en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

姚新转(1989-),硕士,实验师,主要从事植物分子生物学研究,(E-mail)xzyao@gzu.edu.cn。

通讯作者:

吕立堂,博士,教授,主要从事茶树资源综合利用研究,(E-mail)ltlv@gzu.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2022)12-2044-12

DOI:10.11931/guihaia.gxzw202103048

参考文献
ALEXANDRA B, LAURENS P, WANG Z, et al. , 2018. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes [J]. Plant Physiol, 178: 327.
参考文献
BAI Y, MENG Y, HUANG D, et al. , 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family [J]. Genomics, 98(2): 128-136.
参考文献
BARI R, JONES JDG, 2009. Role of plant hormones in plant defence responses [J]. Plant Mol Biol, 69: 473-488.
参考文献
CHERUIYOT EK, MUMERA LM, NG’ETICH WK, et al. , 2009. Fertilizer rates increase susceptibility of tea to water stress [J]. J Plant Nutr, 33(1): 115-129.
参考文献
DONOFRIO C, COX A, DAVIES C, et al. , 2009. Induction of secondary metabolism in grape cell cultures by jasmonates [J]. Funct Plant Biol, 36(4): 323-338.
参考文献
EBEL C, BENFEKI A, HANIN M, et al. , 2018. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance [J]. PLoS ONE, 13(7): e0200566.
参考文献
HAKATA M, MURAMATSU M, NAKAMURA H, et al. , 2017. Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling [J]. J Agric Chem Soc Jpn, 81(5): 906-913.
参考文献
HE X, KANG Y, LI WQ, et al. , 2020. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. [J]. BMC Genomics , 21(1): 736-748.
参考文献
HU LZ, LI CQ, ZHANG WL, et al. , 2020. Genome-wide identification and phylogenetic analysis of the TIFY genes in common bean (Phaseolus vulgaris) [J]. Mol Plant Breed, 18(10): 3132-3140. [胡利宗, 李超琼, 张雯露, 等, 2020. 菜豆TIFY基因的全基因组鉴定与系统进化分析 [J]. 分子植物育种, 18(10): 3132-3140. ]
参考文献
HU YR, JIANG LQ, WANG F, et al. , 2013. Jasmonate regulates the inducer of cbf expression-c-repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis [J]. Plant Cell, 25(8): 2907-2924.
参考文献
KANG CHANG K, HANJ, LEE J, et al. , 2011. Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil [J]. Genes Genom, 33(3): 229-236.
参考文献
LAN YC, HUANG B, WEI J, et al. , 2020. Identification and bioinformatics analysis of the expansin gene family of Physcomitrella patens [J]. Guihaia, 40 (6): 854-863. [蓝雨纯, 黄彬, 韦娇, 等, 2020. 小立碗藓扩展蛋白基因家族的鉴定与生物信息学分析 [J]. 广西植物, 40(6): 854-863. ]
参考文献
LIU SC, JIN JQ, MA JQ, et al. , 2016. Transcriptomic analysis of tea plant responding to drought stress and recovery [J]. PLoS ONE, 11(1): e0147306.
参考文献
LIU X, ZHAO CB, YANG LM, et al. , 2020. Genome-wide identification, expression profile of the TIFY Gene family in Brassica oleracea var. capitata, and their divergent response to various pathogen infections and phytohormone treatments [J]. Genes, 11(2): 127.
参考文献
LU M, 2016. The management model and economic analysis of the development of China’s Tea industry [J]. Fujian J Tea, 38(9): 99-100. [芦梅, 2016. 中国茶叶产业发展的管理模式与经济学分析[J]. 福建茶叶, 38(9): 99-100. ]
参考文献
LUO DL, BA LJ, CHEN JY, et al. , 2017. Characterization and expression analysis of banana MaTIFY1 transcription factor during fruit ripening [J]. Acta Hortic Sin, 44(1): 43-52. [罗冬兰, 巴良杰, 陈建业, 等, 2017. 香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析 [J]. 园艺学报, 44(1): 43-52. ]
参考文献
SHIU SH, BLEECKER AB, 2003. Expression of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis [J]. Plant Physiol, 132(2): 530-543.
参考文献
STASWICK PE, 2008. JAZing up jasmonate signaling [J]. Trends Plant Sci, 13 (2): 66-71.
参考文献
SHA W, WEI J, ZHANG MJ, et al. , 2021. Cloning and expression analysis of the drought stress related transcription factor gene RcTIFY1 of Racomitrium canescens [J]. Mol Plant Breed: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html. [沙伟, 卫杰, 张梅娟, 等, 2021. 砂藓干旱胁迫相关基因转录因子RcTIFY1基因的克隆及表达分析 [J]. 分子植物育种: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html]
参考文献
UM TY, LEE HY, LEE S, et al. , 2018. Jasmonate ZIM-domain protein9 interacts with slender rice to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice [J]. Front Plant Sci, 9(1): 1866-1876.
参考文献
VANHOLME B, GRUNEWALD W, BATEMAN A, et al. , 2007. The tify family previously know as ZIM [J]. Trends Plant Sci, 12(6): 239-244.
参考文献
WANG HZ, LENG X, XU XM, et al. , 2020. Comprehensive analysis of the tify gene family and its expression profiles under phytohormone treatment and abiotic stresses in roots of Populus trichocarpa [J]. Forests, 11(3): 315.
参考文献
WANG XC, FENG H, CHANG YX, et al. , 2020. Population sequencing enhances understanding of tea plant evolution [J]. Nat Commun, 11(1): 4447.
参考文献
WEI CL, YANG H, WANG SB, et al. , 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proc Natl Acad Sci USA, 115(18): E4151-E4158.
参考文献
WEN D, WANG MY, MI YL, et al. , 2020. Genome-wide identification and characterization of TIFY gene family in medicinal plant Cannabis sativa [J]. Chin J Exp Form, 26(24): 134-143. [温东, 王梦月, 米要磊, 等, 2020. 中药火麻仁基原植物大麻的TIFY基因家族鉴定及功能分析 [J]. 中国实验方剂学杂志, 26(24): 134-143. ]
参考文献
WU Y, TAO L, YUAN HM, et al. , 2008. Jasmonic acid signaling mediated by JAZ protein [J]. Anhui Agric Sci, 36(16): 6811-6812. [吴莹, 陶雷, 袁红梅, 等, 2008. JAZ蛋白介导的茉莉酸信号传递[J]. 安徽农业科学, 36(16): 6811-6812. ]
参考文献
XIE SF, CUI LC, LEI XL, et al. , 2019. The TIFY gene family in wheat and its progenitors: genome-wide identification, evolution and expression analysis [J]. Current Genom, 20(5): 371-388.
参考文献
XU G, GUO C, SHAN H, et al. , 2012. Divergence of duplicate genes in exon-intron structure [J]. Proc Natl Acad Sci USA, 109(4): 1187-1192.
参考文献
YAO XZ, CHEN MJ, ZHAO DG, et al. , 2020. Overexpression of the Sorghum bicolor K+ /Na+ transporter gene, SbSKC1, enhances salt tolerance in poplar (Populus tomentosa) [J]. Intl J Agric Biol, 24: 304-310.
参考文献
YE HY, DU H, TANG N, et al. , 2009. Identification and expression profiling analysis of tify family genes involved in stress and phytohormone responses in rice [J]. Plant Mol Biol, 71(3): 291-305.
参考文献
ZHANG H, XIAO C, WANG GY, et al. , 2020. Analysis of citrus TIFY gene structure characteristics and response to low temperature expression [J]. S Chin Fruit Tree, 49(2): 34-39. [张沪, 肖翠, 王贵元, 等, 2020. 柑桔TIFY基因结构特征及响应低温表达分析 [J]. 中国南方果树, 49(2): 34-39. ]
参考文献
ZHANG L, YOU J, CHAN Z, 2015. Identification and characterization of TIFY family genes in Brachypodium distachyon [J]. J Plant Res, 128(6): 995-1005.
参考文献
ZHANG YC, GAO M, SINGER SD, et al. , 2012. Genome-wide identification and analysis of the TIFY gene family in grape [J]. PLoS ONE, 7(9): e44465.
参考文献
ZHAO CY, PAN XW, YU Y, et al. , 2020. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean [J]. Mol Breed New Strat Plant Impr, 40(3): 33.
参考文献
ZHAO XX, XIE KL, ZHANG SM, et al. , 2019. Identification and analysis of TIFY gene family in switchgrass [J]. Acta Agr Sin, 27(5): 1126-1137. [赵晓晓, 谢坤良, 张舒梦, 等, 2019. 柳枝稷TIFY基因家族的鉴定与分析 [J]. 草地学报, 27(5): 1126-1137. ]
目录contents

    摘要

    TIFY基因家族在茶树激素信号转导及其逆境胁迫具有十分重要的作用。该文利用生物信息学方法对茶树基因组中的TIFY家族进行了鉴定,分析其理化性质、系统进化、基因结构、染色体定位、启动子区顺式作用元件、组织表达模式,并通过RT-qPCR对部分TIFY家族成员进行了非生物胁迫。结果表明:(1)茶树TIFY基因家族成员19个(CsTIFY1~CsTIFY19),分属于4个蛋白亚家族TIFY、JAZ、ZML 和 PPD,且不均匀地分布在8 条染色体上,按照进化关系及结构特点可分为 7 组,每组内具有相似的基因结构与保守基序组成。(2)CsTIFYs基因的启动子区具有多种包含激素和非生物胁迫响应的顺式作用元件,通过实时荧光定量(RT-qPCR)分析其家族成员对在茉莉酸甲酯、盐(20%氯化钠)、冷(4 ℃)以及干旱(20% PEG-6000)处理下反应强烈,部分基因在根与顶芽中有较高的表达量。由此推测,TIFY基因家族可能在茶树激素信号调控、胁迫响应、生长和发育等多方面发挥功能作用。

    Abstract

    TIFY gene family plays a very important role in Camellia sinensis hormone signal transduction and its adversity stress. Bioinformatics methods were employed to idenTIFY the TIFY family members in the C. sinensis genome in this study, and the physical and chemical properties, system evolution, gene structure, chromosomal location, the cis-acting elements of promoter region and tissue expression pattern were also analyzed, and the results of RT-qPCR experiments verified the hormone response and stress response characteristics of some members of the TIFY family. The results were as follows: (1)There were 19 TIFY gene family members (CSTIFY1-CSTIFY19) in C. sinensis, which belonged to four protein subfamilies of TIFY, JAZ, ZML and PPD, and distributed unevenly on eight chromosomes. According to evolutionary relationship and structural characteristics, TIFY genes could be divided into seven groups, and members of each group had similar gene structure and conserved motif. (2)The promoter region of the CsTIFYs gene contained a varieties of cis-acting elements in response to abiotic stress and hormones, the RT-qPCR experiments proved that its family members were highly responsive to methyl jasmonate, salt (20% NaCl), cold (4 ℃) and drought (20% polyethylene glycol 6000) treatments, and some genes were highly expressed during the development of roots and apical buds. Based on the above results, it is speculated that the TIFY gene family may play roles in C. sinensis hormone signal regulation, stress defense response and growth and development.

  • TIFY家族是一类包含TIFY结构域的植物特有转录因子(张沪等,2020),在应激反应中起重要作用(胡利宗等,2020; He et al.,2020),根据保守结构域的不同,TIFY基因家族分为TIFY、JAZ、ZML和 PPD共 4个亚蛋白家族(Vanholme et al.,2007; Bai et al.,2011)。TIFY亚家族仅含有TIFY 结构域(Staswick,2008),其他3类亚家族还包含其他结构域,如:ZM亚蛋白家族,包括ZIM(在花序中表达的锌指Meristem)和ZML蛋白,也都包含C2C2-GATA锌指DNA结合域和CCT域(CONSTANS,类似CO的TOC1); JAZ亚蛋白家族包含一个保守序列,它们的C端附近大约有27个氨基酸,称为作为Jas基序,其顺序与N端相似CCT域的一部分(Kang et al.,2011)并带有特征基序SLX2 FX2 KRX2 RX5 PY(Hakata et al.,2012); PPD亚蛋白家族具有独特的N末端PPD结构域(Kang et al.,2011)。

  • TIFY家族成员与植物的正常生长以及胁迫响应起着重要作用(赵晓晓等,2020)。在拟南芥(Arabidopsis thaliana)中发现,AtTIFY1(ZIM)在促进叶柄和下胚轴伸长中起重要作用(罗冬兰等,2017),而AtTIFY4a(PPD1)和AtTIFY4b(PPD2)参与了叶片生长(Alexandra et al.,2018)。拟南芥TOC1和CO 蛋白属于ZML 类群,主要参与光周期信号转导或者介导蛋白相互作用(Bai et al.,2011)。其他植物如柑橘(Citrus reticulata)低温胁迫(张沪等,2020)、水稻(Oryza sativa)盐胁迫(Ye et al.,2009)和小麦(Triticum aestivum)干旱胁迫(Ebel et al.,2018)等TIFY基因已有详细研究,表明TIFY 基因都积极参与植物的生长发育以及非生物胁迫。

  • 茶树(Camellia sinensis)是很重要的经济作物,对我国的农业和国民经济发展具有重要作用(芦梅,2016)。近年来,茶树栽培面积的扩大,如贵州省茶树种植面积达50万hm2,由于生物和非生物胁迫引起的茶树灾害十分严重,如:茶芽萌发慢、长势劣、营养积累困难、病虫害多等问题,导致茶叶减产和茶叶品质下降(Cheruiyot et al.,2009; Liu et al.,2016)。目前,在茶树中有关TIFY家族相关报道极少,而茶树基因组测序数据的发布有利于从全基因组水平对茶树TIFY家族成员进行鉴定与分析(Wei et al.,2018; Wang et al.,2020)。本研究利用茶树基因组数据,鉴定了2个TIFY、7个ZML、2个PPD和8个JAZ基因,明确在茶树中的结构特点与进化特征,通过实时荧光定量(RT-qPCR)分析其在茉莉酸甲酯、干旱、冷和盐处理下的表达模式,以期探究该基因家族成员在茶树中的作用机制,为进一步研究TIFY基因家族在茶树胁迫防御机制研究奠定基础,为未来改善植物抗逆性提供依据。

  • 1 材料与方法

  • 1.1 材料处理

  • 实验材料来自贵州大学教学实践茶园(106°39′18″ E、26°27′13″ N、海拔1 130 m),选取生长状态良好、长势基本一致的两年生福鼎大白茶树移栽花盆中(丹麦泥炭土),人工气候室条件设置为温度(22±2)℃,湿度65%的环境下进行干旱(20% PEG-6000溶液)、盐(20% 氯化钠溶液)和茉莉酸甲酯(1 mmol·L-1)胁迫。将新鲜制备的 1 mmol·L-1茉莉酸甲溶液喷洒在不同处理植株的叶片(1芽3叶)上进行激素处理,收集处理(0、12、24、 48 h)后的1芽3叶; 20%氯化钠溶液和20% PEG-6000溶液分别浇灌植物(500 mL溶液),收集两种处理(0、24、48、72 h)后的1芽3叶; 用光照培养箱进行4℃处理(0、12、24、48 h)的1芽3叶。每个处理 3个株系,锡箔纸包裹标记,液氮速冻后保存于-80℃保存备用。

  • 1.2 茶树TIFY基因的鉴定与注释

  • 从TPIA数据库(http://tpia.teaplant.org/)下载茶树基因组以及蛋白组数据。同时,根据已经鉴定的拟南芥TIFY序列提交给Pfam数据库(http://pfam.sanger.ac.uk)获取基因家族的基本结构,发现TIFY结构域由Pfam登录号PF06200表示。使用HMMER以E值1×e-6搜索茶树基因组数据库(http://tpia.teaplant.org/)中的含有TIFY结构域的蛋白作为TIFY家族的候选蛋白,使用HMMER算法再次确认候选结构域是否完整,将TIFY基因家族候选蛋白提交至Pfam数据库查询具体保守结构域,删除不包含TIFY结构域的蛋白(蓝雨纯等,2020)。

  • 1.3 序列比对和系统发育分析

  • TIFY家族系统进化分析:将拟南芥(Arabidopsis thalianaTIFY(Vanholme et al.,2007)、毛果杨(Populus trichocarpa)(Wang et al.,2020)、葡萄(Vitis vinifera)(Zhang et al.,2012)及筛选到的茶树TIFY蛋白序列提交到Muscle软件,通过序列多重比对,使用IQtree软件计算氨基酸替换模型,使用IQtree软件通过ML(maximum likelihood)法生成进化树,设定自举值为1 000; 茶树TIFY种内进化分析:将茶树TIFY蛋白序列提交到Muscle软件,通过序列多重比对,使用IQtree软件计算氨基酸替换模型,使用IQtree软件采用ML法构建种内进化树,设定自举值1 000。

  • 1.4 茶树TIFY染色体定位和基因结构分析

  • 根据1.2的数据获取方法提取基因组注释数据中的TIFY基因在茶树染色体上的位置信息提交至TBtools软件,得到染色体定位图。茶树TIFY基因结构分析:将茶树TIFY家族成员内含子位置、数目信息和基因位置等信息提交至TBtools软件,获得基因结构图。茶树TIFY保守基序分析:将茶树TIFY蛋白序列提交至MEME 5.2(http://meme-suite .org/tools/meme),基序的数目设置为10,motif长度设置为6~50 aa,使用TBtools可视化相关数据。使用TBtools可视化TIFY基因家族保守结构域信息。

  • 1.5 茶树TIFY启动子区顺式作用元件分析

  • 根据1.2茶树基因组数据提取TIFY基因上游2 000 bp片段作为TIFY基因的启动子序列,提交至Plant Cis-Acting Regulatory Elements(http://bioinfor-matics.psb.ugent.be/webtools/plancare/html/)分析启动序列的顺式作用元件,使用TBtools可视化相关数据。

  • 1.6 茶树TIFY基因组织表达模式分析

  • 根据1.2的数据获取方法获得茶树不同组织TIFY基因的表达量(TPM)以及非生物胁迫下TIFY基因在茶树中的表达量(TPM),使用TBtools软件制作基因表达图谱。

  • 1.7 RT-qPCR分析

  • 下载茶树TIFY基因家族序列,并使用IDT(Integrated DNA Technologies)网站(https://sg.idtdna.com/Scitools/Applications/RealTimePCR/)在线设计引物,选用CsGAPDH作为内参基因(表1)。按照试剂盒说明书提取茶树叶片RibonucleicAcid(RNA)(北京华越洋生物科技有限公司),然后按照试剂盒说明书(北京君诺德生物技术有限公司)逆转录成cDNA,用于实时定量RT-qPCR。利用RT-qPCR 仪(T100 Thermal Cycler,Bio-Rad公司)进行 RT-qPCR 反应,反应程序参考(Yao et al.,2020)。每个样品均设置 3 次技术重复。用2-ΔΔCT算法计算基因相对表达水平。

  • 2 结果与分析

  • 2.1 茶树CsTIFY基因的全基因组鉴定

  • 共鉴定到19个TIFY序列,命名为 CsTIFY1-CsTIFY19,命名顺序参照Vv-TIFY(Zhang et al.,2012),分属4个亚家族,如表2 所示。

  • 2.2 4种植物TIFY基因的系统发育分析

  • 81个蛋白序列进行多重比对,利用IQ-TREE构建进化树,TIFY基因家族的4个亚家族成员构成及分布如图1所示,PPD 亚蛋白家族包含茶树CsTIFY4 与拟南芥AtTIFY4a、AtTIFY4b,但CsTIFY4与拟南芥AtTIFY4a亲缘关系较远; TIFY 亚蛋白家族包含CsTIFY15和 CsTIFY19; ZML亚家族由4个物种构成,共计20个成员; 剩余其他蛋白序列分属JAZ亚蛋白家族,可分为以下5个类群(JAZⅠ、JAZⅡ、JAZⅢ、JAZ IV、JAZ V),其中JAZⅠ 含有最多的TIFY序列,占比为 16/37,JAZ IV仅包含AtTIFY与CsTIFY序列,共计3个; JAZ V不包含CsTIFY(图1)。

  • 表1 TIFY基因RT-qPCR引物序列

  • Table1 Primer sequences of TIFY genes for RT-qPCR

  • 表2 茶树TIFY基因家族基本信息

  • Table2 Basic information of TIFY gene family in Camellia sinensis

  • 2.3 茶树TIFY基因的功能结构域及结构序列分析

  • 使用氨基酸进行了系统发育分析这里鉴定出19个茶树TIFY基因序列(图2)。使用来自4种植物的TIFY序列构建系统发育树(图1),同一个家族的TIFY蛋白倾向于聚类,2个例外是蛋白CsTIFY4和CsTIFY8单独聚为一枝(图2:A)。利用MEME软件对茶树TIFY保守基序组成和保守基序数目进行分析,共鉴别到10个保守基序,依次命名为motif 1~motif 10,只有CsTIFY8包含motif 2(图2:B),说明TIFY基因家族在进化过程中基序比较保守。相反是外显子/内含子结构也可用于提供其他证据来支持系统发育分组(Shiu &Bleecker,2003),因为这种类型的差异通常在基因家族的进化中起关键作用。因此,了解茶树TIFY基因的外显子/内含子结构(图2:C),以进一步了解它们可能的基因结构进化。我们的结果表明它们的系统发育与外显子/内含子之间有很强的相关性结构,并且聚在一起的基因通常拥有一个类似的基因结构。实际上,3组基因(TIFY2/TIFY3、TIFY12和TIFY14)包含完全相同数量的外显子,几乎完全相同的外显子长度(图2:C),表明这些TIFY基因可能是重复事件的产物。为进一步证实茶树TIFY基因之间的进化关系,可视化了其保守域的分布(图2:D)。尽管茶树TIFY蛋白质序列的氨基酸数量从115到399不等(表1),但聚集在一起的蛋白质往往包含相同数量的氨基酸。氨基酸和保守结构域的类似分布,这与外显子/内含子结构分析一致。

  • 图1 茶树、葡萄、毛果杨和拟南芥的TIFY基因家族系统发育树及其分类(Bootstrap重复数为1 000次)

  • Fig.1 Phylogenetic analysis of TIFY gene family from Camellia sinensis, Vitis vinifera, Populus trichocarpa, Arabidopsis thaliana (Bootstrap repeats 1 000 times)

  • 2.4 茶树CsTIFY基因染色体定位

  • 19个茶树CsTIFYs基因分别分布在茶树的8条染色体上,分别是染色体2、3、6、8、9、12、13和15。分析出CsTIFY 基因同源基因簇4组,分别为位于3号染色体上的CsTIFY12 和 CsTIFY19,位于9号染色体上的CsTIFY13和CsTIFY17,位于12号染色体上的CsTIFY2和CsTIFY3,位于15号染色体上的CsTIFY9和CsTIFY10,其中还有一对同源基因CsTIFY14和CsTIFY15未定位到染色体上(图3)。

  • 2.5 茶树CsTIFY基因启动子顺式作用元件

  • 从图4可以看出MYB响应元件分布在每个TIFY基因中,circadian为光周期响应元件在TIFY基因中分布最少的,TIFY1和TIFY7包含的作用元件最多。

  • 图2 茶树TIFY基因的功能结构域及结构序列

  • Fig.2 Functional domain and structure sequence of TIFY gene in Camellia sinensis

  • 图3 茶树CsTIFY基因染色体定位

  • Fig.3 Chromosomal locations of CsTIFY genes in Camellia sinensis

  • 图4 茶树 19个TIFY基因的启动子逆境相关顺式作用元件

  • Fig.4 Promoter stress-related cis-acting elements of the19 TIFY genes in Camellia sinensis

  • 2.6 茶树CsTIFY基因胁迫下的表达分析

  • 干旱、冷和盐等非生物胁迫对植物生长和生产力造成不利影响,MeJA处理后的表达数据(Donofrio et al.,2009; Zhao et al.,2020; He et al.,2020)说明其对于植物的生物逆境响应至关重要(Bari &Jones,2009),在本研究中,我们通过挖掘可公开获得的茶树微阵列数据集,研究了茶树TIFY基因家族对不同非生物胁迫条件以及激素处理的响应。我们确定了对应于19个茶树TIFY转录本,这些基因表达图谱如图5所示,茶树TIFY1基因对非生物胁迫和激素处理不同时间段表达量都很高,只有干旱胁迫和盐胁迫下TIFY1随时间的增减表达量降低,而激素处理后TIFY1、 TIFY2、 TIFY3、 TIFY6、 TIFY11、 TIFY12、 TIFY14和 TIFY16的表达高,而TIFY5和 TIFY7对非生物胁迫和激素处理在不同的时间段有负调控作用或不表达; TIFY6在激素、盐和干旱胁迫下表达量最高,而在冷胁迫下表达微弱。结果表明,不同的TIFY基因在非生物胁迫和激素处理下不同时间段表达量不同。

  • 图5 不同胁迫下茶树TIFY基因的表达

  • Fig.5 TIFY gene expressions of Camellia sinensis under different stresses

  • 2.7 茶树CsTIFY基因在不同胁迫和外源茉莉酸甲酯处理下的表达分析

  • 我们根据转录组数据分析了不同胁迫下的基因表达情况(图5),为了确信转录组结果,选择了干旱(20% PEG-6000)、冷胁迫(4℃)、盐胁迫(20% NaCl)和茉莉酸甲酯(MeJA)(1 mmol·L-1),不处理为对照,并根据茶树基因组数据不同胁迫基因的表达量选择了7个TIFY基因,进行了实时荧光定量(RT-qPCR)分析。MeJA处理下,大多数TIFY有明显的响应,但不尽相同,如MeJA显著诱导了TIFY1、TIFY6和TIFY11的表达,表达量随时间的增加而增加,在12 h时表达量最高,随后降低,而TIFY15在不同时间段表达变化不大; 冷胁迫下,TIFY都存在响应,但不尽相同,如冷胁迫显著诱导了TIFY8和TIFY11的表达,表达量随时间的增加而增加,而TIFY2在不同时间段表达变化不大,TIFY6随时间的增加而增加,随后降低; 干旱处理下,TIFY基因均表达,但表达水平有一定差异,干旱胁迫显著诱导了TIFY6和TIFY11的表达,表达量随时间的增加而增加且在12 h时表达量最高,随后降低,而TIFY8表达基本没有影响; 盐胁迫下,TIFY1、TIFY2、TIFY11、 TIFY15和TIFY18随胁迫时间增加,随后降低,而TIFY6不随时间的变化而变化,可知转录组数的基因表达量和RT-qPCR基因表达量趋势基本一致(图6)。

  • 图6 不同处理茶树的TIFY基因表达

  • Fig.6 TIFY gene expressions in different treatments of Camellia sinensis

  • 图7 茶树CsTIFY基因在茶树不同组织中的表达

  • Fig.7 Expressions of CsTIFY genes in different tissues of Camellia sinensis

  • 2.8 茶树 CsTIFY 基因表达模式分析

  • 将不同基因表达量数据进行热图分析,CsTIFY1、CsTIFY2、 CsTIFY3在各个组织表达量都较高,而CsTIFY5和CsTIFY7在各个组织几乎不表达且CsTIFY11在根、顶芽、嫩叶和花表达较高基本一致,其中CsTIFY6在顶芽表达量最高,表明茶树 CsTIFY 基因家族成员在不同组织器官表达均存在差异性,暗示其可能基因功能存在分化(图7)。

  • 3 讨论与结论

  • TIFY基因是植物特有的转录因子,有可以调控植物分生组织分裂等重要作用,并显著影响植物的生长发育(赵晓晓等,2019; 温东等,2020; Liu et al.,2020; 沙伟等,2021)。尤其是JAZ 蛋白,不仅是茉莉酸(jasmonic acid,JA)信号通路的重要负调控转录因子,还是激素网络的调控枢纽,通过诱导茉莉酸刺激来启动茉莉酸应答基因的转录(吴莹等,2008)。水稻OsJAZ9与OsSLR 的互作介导了茉莉酸与赤霉素(gibberellin,GA)的拮抗作用来协调植株应急响应(Um et al.,2018); JAZ1/JAZ4与CBF诱导因子相互作用抑制转录ICE1的功能,从而减弱了CREPEAT BINDING FACTORS(CBFs)的表达; JAZ1或JAZ4的过表达抑制拟南芥对冻胁迫的响应(Hu et al.,2013); 在甘蓝型油菜(Brassica napus)BnaJAZ7-A3/BnaJAZ7-C3的过表达提高冷害胁迫(He et al.,2020)等中被研究,然而茶树TIFY基因特性和系统进化等却未见报道。

  • 茶树中19个TIFY基因被鉴定,结果表明TIFY基因家族包含4个亚蛋白家族且各家族成员中TIFY-motif的氨基酸序列包含多种类型,TIFY 蛋白在拟南芥、水稻、毛果杨和茶树4个物种间分为7个类群。除CsTIFY8、CsTIFY14、 CsTIFY15和CsTIFY16 外,其他15个CsTIFY都分别分布在2、3、6、8、9、12、13和15染色体上,其中CsTIFY各成员在染色体形成了4对同源基因簇,说明该成员间存在一定的进化关系。

  • 茶树TIFY基因家族进化关系较近的成员间具有基本相同的内含子/外显子组成,同水稻(Ye et al.,2009)和二穗短柄草(Brachypodiumdistachyon)(Zhang et al.,2015)研究的TIFY基因家族规律基本一致,不同分组的成员间的组成存在差异(Xu et al.,2012; Hakata et al.,2017)。对于TIFY 的保守基序,TIFY8仅含有TIFY,此外,其成员TIFY8、 TIFY9、TIFY10、 TIFY12、 TIFY13、 TIFY14、 TIFY15、TIFY18和TIFY19 缺少了JAS-domin,这些具有特殊结构的成员可能在茶树的进化中具有独特性(赵晓晓等,2019)。

  • 茶树CsTIFYs启动子与激素、胁迫相关的作用元件占主导地位,但不同基因作用元件的种类和个数均不同(Xie et al.,219),随着激素种类和程度的改变,茶树 CsTIFYs 基因响应发生改变,进而导致其功能差异性。此外,部分基因含有不同的胁迫响应元件[低温响应元件(Box 4、LTR)、干旱响应元件(Box 4、GATA-motif、 W box和AT-rich element)、盐响应元件(GATA-motif、W box和AT-rich element)、激素响应元件(ARE、Box 4、CGTCA-motif、TGACG-motif、ABRE、AAGAA-motif)及逆境响应元件(MYB、G-Box、MYC和 STRE)等],推测 CsTIFY可能参与不同激素信号转导调节,从而对环境胁迫作出应答。为了更好地了解茶树CsTIFYs基因的表达差异,本研究对 CsTIFYs 在不同组织的基因表达进行分析,结果发现茶树TIFY1基因对不同胁迫不同时间段表达量都很高,只有在PEG-6000和盐胁迫下,TIFY1随时间的增减表达量降低,TIFY1、TIFY2、TIFY3、TIFY6、TIFY11、TIFY12、TIFY14和 TIFY16激素处理高表达,而TIFY5和 TIFY7对胁迫在不同的时间段有负调控或不调控; TIFY6在激素、盐和干旱胁迫下表达量最高,而在冷胁迫下表达微弱。茶树CsTIFYs 基因在不同组织均存在表达差异性,推测 CsTIFYs 在基因调控上也存在一定的差异。同时,本研究筛选了在不处理下表达量高的TIFY家族成员进行RT-qPCR验证胁迫处理下TIFY基因的表达情况,结果表明,7个TIFY家族成员对激素以及非胁迫有较强的反应。在激素处理12 h时,TIFY6基因的表达是TIFY15的8.5倍,是TIFY8的 8.7倍; 在冷处理48 h,TIFY6表达量达到最高,是TIFY1的3.2倍; 干旱处理48 h,TIFY6的表达量最高,为7.42,是TIFY8的11倍; 盐处理48 h时基因表达量最高,TIFY6为11.4,TIFY1为8.64,可知TIFY6基因在不同处理的不同时间段基因的表达差异性显著。因此,TIFY6基因可作为茶树在受到外界胁迫时的候选基因。

  • 总之,茶树TIFY家族成员,通过生物信息学分析,进一步确定了茶树TIFY基因家族的分类和进化关系。同时,分析TIFY 基因家族的启动子顺式作用元件、表达模式以及外源激素处理和非生物胁迫处理下的表达特性,初步探究了TIFY基因家族参与胁迫应答和激素调控等茶树的生长发育,同时,本研究把TIFY6基因列为调控不同环境条件下逆境变化的候选基因,为进一步研究茶树TIFY基因家族生物的功能提供了一定的研究方向和基础。

  • 参考文献

    • ALEXANDRA B, LAURENS P, WANG Z, et al. , 2018. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes [J]. Plant Physiol, 178: 327.

    • BAI Y, MENG Y, HUANG D, et al. , 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family [J]. Genomics, 98(2): 128-136.

    • BARI R, JONES JDG, 2009. Role of plant hormones in plant defence responses [J]. Plant Mol Biol, 69: 473-488.

    • CHERUIYOT EK, MUMERA LM, NG’ETICH WK, et al. , 2009. Fertilizer rates increase susceptibility of tea to water stress [J]. J Plant Nutr, 33(1): 115-129.

    • DONOFRIO C, COX A, DAVIES C, et al. , 2009. Induction of secondary metabolism in grape cell cultures by jasmonates [J]. Funct Plant Biol, 36(4): 323-338.

    • EBEL C, BENFEKI A, HANIN M, et al. , 2018. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance [J]. PLoS ONE, 13(7): e0200566.

    • HAKATA M, MURAMATSU M, NAKAMURA H, et al. , 2017. Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling [J]. J Agric Chem Soc Jpn, 81(5): 906-913.

    • HE X, KANG Y, LI WQ, et al. , 2020. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. [J]. BMC Genomics , 21(1): 736-748.

    • HU LZ, LI CQ, ZHANG WL, et al. , 2020. Genome-wide identification and phylogenetic analysis of the TIFY genes in common bean (Phaseolus vulgaris) [J]. Mol Plant Breed, 18(10): 3132-3140. [胡利宗, 李超琼, 张雯露, 等, 2020. 菜豆TIFY基因的全基因组鉴定与系统进化分析 [J]. 分子植物育种, 18(10): 3132-3140. ]

    • HU YR, JIANG LQ, WANG F, et al. , 2013. Jasmonate regulates the inducer of cbf expression-c-repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis [J]. Plant Cell, 25(8): 2907-2924.

    • KANG CHANG K, HANJ, LEE J, et al. , 2011. Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil [J]. Genes Genom, 33(3): 229-236.

    • LAN YC, HUANG B, WEI J, et al. , 2020. Identification and bioinformatics analysis of the expansin gene family of Physcomitrella patens [J]. Guihaia, 40 (6): 854-863. [蓝雨纯, 黄彬, 韦娇, 等, 2020. 小立碗藓扩展蛋白基因家族的鉴定与生物信息学分析 [J]. 广西植物, 40(6): 854-863. ]

    • LIU SC, JIN JQ, MA JQ, et al. , 2016. Transcriptomic analysis of tea plant responding to drought stress and recovery [J]. PLoS ONE, 11(1): e0147306.

    • LIU X, ZHAO CB, YANG LM, et al. , 2020. Genome-wide identification, expression profile of the TIFY Gene family in Brassica oleracea var. capitata, and their divergent response to various pathogen infections and phytohormone treatments [J]. Genes, 11(2): 127.

    • LU M, 2016. The management model and economic analysis of the development of China’s Tea industry [J]. Fujian J Tea, 38(9): 99-100. [芦梅, 2016. 中国茶叶产业发展的管理模式与经济学分析[J]. 福建茶叶, 38(9): 99-100. ]

    • LUO DL, BA LJ, CHEN JY, et al. , 2017. Characterization and expression analysis of banana MaTIFY1 transcription factor during fruit ripening [J]. Acta Hortic Sin, 44(1): 43-52. [罗冬兰, 巴良杰, 陈建业, 等, 2017. 香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析 [J]. 园艺学报, 44(1): 43-52. ]

    • SHIU SH, BLEECKER AB, 2003. Expression of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis [J]. Plant Physiol, 132(2): 530-543.

    • STASWICK PE, 2008. JAZing up jasmonate signaling [J]. Trends Plant Sci, 13 (2): 66-71.

    • SHA W, WEI J, ZHANG MJ, et al. , 2021. Cloning and expression analysis of the drought stress related transcription factor gene RcTIFY1 of Racomitrium canescens [J]. Mol Plant Breed: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html. [沙伟, 卫杰, 张梅娟, 等, 2021. 砂藓干旱胁迫相关基因转录因子RcTIFY1基因的克隆及表达分析 [J]. 分子植物育种: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html]

    • UM TY, LEE HY, LEE S, et al. , 2018. Jasmonate ZIM-domain protein9 interacts with slender rice to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice [J]. Front Plant Sci, 9(1): 1866-1876.

    • VANHOLME B, GRUNEWALD W, BATEMAN A, et al. , 2007. The tify family previously know as ZIM [J]. Trends Plant Sci, 12(6): 239-244.

    • WANG HZ, LENG X, XU XM, et al. , 2020. Comprehensive analysis of the tify gene family and its expression profiles under phytohormone treatment and abiotic stresses in roots of Populus trichocarpa [J]. Forests, 11(3): 315.

    • WANG XC, FENG H, CHANG YX, et al. , 2020. Population sequencing enhances understanding of tea plant evolution [J]. Nat Commun, 11(1): 4447.

    • WEI CL, YANG H, WANG SB, et al. , 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proc Natl Acad Sci USA, 115(18): E4151-E4158.

    • WEN D, WANG MY, MI YL, et al. , 2020. Genome-wide identification and characterization of TIFY gene family in medicinal plant Cannabis sativa [J]. Chin J Exp Form, 26(24): 134-143. [温东, 王梦月, 米要磊, 等, 2020. 中药火麻仁基原植物大麻的TIFY基因家族鉴定及功能分析 [J]. 中国实验方剂学杂志, 26(24): 134-143. ]

    • WU Y, TAO L, YUAN HM, et al. , 2008. Jasmonic acid signaling mediated by JAZ protein [J]. Anhui Agric Sci, 36(16): 6811-6812. [吴莹, 陶雷, 袁红梅, 等, 2008. JAZ蛋白介导的茉莉酸信号传递[J]. 安徽农业科学, 36(16): 6811-6812. ]

    • XIE SF, CUI LC, LEI XL, et al. , 2019. The TIFY gene family in wheat and its progenitors: genome-wide identification, evolution and expression analysis [J]. Current Genom, 20(5): 371-388.

    • XU G, GUO C, SHAN H, et al. , 2012. Divergence of duplicate genes in exon-intron structure [J]. Proc Natl Acad Sci USA, 109(4): 1187-1192.

    • YAO XZ, CHEN MJ, ZHAO DG, et al. , 2020. Overexpression of the Sorghum bicolor K+ /Na+ transporter gene, SbSKC1, enhances salt tolerance in poplar (Populus tomentosa) [J]. Intl J Agric Biol, 24: 304-310.

    • YE HY, DU H, TANG N, et al. , 2009. Identification and expression profiling analysis of tify family genes involved in stress and phytohormone responses in rice [J]. Plant Mol Biol, 71(3): 291-305.

    • ZHANG H, XIAO C, WANG GY, et al. , 2020. Analysis of citrus TIFY gene structure characteristics and response to low temperature expression [J]. S Chin Fruit Tree, 49(2): 34-39. [张沪, 肖翠, 王贵元, 等, 2020. 柑桔TIFY基因结构特征及响应低温表达分析 [J]. 中国南方果树, 49(2): 34-39. ]

    • ZHANG L, YOU J, CHAN Z, 2015. Identification and characterization of TIFY family genes in Brachypodium distachyon [J]. J Plant Res, 128(6): 995-1005.

    • ZHANG YC, GAO M, SINGER SD, et al. , 2012. Genome-wide identification and analysis of the TIFY gene family in grape [J]. PLoS ONE, 7(9): e44465.

    • ZHAO CY, PAN XW, YU Y, et al. , 2020. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean [J]. Mol Breed New Strat Plant Impr, 40(3): 33.

    • ZHAO XX, XIE KL, ZHANG SM, et al. , 2019. Identification and analysis of TIFY gene family in switchgrass [J]. Acta Agr Sin, 27(5): 1126-1137. [赵晓晓, 谢坤良, 张舒梦, 等, 2019. 柳枝稷TIFY基因家族的鉴定与分析 [J]. 草地学报, 27(5): 1126-1137. ]

  • 参考文献

    • ALEXANDRA B, LAURENS P, WANG Z, et al. , 2018. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes [J]. Plant Physiol, 178: 327.

    • BAI Y, MENG Y, HUANG D, et al. , 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family [J]. Genomics, 98(2): 128-136.

    • BARI R, JONES JDG, 2009. Role of plant hormones in plant defence responses [J]. Plant Mol Biol, 69: 473-488.

    • CHERUIYOT EK, MUMERA LM, NG’ETICH WK, et al. , 2009. Fertilizer rates increase susceptibility of tea to water stress [J]. J Plant Nutr, 33(1): 115-129.

    • DONOFRIO C, COX A, DAVIES C, et al. , 2009. Induction of secondary metabolism in grape cell cultures by jasmonates [J]. Funct Plant Biol, 36(4): 323-338.

    • EBEL C, BENFEKI A, HANIN M, et al. , 2018. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance [J]. PLoS ONE, 13(7): e0200566.

    • HAKATA M, MURAMATSU M, NAKAMURA H, et al. , 2017. Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling [J]. J Agric Chem Soc Jpn, 81(5): 906-913.

    • HE X, KANG Y, LI WQ, et al. , 2020. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. [J]. BMC Genomics , 21(1): 736-748.

    • HU LZ, LI CQ, ZHANG WL, et al. , 2020. Genome-wide identification and phylogenetic analysis of the TIFY genes in common bean (Phaseolus vulgaris) [J]. Mol Plant Breed, 18(10): 3132-3140. [胡利宗, 李超琼, 张雯露, 等, 2020. 菜豆TIFY基因的全基因组鉴定与系统进化分析 [J]. 分子植物育种, 18(10): 3132-3140. ]

    • HU YR, JIANG LQ, WANG F, et al. , 2013. Jasmonate regulates the inducer of cbf expression-c-repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis [J]. Plant Cell, 25(8): 2907-2924.

    • KANG CHANG K, HANJ, LEE J, et al. , 2011. Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil [J]. Genes Genom, 33(3): 229-236.

    • LAN YC, HUANG B, WEI J, et al. , 2020. Identification and bioinformatics analysis of the expansin gene family of Physcomitrella patens [J]. Guihaia, 40 (6): 854-863. [蓝雨纯, 黄彬, 韦娇, 等, 2020. 小立碗藓扩展蛋白基因家族的鉴定与生物信息学分析 [J]. 广西植物, 40(6): 854-863. ]

    • LIU SC, JIN JQ, MA JQ, et al. , 2016. Transcriptomic analysis of tea plant responding to drought stress and recovery [J]. PLoS ONE, 11(1): e0147306.

    • LIU X, ZHAO CB, YANG LM, et al. , 2020. Genome-wide identification, expression profile of the TIFY Gene family in Brassica oleracea var. capitata, and their divergent response to various pathogen infections and phytohormone treatments [J]. Genes, 11(2): 127.

    • LU M, 2016. The management model and economic analysis of the development of China’s Tea industry [J]. Fujian J Tea, 38(9): 99-100. [芦梅, 2016. 中国茶叶产业发展的管理模式与经济学分析[J]. 福建茶叶, 38(9): 99-100. ]

    • LUO DL, BA LJ, CHEN JY, et al. , 2017. Characterization and expression analysis of banana MaTIFY1 transcription factor during fruit ripening [J]. Acta Hortic Sin, 44(1): 43-52. [罗冬兰, 巴良杰, 陈建业, 等, 2017. 香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析 [J]. 园艺学报, 44(1): 43-52. ]

    • SHIU SH, BLEECKER AB, 2003. Expression of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis [J]. Plant Physiol, 132(2): 530-543.

    • STASWICK PE, 2008. JAZing up jasmonate signaling [J]. Trends Plant Sci, 13 (2): 66-71.

    • SHA W, WEI J, ZHANG MJ, et al. , 2021. Cloning and expression analysis of the drought stress related transcription factor gene RcTIFY1 of Racomitrium canescens [J]. Mol Plant Breed: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html. [沙伟, 卫杰, 张梅娟, 等, 2021. 砂藓干旱胁迫相关基因转录因子RcTIFY1基因的克隆及表达分析 [J]. 分子植物育种: 1-11. [2021-05-12] https: //kns. cnki. net/kcms/detail/46. 1068. S. 20210512. 1115. 014. html]

    • UM TY, LEE HY, LEE S, et al. , 2018. Jasmonate ZIM-domain protein9 interacts with slender rice to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice [J]. Front Plant Sci, 9(1): 1866-1876.

    • VANHOLME B, GRUNEWALD W, BATEMAN A, et al. , 2007. The tify family previously know as ZIM [J]. Trends Plant Sci, 12(6): 239-244.

    • WANG HZ, LENG X, XU XM, et al. , 2020. Comprehensive analysis of the tify gene family and its expression profiles under phytohormone treatment and abiotic stresses in roots of Populus trichocarpa [J]. Forests, 11(3): 315.

    • WANG XC, FENG H, CHANG YX, et al. , 2020. Population sequencing enhances understanding of tea plant evolution [J]. Nat Commun, 11(1): 4447.

    • WEI CL, YANG H, WANG SB, et al. , 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proc Natl Acad Sci USA, 115(18): E4151-E4158.

    • WEN D, WANG MY, MI YL, et al. , 2020. Genome-wide identification and characterization of TIFY gene family in medicinal plant Cannabis sativa [J]. Chin J Exp Form, 26(24): 134-143. [温东, 王梦月, 米要磊, 等, 2020. 中药火麻仁基原植物大麻的TIFY基因家族鉴定及功能分析 [J]. 中国实验方剂学杂志, 26(24): 134-143. ]

    • WU Y, TAO L, YUAN HM, et al. , 2008. Jasmonic acid signaling mediated by JAZ protein [J]. Anhui Agric Sci, 36(16): 6811-6812. [吴莹, 陶雷, 袁红梅, 等, 2008. JAZ蛋白介导的茉莉酸信号传递[J]. 安徽农业科学, 36(16): 6811-6812. ]

    • XIE SF, CUI LC, LEI XL, et al. , 2019. The TIFY gene family in wheat and its progenitors: genome-wide identification, evolution and expression analysis [J]. Current Genom, 20(5): 371-388.

    • XU G, GUO C, SHAN H, et al. , 2012. Divergence of duplicate genes in exon-intron structure [J]. Proc Natl Acad Sci USA, 109(4): 1187-1192.

    • YAO XZ, CHEN MJ, ZHAO DG, et al. , 2020. Overexpression of the Sorghum bicolor K+ /Na+ transporter gene, SbSKC1, enhances salt tolerance in poplar (Populus tomentosa) [J]. Intl J Agric Biol, 24: 304-310.

    • YE HY, DU H, TANG N, et al. , 2009. Identification and expression profiling analysis of tify family genes involved in stress and phytohormone responses in rice [J]. Plant Mol Biol, 71(3): 291-305.

    • ZHANG H, XIAO C, WANG GY, et al. , 2020. Analysis of citrus TIFY gene structure characteristics and response to low temperature expression [J]. S Chin Fruit Tree, 49(2): 34-39. [张沪, 肖翠, 王贵元, 等, 2020. 柑桔TIFY基因结构特征及响应低温表达分析 [J]. 中国南方果树, 49(2): 34-39. ]

    • ZHANG L, YOU J, CHAN Z, 2015. Identification and characterization of TIFY family genes in Brachypodium distachyon [J]. J Plant Res, 128(6): 995-1005.

    • ZHANG YC, GAO M, SINGER SD, et al. , 2012. Genome-wide identification and analysis of the TIFY gene family in grape [J]. PLoS ONE, 7(9): e44465.

    • ZHAO CY, PAN XW, YU Y, et al. , 2020. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean [J]. Mol Breed New Strat Plant Impr, 40(3): 33.

    • ZHAO XX, XIE KL, ZHANG SM, et al. , 2019. Identification and analysis of TIFY gene family in switchgrass [J]. Acta Agr Sin, 27(5): 1126-1137. [赵晓晓, 谢坤良, 张舒梦, 等, 2019. 柳枝稷TIFY基因家族的鉴定与分析 [J]. 草地学报, 27(5): 1126-1137. ]