源, 但过度采挖造成了分布区域锐减和野生资源枯 竭。近年来,黄草乌的人工驯化栽培获得成功(字 淑慧等,2012),在云南的泸西、建水、个旧、东川、 禄劝、丽江、巧家等地区有较大规模栽培种植,有 效解决了资源供应问题。然而,我们对几个栽培 基地的药材进行主要毒性成分含量进行分析时发 现,滇乌碱的含量不稳定,另一特征成分黄草乌碱 甲的含量波动范围则更大(董帅等,2020)。黄草 乌作为乌头类毒性药材,质量稳定尤为重要,因此 对其质量影响因素的研究很有必要。

黄草乌药材来源在 1974 年和 1996 年版的 《云南省药品标准》中规定:草乌(Radix Aconiti Vilmoriniani)为毛茛科植物黄草乌(A. vilmorinianum) 或滇南草乌(A. austroyunnanense) 的 块根(云南省卫生局,1974;云南省卫生厅,1996), 2005年版的《云南省中药材标准》仅收录了黄草 乌一种植物来源,并修订药材名为黄草乌(Radix Aconitum Vilmoriniani)(云南省食品药品监督管理 局.2013)。《云南植物志》(中国科学院昆明植物 研究所,2000)中记载,黄草乌与滇南草乌在形态 上十分相近,黄草乌花期 8—10 月,滇南草乌花果 期10月,块根均供药用,民间用于治疗风寒湿痹、 中风瘫痪、跌打损伤等疾病,用途基本相同。我们 发现不同地区种植的黄草乌药材有黄皮黄芯、紫 皮黄芯和紫皮紫芯几种情况,花的形态也略有不 同。通过调研了解到,黄草乌的种植来源中有一 部分是种植户在基地附近采挖的野生品,并未明 确其植物基原。由此可见,黄草乌在栽培过程中可能存在种源混杂的情况,进而导致药材质量不稳定。乌头属植物种类较多,种间界限模糊,形态相似难以区别(朱高倩等,2020),受外部环境影响,植株形态、花色花型、根的数量及根皮颜色等在种内会有差异,仅依靠传统形态学鉴定、理化性质鉴定、显微特征鉴定等方法不能准确区别乌头类植物(童玉懿等,1986;罗艳和杨亲二,2005;肖培根等,2006;周成蕾,2013)。因此,利用分子生物学手段明确黄草乌植物基原,可从源头保障药材质量。

叶绿体是多数高等植物和少部分藻类及原核 生物进行光合作用和生命代谢活动的重要细胞 器,是半自主性细胞器,拥有自己的基因组,也就 是叶绿体基因组(chloroplast genome)(王仕奇等, 2022)。叶绿体基因组对于筛选药用植物密切相 关物种的分子标记以及破译亲缘关系较近植物类 群间的系统发育关系具有重要贡献(Jansen et al., 2007; Wicke et al., 2011; 姜汶君等, 2020)。近年 来,新一代测序技术发展迅速,测序成本逐年降 低,已经有越来越多的叶绿体基因组成功发表,推 动着分子生物学研究的迅速发展(Shinozaki et al., 1986; Ohyama et al., 1986)。前人利用内转录间 隔区 ITS(张富民等, 2003; Luo et al., 2005)、psbAtrnH 序列(朱高倩等,2020)等构建了乌头属植物 的系统发育关系,在亚属水平上基本能说明其亲 缘关系。然而一些研究结果表明,亚属下分类群 的划分与传统划分不一致;叶绿体基因组可以作 为 DNA 超级条形码对植物物种进行准确鉴别。 樊东昌等(2022)虽然通过叶绿体全基因组序列构 建了乌头属的系统进化树,但并未囊括乌头属的 大部分物种。

本研究以采集到的 10 个黄草乌栽培品为材 料,对他们的完整叶绿体基因组序列进行测序、组 装、注释,揭示其基本序列和结构特征,同时结合 32 个已发表乌头属物种的叶绿体基因组序列分析 10 个栽培品的系统发育关系。拟探讨以下科学问 题:黄草乌的种植栽培是否确实存在种源混杂的 客观情况,进而导致了黄草乌药材质量的不稳定。 本研究将明确黄草乌的栽培种源问题,并为黄草 乌的基原植物鉴定、规范化种植、合理开发利用等 研究提供一定数据。

1 材料与方法

1.1 实验材料

黄草乌栽培品采自禄劝县干海子撒营盘、泸 西县三塘乡、巧家县药山镇、宁蒗县永宁乡等栽培 基地(表1),选择健康植株,采集新鲜嫩叶并用干 燥硅胶保存。

表 1 10 个栽培品采集信息

Table 1 Collected information of 10 cultivated varieties

采集地 Collection location	编号 Code	经度 Longitude (E)	纬度 Latitude (N)	海拔 Altitude (m)
东川区汤丹镇 Tangdan Town, Dongchuan District	DC-2-2	130°02′	26°09′	2 850
个旧市对门山 Duimen Mountain, Geijiu City	GJ-1-3	103°11′	23°21′	2 260
建水县普雄乡 Puxiong Township, Jianshui County	JS-1-4	103°04′	23°29′	2 220
丽江市太安乡 Tai'an Township, Lijiang City	LJ-1-2	100°05′	26°47′	3 000
丽江市太安乡 Tai'an Township, Lijiang City	LJ-3-2	100°06′	26°48′	2 728
丽江市太安乡 Tai'an Township, Lijiang City	LJ-4-3	100°05′	26°44′	2 910
禄劝县干海子撒 营盘 Ganhaizi Sayingpan, Luquan County	LQ-1-3	102°30′	26°04′	2 620
泸西县三塘乡 Santang Township, Luxi County	LX-1-3	103°48′	24°27′	2 220
宁蒗县永宁乡 Yongning Township, Ninglang County	NL-1-3	100°48′	27°26′	2 600
巧家县药山镇 Yaoshan Town, Oiaoiia County	QJ-1-2	103°07′	27°10′	2 440

1.2 叶绿体 DNA 提取与测序

使用 Bio Teke 公司的植物基因组 DNA 提取试 剂盒提取新鲜幼嫩叶片全基因组 DNA,使用 NanoDrop 2000 超微量分光光度计(美国赛默飞世 尔科技有限公司)检测 DNA 纯度,采用琼脂糖凝 胶电泳检测 DNA 质量,检测合格后送往上海美吉 生物医药科技有限公司进行 DNA 文库构建,并采用 Illumina HiSeq 4000 高通量测序平台进行测序。 1.3 叶绿体基因组组装、注释和物理图谱绘制

测序获得的原始数据(raw data)用软件 NGS QC Toolkit(Patel & Jain, 2012)进行过滤,使用默 认参数,除去低质量的 reads 后获得待组装序列 (clean reads)。参考乌头属黄草乌A. vilmorinianum(NC 038094)的叶绿体基因组序列, 利用 NOVOPlasty(Dierckxsens et al., 2017)软件对 10 个栽培品的 clean reads 进行 de novo 组装,k-mer 值设置为 39。采用在线注释软件 Annotation Tool GeSeq (Tillich et al., 2017)进行注释,并在 Geneious R11.1.5 软件(Kearse et al., 2012)中进 行人工校对。将叶绿体基因组序列导入 OGDRAW-Draw(Greiner et al., 2019)在线工具,绘 制叶绿体基因组物理图谱,带有完整注释信息的 cpDNA 序列上传于 GenBank 数据库中,并获得相 应的登录号(DC-2-2, OP227195; GJ-1-3, OP227196; JS-1-4, OP227197; LJ-1-2, OP227198; LJ-3-2, OP227199; LJ-4-3, OP227200; LQ-1-3, OP227201; LX-1-3, OP227202; NL-1-3, OP227203; QJ-1-2, OP227204) 。

1.4 全叶绿体基因组特征分析

使用在线工具 MISA(Beier et al., 2017)对各 序列的简单重复序列(SSR)进行检测,参数设置为 单核苷酸(mono-nucleotide)SSR≥10,二核苷酸 (di-nucleotide)SSR≥5,三核苷酸(tri-nucleotide) SSR≥4,四核苷酸(tetra-nucleotide)SSR≥3,五核 苷酸(penta-nucleotide)SSR≥3和六核苷酸(hexanucleotide)SSR≥3。

1.5 全叶绿体基因组比较分析

使用 IRscope 在线工具(Amiryousefi et al., 2018)对 10 个栽培品叶绿体基因组 4 个区域边界进行差异分析。以黄草乌为参考序列,使用 mVISTA(Frazer et al., 2004)在线工具,采用 shuffle-LAGAN 模式进行乌头属叶绿体基因组全序列比对。采用 DnaSP(Rozas et al., 2017)软件测定 10 个栽培品叶绿体基因组的核苷酸多样性(nucleotide diversity, Pi),参数如下:每步滑行 200 bp(step = 200 bp),窗口长度 600 bp(window length=600 bp)。

1.6 系统发育分析

为探讨10个栽培品之间的进化关系以及在乌

头属植物中的系统发育位置,从美国国家生物信 息中心(NCBI)下载了 32 个已发表的乌头属叶绿 体基因组序列,此外还选择1种飞燕草属 (Consolida) 植物 C. orientalis(NC 047292),1 种翠 雀属 (Delphinium) 植物还亮草 [D. anthriscifolium (MK253461)]作为外类群,用以构建系统进化树 (表 2)。采用 MAFFT v. 7.0 进行全序列比对 (Katoh & Standley, 2013),同时选择最大似然法 (maximum likelihood, ML)和贝叶斯法(Bayesian inference, BI)进行系统发育分析以增加结果的可 信度, ML 树在软件 Phylosuite(Zhang et al., 2020) 中进行构建,自展值设置为1000次,BI树同样使 用 Phylosuite 软件进行构建,共运算 2 000 000 代, 根据马尔科夫链的蒙特卡洛模拟算法 (Markov chain Monte Carlo, MCMC), 以随机树作为起始树, 每运算1000代抽样一次。舍弃 burn-in 阶段 25% 的老化样本,并且在平均标准差降低至 0.01 以下 时,用剩余的样本构建多数一致树。

2 结果与分析

2.1 叶绿体全基因组基本结构特征和分类

与大多数被子植物的叶绿体基因组结构相类 (机,10个栽培品叶绿体基因组全长155744 bp(LJ-1-2)~155937 bp(DC-2-2)(图1),呈典型的四分 体环状结构,即一对反向重复区(inverted repeat, IR)将整个环状的叶绿体基因组分为一个大单拷 贝区(large single copy region, LSC)和一个小单拷 贝区(small single copy region, SSC),其大小分别 为26170~26236 bp、85453~86548 bp、16921~ 17007 bp,10个样品的叶绿体基因组十分保守,不 仅大小和结构相似,而且 GC 含量均为38.1%,都 具有明显的 AT 偏向性。此外,叶绿体基因组注释 结果(表3)显示,10个样品叶绿体基因组注释 结果(表3)显示,10个样品叶绿体基因组注释 结果(表3)显示,10个样品叶绿体基因组注释

10个栽培品的基因根据各功能的不同可以分为4大类:(1)与转录翻译相关的基因;(2)与光合作用相关的基因;(3)其他基因;(4)未知功能基因。与转录翻译相关的基因包括核糖体蛋白亚基基因、RNA聚合酶基因、rRNA基因和 tRNA基因, 其中 tRNA基因数量最多;与光合作用相关的基因

表 2 用于系统发育树构建的已发表物种名录及其信息

 Table 2
 Published species list and its information

 for phylogenetic tree construction

属名 Genus	种中文名 Chinese name of species	种拉丁名 Latin name of species	GenBank 序列号 GenBank accession number
乌头属	黄草乌	A. vilmorinianum	NC_038094
Aconitum	瓜叶乌头	A. hemsleyanum	NC_038095
	马耳山乌头	A. delavayi	NC_038097
	丽江乌头	A. forrestii	MZ959044
	西南乌头	A. episcopale	NC_038096
	多枝乌头	A. ramulosum	OM289059
	滇西乌头	A. bulleyanum	OK323949
	德钦乌头	A. ouvrardianum	OM289057
	滇南草乌	A. austroyunnanense	MN635745
	铁棒锤	A. pendulum	NC_053848
	伏毛铁棒锤	A. flavum	NC_056280
	宾川乌头	A. duclouxii	OM328070
	显柱乌头	A. stylosum	OM328071
	苍山乌头	A. contortum	NC_038098
	_	A. ciliare	NC_031420
	—	A. jaluense subsp. jaluense	KT820668
	萝卜乌头	A. japonicum subsp. napiforme	KT820670
	北乌头	A. kusnezoffii	NC_031422
	乌头	A. carmichaelii	NC_030761
	蔓乌头	A. volubile	KU556690
	—	A. chiisanense	NC_029829
	_	A. austrokoreense	KT820663
	高山乌头	A. monanthum	NC_031423
	黄花乌头	A. coreanum	NC_031421
	—	A. pseudolaeve	NC_035892
	赣皖乌头	A. finetianum	NC_036358
	高帽乌头	$A. \ longe cassidatum$	NC_035894
	_	A. angustius	NC_036357
	_	A. reclinatum	MF186593
	高乌头	A. sinomontanum	NC_036359
	牛扁	A. barbatum var. puberulum	KT964698
	—	Gymnaconitum gymnandrum	NC_033341
飞燕草属 Consolida	—	C. orientalis	NC_047292
翠雀属 Delphinium	还亮草	D. anthriscifolium	MK253461

注: 一表示在电子版《中国植物志》中找不到该物种的种中 文名。

Note: — indicates that the Chinese name of this species can not be found in the electronic *Flora Reipublicae Popularis Sinicae*.

主要有光系统 I 基因、光系统 II 基因、NAD(P)H 氧化还原酶基因、细胞色素 b/f 复合体基因、ATP 酶基因和二磷酸核酮糖羧化酶大亚基基因,其中 光合作用系统基因数量最多;其他基因共6个;未 知功能基因8个。在这些基因中含有21个双拷贝 基因,包括2个核糖体大亚基(rpl2、rpl23)、2个核 糖体小亚基(rps7、rps12)、4个 rRNA 基因(rrn4.5、 rrn5、rrn16、rrn23)、7个 tRNA 基因(trnA-UGC、trnI-CAU、trnI-GAU、trnI-CAA、trnN-GUU、trnR-ACG、trnV-GAC)、1个 NADH 脱氢酶(ndhB)、3个未知功能基 因(ycf1、ycf2、ycf15)(表4)。

2.2 全叶绿体基因组 SSR 分析

10个栽培品的叶绿体基因组中共发现60个 (LJ-1-2)~73个(JS-1-4)SSR 位点(图 2:A),包括 28~37个单核苷酸 SSR 位点、13~16个二核苷酸 SSR 位点、6~9 个三核苷酸 SSR 位点、6~9 个四核 苷酸 SSR 位点、2~5 个五核苷酸 SSR 位点,未发现 六核苷酸 SSR 位点,单核苷酸重复占比最大 (44.4%~51.5%)。单碱基重复单元 A/T、C/G,二 碱基重复单元 AT/TA, 三碱基重复单元 AAT/ATT、 ATC/ATG,四碱基重复单元 AAAG/CTTT、AAAT/ ATTT 和 AATG/ATTC、AATT/TTAA, 五碱基重复单 元 AATAT/ATATT 是 10 个样品共有的 SSR(图 2: B)。10个栽培品的叶绿体基因组中 SSRs 的分布 有所不同(图 2:C), LSC 区含有 534 个 SSRs, SSC 区含有 42 个 SSRs, IR 区含有 88 个 SSRs, 不同样 品 SSRs 在 3 个区域的占比也不尽相同: LSC 区为 78.6%~83.1%, SSC区为10.8%~14.7%, IR区为 5.6%~8.6%

2.3 IR 边界扩张和收缩分析

本研究比较了 10 个栽培品叶绿体基因组的 IR 区边界,结果见图 3。10 个样品的叶绿体基因 组长度在 155 744 bp(LJ-1-2)~155 937 bp(DC-2-2)之间, IR 区域的长度为 26 127 bp(DC-2-2)~ 26 170 bp(JS-1-4、QJ-1-2、LX-1-3、LJ-4-3), LSC 区 域的长度为 86 496 bp(LJ-1-2)~86 680 bp(DC-2-2), SSC 区域的长度为 16 921 bp(LJ-3-2)~17 007 bp(LQ-1-3、GJ-1-3、NL-1-3、DC-2-2),所有样品的 LSC、SSC 和 IR 区域的大小相似, IR 区与 SC 区边 界高度保守,但各样品叶绿体基因组的 IR 区和其 他样品间仍略有差异。10 个样品的 *rps*19 基因均 距离 IRb 区 63 bp;除 LQ-1-3、GJ-1-3、NL-1-3、DC-2-2 4 个样品的 *rpl*2 长度为 1 486 bp 外,其余样品

不同的颜色表示不同功能的基因。粗线表示反向重复区(IRa 和 IRb)的范围,它们将基因组分为小(SSC)和大(LSC)单拷贝区。 内圈基因顺时针方向转录,外圈基因逆时针方向转录。深灰色内圈表示 GC 含量,浅灰色表示 AT 含量。 Colored bars indicate different functional groups. Thick lines indicate the extent of the inverted repeat regions (IRa and IRb), which separate the genome into small (SSC) and large (LSC) single copy regions. Genes drawn inside the circle are transcribed clockwise, while those outside of the circle are transcribed counter-clockwise. The dark gray inner circle corresponds to GC content, the light gray to AT content.

图 1 10 个栽培品全叶绿体基因组物理图谱

Fig. 1 Physical map of complete chloroplast genome in 10 cultivated varieties

的 rpl2 长度均为 1 490 bp; ndhF 基因距离 IRb/SSC 边界 113~119 bp; 所有样品的 ycf1 基因均横跨 SSC 区和 IRa 区,并且 ycf1 基因大部分位于 SSC 区 (4 012~4 027 bp), 均有1 286 bp 位于 IRa 区;在 10 个样品中 IRa/LSC 边界均处于 rpl2 和 trnH 基 因间, trnH 基因距离 IRa/LSC 边界 120~126 bp。

2.4 全叶绿体基因组比对分析

以黄草乌为参考,使用 mVISTA 在线工具对 10个栽培品的叶绿体基因组进行全序列比对,以 分析 10个栽培品的叶绿体基因组序列差异。由 图 4 可知,10个栽培品的基因组高度保守,其中, IR 区更为保守,编码区相较于非编码区更保守。

表	3	10 个	▶栽培品叶	·绿体基	因组	基本信	息
---	---	------	-------	------	----	-----	---

Table 3 Basic information of chloroplast genome of 10 cultivated varieties

Cor	全叶绿体基因组 uplete chloroplast genome		大单扌 ne LS	大单拷贝区 LSC		小单拷贝区 SSC		反向重复区 IR		基因数量 Gene number		
编号 Number	长度 Length (bp)	GC 含量 GC content (%)	长度 Length (bp)	GC 含量 GC content (%)	长度 Length (bp)	GC 含量 GC content (%)	长度 Length (bp)	GC 含量 GC content (%)	总基因 数量 Total number of genes	蛋白质 编码基因 数量 Number of protein coding genes	核糖体 RNA 基因 数量 Number of rRNA genes	转运 RNA 基因 数量 Number of tRNA genes
JS-1-4	155 849	38.1	86 585	36.2	16 924	32.6	26 170	43.0	131	85	8	37
QJ-1-2	155 857	38.1	86 582	36.2	16 935	32.6	26 170	43.0	131	85	8	37
LX-1-3	155 845	38.1	86 582	36.2	16 923	32.6	26 170	43.0	131	85	8	37
LJ-3-2	155 872	38.1	86 625	36.2	16 921	32.5	26 163	43.0	131	85	8	37
LJ-4-3	155 884	38.1	86 606	36.2	16 938	32.5	26 170	43.0	131	85	8	37
LQ-1-3	155 818	38.1	86 555	36.2	17 007	32.5	26 128	43.1	131	85	8	37
GJ-1-3	155 818	38.1	86 555	36.2	17 007	32.5	26 128	43.1	131	85	8	37
NL-1-3	155 811	38.1	86 548	36.2	17 007	32.5	26 128	43.1	131	85	8	37
DC-2-2	155 937	38.1	86 680	36.1	17 003	32.5	26 127	43.1	131	85	8	37
LJ-1-2	155 744	38.1	86 496	36.2	16 944	32.6	26 152	43.0	131	85	8	37

此外,10个栽培品叶绿体基因序列中存在一些高 变区段,主要是基因间隔区 *trnK-UUU-trnQ-UUG*、 *trnC-GCA - trnT-GGU*、*trnT-UGU - trnL-UAA*、*atpH atpI*、*trnP-UGG-psaJ*、*rbcL-accD*、*ycf4-cemA*、*rpl16rps3*以及基因 *rpl20*、*ycf1*等。

使用滑动窗口计算高度可变区域的核苷酸多样性,以估计所分析的 10 个栽培品叶绿体基因组中不同区域的差异水平。由图 5 可知,核苷酸多样性的变化范围为 0~0.009 15,核苷酸多样性大于 0.006 的是基因间隔区 trnY-GUA-trnE-UUC、ccsA-ndhD、petD-rpoA 以及基因 trnS-GCU、ycf1、rpl16、ndhF,基因间隔区 ccsA-ndhD 变异率最高,核苷酸多样性值为 0.009 15,高变异率位点主要位于 LSC 和 SSC 区, IR 区未发现变异率高的片段,以上结果与 mVISTA 在线工具分析结果一致。

2.5 乌头属植物系统发育分析

为了探索不同种植基地的黄草乌之间的亲缘 关系,结合10个栽培品叶绿体基因组序列以及从 NCBI下载的32条乌头属序列和2条外类群物种 的序列,基于两种数据集(全叶绿体基因组序列和 蛋白质编码基因序列)分别采用两种不同的方法 (ML和BI)构建系统进化树(图6,图7)。结果均 显示,42条乌头属序列聚在同一大支,整个乌头属 分为3个亚属(露蕊乌头亚属、牛扁亚属和乌头亚 属),露蕊乌头亚属为基部类群,10个栽培品均属于 乌头亚属。以不同数据集建立的进化树在拓扑结 构上存在细微差异,基于叶绿体全基因组构建的系 统发育树均显示, LJ-1-2 与铁棒锤(A. pendulum)等 3个物种聚为分支 a. 支持率(99/1). 与宾川乌头 (A. duclouxii)亲缘关系较近:LQ-1-3、GJ-1-3、NL-1-3 和 DC-2-2 与滇南草乌(A. austroyunnanense) 聚为分 支b,支持率(100/1);LJ-4-3 与马耳山乌头(A. delavayi)、丽江乌头(A. forrestii)等3个物种以 (100/1)的支持率聚为分支 c,与马耳山乌头亲缘关 系较近; JS-1-4、 QJ-1-2、 LX-1-3 以及 LJ-3-2 与黄草乌 (A. vilmorinianum)和瓜叶乌头(A. hemsleyanum)聚 为分支d,与黄草乌有着较近的亲缘关系。而基于 蛋白质编码基因序列构建的系统进化树均显示,LJ-1-2 与苍山乌头(A. contortum) 聚为分支 a, 支持率 (88/1);LQ-1-3、GJ-1-3、NL-1-3 和 DC-2-2 与滇南草 乌聚为分支 b,支持率(100/1);LJ-4-3 与西南乌头 (A.episcopale)、马耳山乌头等4个物种以(74/1)的 支持率聚为分支 c,与西南乌头亲缘关系较近: JS-1-4、QJ-1-2、LX-1-3 以及 LJ-3-2 与黄草乌聚为分支 d。

3 讨论与结论

药材质量的影响因素有内因和外因,主要是

表 4 10 个栽培品叶绿体基因组基因分类

Table 4 Functional classification of chloroplast genome genes in 10 cultivated varieties

基因功能 Gene function	基因类别 Gene category	基因名称 Gene name	数量 Number
自身复制有关 Related to self-replication	核糖体蛋白大亚基 Large subunit of ribosomal protein (LSU)	rpl2(×2) \rpl14 \rpl16 \rpl20 \rpl22 \rpl23(×2) \rpl33 \rpl36	10
	核糖体蛋白小亚基 Small subunit of ribosomal protein (SSU)	rps2_rps3_rps4_rps7(×2)_rps8_rps11_rps12(×2)_rps14_ rps15_rps18_rps19	13
	RNA 聚合酶 RNA polymerase	rpoA_rpoB_rpoC1_rpoC2	4
	核糖体 RNA Ribosomal RNAs (rRNAs)	rm4.5(×2) ,rm5(×2) ,rm16(×2) ,rm23(×2)	8
	转运 RNA Transfer RNAs (tRNAs)	eq:trnA-UGC(×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU(×2), trnI-GAU(×2), trnI-GAU(×2), trnI-UAA, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GCA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC, trnW-CCA, trnY-GUA	37
光合作用有关 Related to photosynthesis	光系统 I Photosystem I	psaA_psaB_psaC_psaI_psaJ	5
	光系统 II Photosystem II	psbA \psbB \psbC \psbD \psbE \psbF \psbH \psbI \psbJ \psbK \psbL \ psbM \psbN \psbT \psbT \psbZ	15
	NAD(P)H 氧化还原酶 NADPH dehydrogenase	$\label{eq:ndhA} \ ndhB \ (\ \times\ 2\)\ \ ndhC\ \ ndhD\ \ \ ndhE\ \ \ ndhF\ \ \ ndhG\ \ \ ndhH\ \ \ ndhH\ \ \ \ ndhH\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	12
	细胞色素 b/f 复合体 Cytochrome b/f complex	$petA_petB_petD_petG_petL_petN$	6
	ATP 酶 ATP synthase	$atpA_atpB_atpE_atpF_atpH_atpI$	6
	二磷酸核酮糖羧化酶大亚基 RubisCO large subunit	rbcL	1
其他基因 Other gene	成熟酶 Maturase	matK	1
	转录起始因子 Translation initiation factor	infA	1
	蛋白酶 Protease	clpP	1
	包膜蛋白基因 Envelop membrane protein	cemA	1
	乙酰辅酶 A 羧化酶亚基 Subunits of acetyl-CoA-carboxylase	accD	1
	C 型细胞色素合成基因 C-type cytochrome synthesis gene	ccsA	1
未知基因 Unknown gene	假定叶绿体阅读框 Hypothetical chloroplast reading frame	$yef1(\times 2) \ yef2(\times 2) \ yef3 \ yef4 \ yef15(\times 2)$	8

植物基原和环境因素两方面。黄草乌作为云药伤 科要药,同时又是剧毒类药材,种植基原的混乱可 能会造成化学成分种类和含量的差异,进而影响 药材质量的稳定性,用药安全隐患极大。目前有 学者为了黄草乌的安全合理利用,对其化学成分 (汪焕芹等,2014)、药理作用(温玉莹等,2019)和 生药学鉴定(王丽等,2020)等方面展开了研究,尚 未见有关黄草乌栽培品基原植物叶绿体基因组的

A. 六种 SSR 的数目; **B**. SSR 的类型; **C**. LSC、SSC 和 IR 区 中 SSR 的数目。

A. Number of six SSR repeats; **B.** Type of SSRs; **C.** Number of SSRs in LSC, SSC and IR regions.

图 2 10 个栽培品全叶绿体基因组的 简单重复序列分析

Fig. 2 Simple repeat sequences (SSR) analysis of complete chloroplast genome in 10 cultivated varieties

报道。本研究利用高通量测序技术和生物信息学 分析方法对 10 个栽培品的全叶绿体基因组特征 和系统发育关系展开了研究探讨,结果显示,10 个 栽培品的叶绿体基因组大小相似,均以典型的、高 度保守的四分体结构存在,包括 4 个部分,1 个 LSC 区、1个SSC区和1对IR区,叶绿体基因组长度差 异仅为190bp,GC含量均为38.1%,具有明显AT偏 好性,均注释到131个基因,这与乌头属其他物种的 叶绿体基因组研究结果十分相似(Liu et al., 2020; Zhang et al., 2021),说明叶绿体基因组进化速率较 慢,在同属植物间表现出相对保守性。

叶绿体基因组中的 SSR 因其在数量方面没有 生物学上的限制、多态性高、易复制且具有母系遗 传模式等优点而被广泛应用于遗传多样性分析和 分子标记辅助育种等方面的研究(Pauwels et al., 2012)。本研究通过在线分析工具在10个栽培品 的叶绿体基因组中共发现 60~73 个 SSR 位点.其 中单核苷酸 SSR 占比最大,其次为二核苷酸,拷贝 数目增加,SSR 数量逐渐减少,A/T 为单核苷酸主 要重复类型,AT/TA 是二核苷酸主要重复类型,三 核苷酸主要重复类型则是 AAT/ATT,这与李雪佩 等(2018)研究的云南省武定县的黄草乌叶绿体基 因组中 SSR 类型一致,这些 SSR 位点可以为黄草 乌的分子遗传学相关研究提供候选分子标记。虽 然叶绿体基因组高度保守,但是基因结构和大小 在10个栽培品叶绿体基因组的 IR/SC 边界也有 一定不同,对10个栽培品进行全序列对比,发现 他们的 LSC、SSC 和 IR 区域的大小存在细微差异. 分别为 86 496~86 680 bp、16 921~17 007 bp、 26 127~26 170 bp,显示出适度的扩张,相对于 LSC 区和 SSC 区, IR 区更为保守, 这可能是由于 IR 区的重复基因会在突变发生时,通过基因转换对 其进行修正,因此减弱了此区变异发生的频率 (Chen et al., 2015),所有样品 rps19、ndhF、ycf1 和 trnH基因的大小和分布在4个边界间的差异较 小。基于 mVISTA 在线工具和 DnaSP 软件分析结 果表明,10个样品存在一些变异率较高的区段,如 trnK-UUU - trnQ-UUG $\ trnY$ -GUA - trnE-UUC $\ trnC$ -GCA - trnT - GGU, trnT - UGU - trnL - UAA, atpH - atpI, $trnP-UGG-psaJ_rbcL-accD_ycf4-cemA_rpl16-rps3$ 以及基因 rpl20、ycf1、ndhF 等, Park 等(2017) 和 Meng 等(2018) 也有相似的研究结果。在以往的 研究中,ndhF-trnL、psbA-trnH、psbD-trnT和 trnTtrnL等片段被用于乌头属的系统发育研究(Hong et al., 2017),但乌头属种间亲缘关系未能得到很 好的解决,今后这些变异热点区段,或许可以作为 新的 DNA 条形码,用于黄草乌及乌头属植物的物 种鉴定和系统发育关系等方面的研究。

图 3 10 个栽培品叶绿体基因组 LSC、SSC、IR 边界比较

Fig. 3 Comparison of the junction between LSC, SSC and IR regions of chloroplast genome among the 10 cultivated varieties

与已有的条形码片段相比,全叶绿体基因组 序列具有更高的分辨率,可以阐明较低阶元的系 统进化关系(Nie et al., 2012)。本研究基于两种 数据集采用不同的方法构建的系统进化树均表 明,乌头属 42 条序列分为 3 个大的分支(乌头亚 属、牛扁亚属和露蕊乌头亚属),乌头亚属与牛扁 亚属构成姊妹类群,露蕊乌头亚属为乌头属的基 部类群,10个栽培品均属于乌头亚属,但仅有 JS-1-4、QJ-1-2、LX-1-3和 LJ-3-24个栽培品与黄草乌 亲缘关系较近,LQ-1-3、GJ-1-3、NL-1-3和 DC-2-2 与滇南草乌亲缘关系较近,丽江的 LJ-4-3在叶绿 体全基因组序列构建的进化树中与兴安乌头系 (Ser. Ambigua)的马耳山乌头亲缘关系更近,在蛋 白质编码基因序列构建的进化树中则与蔓乌头系

上方的灰色箭头表示基因的方向,深蓝色区域代表外显子,浅蓝色区域代表未翻译区域(UTRs),粉色区域代表非编码序列 (CNS),y 轴表示从 50%到 100% 的一致度。

Gray arrow above the alignment indicate the direction of gene, the dark blue regions represent exons, the light blue regions represent untranslated regions (UTRs), the pink regions represent Conserved Non-Coding Sequences (CNS), and the y-axis represents the consistency ranging from 50% to 100%.

图 4 10 个栽培品叶绿体基因组的可视化比对图

Fig. 4 Comparison diagram of chloroplast genome of 10 cultivated varieties

未标中文种名的表示在电子版《中国植物志》上查询不到该物种的种中文名。下同。

If the species name is not marked in Chinese, it means that the Chinese name of the species can not be queried in the electronic *Flora Reipublicae Popularis Sinicae*. The same below.

(Ser. Volubilia)的西南乌头关系较近;丽江另1个样品 LJ-1-2 在全叶绿体基因组序列构建的进化树

中与保山乌头系(Ser. Bullatifolia)中的宾川乌头 关系更近,在蛋白质编码基因序列构建的进化树

图 6 基于 44 个物种全叶绿体基因组序列构建的最大似然(ML)和贝叶斯(BI)系统进化树 Fig. 6 Phylogenetic tree of 44 species using maximum likelihood (ML) and Bayesian inference (BI) methods based on complete chloroplast genome sequences

中则与显柱乌头系(Ser. Stylosa)的苍山乌头关系 近,这说明非编码区在植物系统进化中可能也起到 了一定的作用。可见,除丽江地区的栽培品来源较 为混乱外,其他地区的栽培种从亲缘关系上基本分 为黄草乌和滇南草乌两大类,这说明目前各基地种 植的黄草乌主要存在两种植物来源。此外,研究结 果还显示蔓乌头系、兴安乌头系、显柱乌头系、保山 乌头系等的部分类群交错在一起,这与中国植物志 中乌头属系的划分并不一致,张富民等(2003)也得 出了相似的结果,这提示依靠植物形态的经典分类 系统可能存在一些问题。鉴于乌头属植物在生长 过程中性状的多变性,仅依靠表型特征对其进行区 别分类显然不够,这也可能是黄草乌在引种驯化的 过程中出现种源混杂情况的原因。虽然目前乌头 属大部分植物已经完成全叶绿体基因组测序,但有 关该属植物的系统发育学研究还比较少,本研究推 断的系统关系能够为乌头属植物的物种鉴定和系 统进化等方面的研究提供重要信息。但是,乌头属 植物种类繁多,仍然需要更多该属植物被加入系统 发育的研究中且结合更多技术手段,才能得到更全 面、更合乎实际的进化谱。

综上所述,本研究从全叶绿体基因组的角度 认为,目前云南省各大栽培基地所种植的黄草乌 确实存在种源混杂的客观现象,主要有黄草乌和 滇南草乌两种植物,但现行质量标准仅有黄草乌 一种植物来源,因此对于黄草乌栽培药材的质量 问题,首先应规范其种原,而对于滇南草乌能否也 作为黄草乌药材来源收载,还需要通过研究他们 化学成分和药理活性等方面的异同后再综合 评判。

参考文献:

- AMIEYOUSEFI A, HYVÖNEN J, POCZAI P, 2018. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030–3031.
- BEIER S, THIEL T, MINCH T, et al., 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 16(33): 2583-2585.
- CHEN JH, HAO ZD, XU HB, et al., 2015. The complete chloroplast genome sequence of the relict woody plant *Metasequoia glyptostroboides* Hu et Cheng [J]. Front Plant Sci, 6: 447.

- DIERCKXSENS N, MARDULYN P, SMITS G, 2017. NOVOPlasty: *de novo* assembly of organelle genomes from whole genome data [J]. Nucl Acid Res, 45(4): e18.
- DONG S, CHEN CL, ZHU PF, et al., 2020. HPLC determination of three diester diterpenoid alkaloids of wild and cultivated *Aconitum vilmorinianum* Radix from different producing areas in Yunnan Province [J]. Chin J Inf Trad Chin Med, 27(4): 74–77. [董帅, 陈翠玲, 朱培芳, 等, 2020. HPLC 测定云南不同产地野生与栽培黄草乌中 3 种 双酯型二萜生物碱成分含量 [J]. 中国中医药信息杂志, 27(4): 74–77.]
- Editorial Committee of China Flora of Chinese Academy of Sciences, 1979. Flora Reipublicae Popularis Sinicae: Tomus 27 [M]. Beijng: Science Press: 245. [中国植物志编辑委 员会, 1979. 中国植物志: 第二十七卷 [M]. 北京: 科学 出版社: 245.]
- FAN DC, MU YT, JIA JY, et al., 2022. Codon bias and phylogenetic analysis of chloroplast genome in medicinal plants of *Aconitum* [J/OL]. Mol Plant Breed. http:// kns. cnki. net/kcms/detail/46. 1068. S. 20220711. 1339. 002. html. [樊东昌, 穆赢通, 贾俊英, 等, 2022. 乌头属药用 植物叶绿体基因组密码子特征和系统发育分析 [J/ OL]. 分子植物育种. http://kns. cnki. net/kcms/detail/ 46.1068.S.20220711.1339.002.html.]
- FRAZER KA, PACHTER L, POLOAKOV A, et al., 2004. VISTA: computational tools for comparative genomics [J]. Nucl Acid Res, 32: 273-279.
- GREINER S, LEHWARK P, BOCK R, 2019. OrganellarGenomeDRAW (OGDRAW) version 1. 3. 1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucl Acid Res, 47(W): 59-64.
- HONG Y, LUO Y, GAO Q, et al., 2017. Phylogeny and reclassification of Aconitum subgenus Lycoctonum (Ranunculaceae) [J]. PLoS ONE, 12(1): e0171038.
- JANSEN RK, CAI Z, RAUBESON LA, et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns [J]. Proc Natl Acad Sci USA, 104(49): 19369–19374.
- JIANG WJ, GUO MY, PANG XH, 2020. Application of chloroplast genome in identification and phylogenetic analysis of medicinal plants [J]. World Chin Med, 15(5): 702-708. [姜汶君, 郭梦月, 庞晓慧, 2020. 叶绿体基因 组在药用植物鉴定及系统进化研究中的应用 [J]. 世界 中医药, 15(5): 702-708.]
- KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772–780.
- KEARSE M, MOIR R, WILSON A, et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data

[J]. Bioinformatics, 28(12): 1647-1649.

- Kunming Institute of Botany, Chinese Academy of Sciences, 2000. Flora Yunnanica: Tomus 11 [M]. Beijing: Science Press: 81-89. [中国科学院昆明植物研究所, 2000. 云南 植物志: 第十一卷 [M]. 北京: 科学出版社: 81-89.]
- LI XP, HE J, HE SL, et al., 2017. Research progress of *Aconitum vilmorinianum* [J]. J W Chin For Sci, 46(6): 1-7. [李雪佩, 何俊, 贺水莲, 等, 2017. 黄草乌植物的研究进展 [J]. 西部林业科学, 46(6): 1-7.]
- LI XP, MENG J, ZHANG LN, et al., 2018. Comparative analysis of chloroplast genomes of Aconitum vilmorinianum and Aconitum vilmorinianum var. patentipilum [J]. J Chin Med Mat, 41(8): 1812-1820. [李雪佩, 孟静, 张琳娜, 等, 2018. 黄草乌与展毛黄草乌叶绿体全基因组结构的 比较分析 [J]. 中药材, 41(8): 1812-1820.]
- LIU Y, YU SH, YOU FM, 2020. Characterization of the complete chloroplast genome of *Aconitum flavum* (Ranunculaceae) [J]. Mitochondrial DNA Part B, 5(3): 3000-3001.
- LUO Y, YANG QE, 2005. Taxonomic revision of *Aconitum* (Ranunculaceae) from Sichuan, China [J]. Acta Phytotaxon Sin, 43 (4): 289 - 386. [罗艳,杨亲二, 2005. 四川乌头属的修订 [J]. 植物分类学报, 43 (4): 289-386.]
- LUO Y, ZHANG F, YANG QE, 2005. Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences [J]. Plant Syst Evol, 252(1/2): 11–25.
- MENG J, LI XP, LI HT, et al., 2018. Comparative analysis of the complete chloroplast genomes of four *Aconitum* medicinal species [J]. Molecules, 23(5): 1015.
- NIE XJ, LV SZ, ZHANG YX, et al., 2012. Complete chloroplast genome sequence of a major invasive species, crofton weed (*Ageratina adenophora*) [J]. PLoS ONE, 7(5): 36869.
- OHYAMA K, FUKUZAWA H, KOHCHI T, et al., 1986. Chloroplast gene organization deduced from complete sequence of liverwort *Marchantia polymorpha* chloroplast DNA [J]. Nature, 322(6079): 572-574.
- PARK I, KIM W, YANG S, et al., 2017. The complete chloroplast genome sequence of *Aconitum coreanum* and *Aconitum carmichaelii* and comparative analysis with other *Aconitum* species [J]. PLoS ONE, 12(9): e0184257.
- PATEL RK, JAIN M, 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data [J]. PLoS ONE, 7(2): e30619.
- PAUWELAS M, VEKEMANS X, GODÉ C, et al., 2012. Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, *Arabidopsis halleri* (Brassicaceae) [J]. New Phytol, 193(4): 916–928.
- ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO JC,

et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Mol Biol Evol, 34(12): 3299–3302.

- SHINOZAKI K, OHME M, TANAKA M, et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2043-2049.
- TILLICH M, LEHWARK P, PELLIZZER T, et al., 2017. GeSeq-versatile and accurate annotation of organelle genomes [J]. Nucl Acid Res, 45(W): 6–11.
- TONG YY, SHANG JH, LOU ZQ, 1986. Study on morphology and histology of *Aconitum kusnezoffia* [J]. Acta Pharm Sin, 21(1): 51-60. [童玉懿, 商建华, 楼之岑, 1986. 国产乌 头类生药草乌类的形态组织学研究 [J]. 药学学报, 21(1): 51-60.]
- WANG HQ, LIU B, ZHAN R, et al., 2014. Study on diterpenoid alkaloids from *Aconitum vilmorinianum* Kom. [J] J Yunnan Agric Univ (Nat Sci), 29(5): 773-777. [汪焕 芹, 刘波, 詹睿, 等, 2014. 黄草乌二萜生物碱成分研究 [J]. 云南农业大学学报(自然科学), 29(5): 773-777.]
- WANG L, ZHU ZY, WANG JK, et al., 2020. Pharmacognosy identification of three species of *Aconitum* produced in Yunnan Province [J]. J Guangzhou Univ Chin Med, 37(6): 1141 1146. [王丽,朱兆云,王京昆,等, 2020. 3 种滇产乌头的生药学鉴别 [J]. 广州中医药大学 学报, 37(6): 1141–1146.]
- WANG SQ, WANG QQ, XU XC, et al., 2022. Chloroplast genome structure and characterization of *Ixora chinensis* [J/ OL]. Mol Plant Breed. http://kns.cnki.net/kcms/detail/ 46.1068.S.20220223.1836.019.html. [王仕奇, 王倩倩, 许 晓晨, 等, 2022. 龙船花叶绿体基因组结构与特征分析 [J/OL]. 分子植物育种. http://kns.cnki.net/kcms/detail/ 46.1068.S.20220223.1836.019.html.]
- WEN YY, WANG LP, SHEN ZB, et al., 2019. Effects and mechanism of Aconitum vilmorinianum and its processed product on cardiotoxicity [J]. J Chin Med Mat, 42(6): 1277-1282. [温玉莹, 王丽苹, 沈志滨, 等, 2019. 黄草乌 及其炮制品对心脏毒性的作用和机制研究 [J]. 中药材, 42(6): 1277-1282.]
- WICKE S, SCHNEEWEISS GM, DEPAMPHILIS CW, et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function [J]. Plant Mol Biol, (76): 273-297.
- XIAO PG, WANG FP, GAO F, et al., 2006. A pharmacophylogenetic study of *Aconitum* L. (Ranunculaceae) from China [J]. Acta Phytotaxon Sin, 44(1): 1-46. [肖培根, 王锋鹏, 高峰, 等, 2006. 中国乌头属植物药用亲缘学研 究 [J]. 植物分类学报, 44(1): 1-46.]
- 云南省食品药品监督管理局, 2013. 云南省中药材标准 2005 版: 第七册: 云 YNZYC-0338-2010 [S]. 昆明: 云南科

技出版社.

- 云南省卫生厅, 1996. 云南省药品标准 [M]. 昆明: 云南大 学出版社.
- 云南省卫生局, 1974. 云南省药品标准: 滇 Q/WS 1—1974 至滇 Q/WS 518—1974 [S]. 昆明: 云南卫生局.
- ZENG LF, LI GD, WANG BJ, et al., 2021. Selection of optimal qRT-PCR reference genes for Aconitum vilmorinianum [J]. Chin J Chin Mat Med, 46(12): 3116– 3122. [曾礼芳, 李国栋, 王宝婕, 等, 2021. 黄草乌实时 荧光定量 PCR 内参基因的筛选 [J]. 中国中药杂志, 46(12): 3116–3122.]
- ZHANG D, GAO FL, JAKOVLIĆ I, et al., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Res, 20(1): 348–355.
- ZHANG FM, GE S, CHEN WL, 2003. Phylogeny of the Aconitum delavayi complex (Ranunculaceae) based on evidence from nuclear ribosomal ITS sequences [J]. Acta Phytotaxon Sin, 41(3): 220-228. [张富民, 葛颂, 陈文 俐, 2003. 紫乌头复合体 nrDNA 的 ITS 序列与系统发育 分析 [J]. 植物分类学报, 41(3): 220-228.]
- ZHANG M, LUO JW, SU LJ, et al., 2021. The complete chloroplast genome of *Aconitum scaposum* [J]. Mitochondrial DNA Part B, 6(8): 2149–2150.
- ZHOU CL, 2013. The study of histological and microscopic identification on the medicinal *Aconitum* species produced in Yunnan [D]. Kunming: College of Traditional Chinese Medicine: 1-132. [周成蕾, 2013. 滇产乌头属药用植物 的生药学初步研究 [D]. 昆明:云南中医学院: 1-132.]
- ZHU GQ, LI SL, MA L, et al., 2020. Study on applicability of ITS2 and *psbA-trnH* for identifying 5 species of *Aconitum* [J]. J Guangzhou Univ Chin Med, 37(3): 532-539. [朱高 倩, 李双良, 马莉, 等, 2020. 乌头属 5 种植物 ITS2 和 *psbA-trnH* 鉴别适用性研究 [J]. 广州中医药大学学报, 37(3): 532-539.]
- ZHU GQ, ZHOU PJ, WANG L, et al., 2020. Identification of Aconitum vilmorinianum Kom. adulterated with related Aconitum species based on ITS2 [J]. J Guangzhou Univ Chin Med, 37(4): 726-732. [朱高倩,周培军,王丽,等, 2020. 基于 ITS2 鉴别黄草乌及其近缘种掺混 [J]. 广州中 医药大学学报, 37(4): 726-732.]
- ZI SH, YANG SC, YANG ZF, et al., 2012. Development status and strategy of *Aconitum* in Yunnan Province [J]. Mod Trad Chin Med Mat Medica-World Sci Technol, 14(6): 2222-2226. [字淑慧,杨生超,杨子飞,等, 2012. 云南药用草 乌种植发展现状及对策 [J]. 世界科学技术—中医药现 代化,14(6): 2222-2226.]

(责任编辑 邓斯丽 李 莉)