en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韦春强(1982-),博士,助理研究员,主要从事入侵植物生物学研究,(E-mail)weichun007@163.com。

通讯作者:

唐赛春,研究员,主要从事入侵植物生物学研究,(E-mail)tangs@gxib.cn。

中图分类号:Q948.1

文献标识码:A

文章编号:1000-3142(2022)12-2056-08

DOI:10.11931/guihaia.gxzw202109044

参考文献
ANNAPURNA C, SINGH JS, 2003. Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness [J]. Weed Res, 43(3): 190-198.
参考文献
ARMAS C, ORDIALES R, PUGNAIRE FI, 2004. Measuring plant interactions: a new comparative index [J]. Ecology, 85(10): 2682-2686.
参考文献
BALESTRI E, VALLERINI F, MENICAGLI V, et al. , 2018. Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte [J]. Sci Rep, 8(1): 16621.
参考文献
DAWSON W, ROHR RP, VAN KLEUNEN M, et al. , 2012. Alien plant species with a wider global distribution arebetter able to capitalize on increased resource availability [J]. New Phytol, 194(3): 859-867.
参考文献
DROSTE T, FLORY SL, CLAY K, 2010. Variation for phenotypic plasticity among populations of an invasive exotic grass [J]. Plant Ecol, 207(2): 297-306.
参考文献
GRIME JP, 1979. Plant strategies and vegetation processes [M]. New York: John Wiley & Sons.
参考文献
GUPTA S, NARAYAN R, 2012. Phenotypic plasticity of Chenopodium murale across contrasting habitat conditions in peri-urban areas in Indian dry tropics: Is it indicative of its invasiveness [J]. Plant Ecol, 213(3): 493-503.
参考文献
HE WM, MONTESINOS D, THELEN G, et al. , 2012. Growth and competitive effects of Centaurea stoebe populations in response to simulated nitrogen deposition [J]. PLoS ONE, 7(4): e36257.
参考文献
HUANG QQ, FAN ZW, LI XX, et al. , 2018. Effects of nutrient addition and clipping on biomass production of invasive and native annual Asteraceae plants [J]. Weed Res, 58(4): 318-326.
参考文献
HUANG QQ, SHEN YD, LI XX, et al. , 2016. Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments [J]. Ecol Res, 31(1): 145-152.
参考文献
HWANG BC, LAUENROTH WK, 2008. Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials [J]. Biol Inv, 10(5): 771-779.
参考文献
LAVERGNE S, MOLOFSKY J, 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass [J]. PNAS, 104(10): 3883-3888.
参考文献
LIAO ZY, ZHANG R, BARCLAY GF, et al. , 2013. Difference in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments [J]. PLoS ONE, 8(8): e71767.
参考文献
LIU G, YANG YB, ZHU ZH, 2018. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition [J]. Sci Rep, 8: 3136.
参考文献
LIU L, QUAN H, DONG BC, et al. , 2017. Nutrient enrichment alters impacts of Hydrocotyle vulgaris invasion on native plant communities [J]. Sci Rep, 6(1): 39468.
参考文献
LIU MC, WEI CQ, TANG SC, et al. , 2012. Bionomics of two invasive weeds, Bidens alba and B. pilosa , and their native congeners grown different nutrient levels [J]. J Biosafety, 21(1): 32-40. [刘明超, 韦春强, 唐赛春, 等, 2012. 不同土壤养分水平下2种外来鬼针草和近缘本地种的比较研究 [J]. 生物安全学报, 21(1): 32-40. ]
参考文献
LUO X, XU XY, ZHENG Y, et al. , 2019. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica [J]. Biol Inv, 21(8): 2679-2692.
参考文献
MA JS, 2013. The checklist of the Chinese invasive plants [M]. Beijing: Higher Education Press. [马金双, 2013. 中国入侵植物名录 [M]. 北京: 高等教育出版社. ]
参考文献
NACKLEY L, HOUGH SN, KIM SH, 2017. Competitive traits of the invasive grass Arundo donax are enhanced by carbon dioxide and nitrogen enrichment [J]. Weed Res, 57(2): 67-71.
参考文献
PAN YM, TANG SC, WEI CQ, et al. , 2016. Effects of global risks-nitrogen additions on growth and competitive relations among invasive and native congeneric species—Bidens frondosa [J]. Pol J Ecol, 64(4): 443-52.
参考文献
PAN YM, TANG SC, WEI CQ, et al. , 2017. Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners [J]. Weed Biol Manag, 17(1): 36-44.
参考文献
POWELL KI, CHASE JM, KNIGHT TM, 2011. A synthesis of plant invasion effects on biodiversity across spatial scales [J]. Am J Bot, 98(3): 539-548.
参考文献
POWER G, VILAS JS, 2020. Competition between the invasive Impatiens glandulifer and UK native species: the role of soil conditioning and pre-existing resident communities [J]. Biol Invasions, 22(4): 1527-1537.
参考文献
RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.
参考文献
TANG SC, WEI CQ, PAN YM, et al. , 2010. Reproductive adaptability of the invasive weed Parthenium hysterophorus L. under different nitrogen and phosphorus levels [J]. J Wuhan Bot Res, 28(2): 213-217. [唐赛春, 韦春强, 潘玉梅, 等, 2010. 入侵植物银胶菊对不同氮、磷水平的繁殖适应性 [J]. 武汉植物学研究, 28(2): 213-217. ]
参考文献
WAN LY, QI SS, XOU CB, et al. , 2019. Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils [J]. J Plant Ecol, 12(5): 846-856.
参考文献
WANG K, YANG J, CHEN JK, 2010. Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions [J]. Biodivers Sci, 18(6): 615-621. [王坤, 杨继, 陈家宽, 2010. 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究 [J]. 生物多样性, 18(6): 615-621. ]
参考文献
WANG ML, FENG YL, 2005. Effects of soil nitrogen levels on morphological, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata [J]. Acta Phytoecol Sin, 29(5): 697-705. [王满莲, 冯玉龙, 2005. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应 [J]. 植物生态学报, 29(5): 697-705. ]
参考文献
WANG Y, WANG WQ, WANG QK, et al. , 2021. Effects of soil nutrients on reproductive traits of invasive and native annual Asteraceae plants [J]. Biodivers Sci, 29(1): 1-9. [王亚, 王玮倩, 王钦克, 等, 2021. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响 [J]. 生物多样性, 29(1): 1-9. ]
参考文献
WEI CQ, TANG SC, PAN YM, et al. , 2016. Effects of nutrient on competition between invasive species Bidens frondosa and native congener B. tripartita [J]. J Trop Subtrop Bot, 24(6): 609-616. [韦春强, 唐赛春, 潘玉梅, 等, 2016. 养分对入侵植物大狼耙草和近缘本地植物狼耙草竞争的影响 [J]. 热带亚热带植物学报, 24(6): 609-616. ]
参考文献
WEI CQ, TANG SC, PAN YM, et al. , 2017. Plastic responses of invasive Bidens frondosa to water and nitrogen addition [J]. Nordic J Bot, 35(2): 232-239.
参考文献
YAN XH, ZENG JJ, ZHOU B, et al, 2012. Allelopathic potential of the extracts from alien invasive plant Bidens frondosa [J]. J Yangzhou Univ (Agric Life Sci Ed), 33(2): 88-94. [闫小红, 曾建军, 周兵, 等, 2012. 外来入侵植物大狼耙草提取物的化感潜力 [J]. 扬州大学学报: 农业与生命科学版, 33(2): 88-94. ]
参考文献
YAN XH, ZHOU B, YIN ZF, et al. 2016. Reproductive biological characteristics potentially contributed to invasiveness in an alien invasive plant Bidens frondosa [J]. Plant Spec Biol, 31(2): 107-116.
参考文献
ZHANG HJ, CHANG RY, GUO X, et al. , 2017. Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply [J]. Environ Exp Bot, 135: 118-125.
参考文献
ZHOU B, YAN XH, XIAO YA, et al. , 2012. Module biomass structure traits of the alien invasive Bidens frondosa population [J]. Guihaia, 32(5): 650-655. [周兵, 闫小红, 肖宜安, 等, 2012. 外来入侵植物大狼把草种群构件生物量结构研究 [J]. 广西植物, 32(5): 650-655. ]
参考文献
ZHOU CQ, TANG SC, PAN YM, et al. , 2015. Effects of light and temperature on germination of heteromorphic achenes of Bidens frondosa L. [J]. J Trop Subtrop Bot, 23(6): 662-668. [周超群, 唐赛春, 潘玉梅, 等, 2015. 光照和温度对入侵植物大狼耙草异型瘦果萌发的影响 [J]. 热带亚热带植物学报, 23(6): 662-668. ]
目录contents

    摘要

    为了探讨大狼耙草的入侵风险,该文通过同质种植园实验,研究了不同养分水平下大狼耙草河北、江苏、江西和广西4个入侵种群在单种和各种群与近缘本地植物金盏银盘混种时的生长和竞争响应。结果表明:(1) 单种时4个种群的株高、分枝数和总生物量在高养分下显著高于低养分下,繁殖比在低养分下显著高于高养分下(江苏种群除外);混种时4个种群各生长参数的竞争响应在高养分下小于低养分下的。(2) 各养分下,广西和江西种群的株高和总生物量显著高于河北种群,广西种群的分枝数最多[低、中和高养分下分别为(12±0.86)、(16.83±0.95)和(21.83±1.14)];河北种群的繁殖比在低养分 [(47.33±3.29)%]和高养分 [(25.74±2.82)%]下最高,且显著高于同养分下的广西种群 [低养分为 (30.92±1.78)%和高养分为 (19.77±1.22)%]。中养分下,河北种群总生物量的竞争响应(-0.51±0.04)显著大于广西种群(-0.35±0.06),繁殖生物量的竞争响应(-0.46±0.03)也显著大于广西种群(-0.28±0.07)。综上表明,高养分提高大狼耙草的生长和竞争能力,生长和竞争能力在种群间有差异,养分增加和入侵种群间基因流可能会潜在地提高大狼耙草的入侵风险,该研究结果有助于预测入侵植物的入侵风险。

    Abstract

    In order to explore the potential of Bidens frondosa to become invasive, we tested the growth and competitive response of B. frondosa by planting four introduced populations of B. frondosa alone and together with the native congener B. biternata under three nutrient levels. The results were as follows: (1) When grown alone under high nutrient, B. frondosa had significantly higher values for plant height, branch number and total biomass compared with those grown under low nutrient. The reproductive ratios of all the populations under low nutrient were significantly greater than those under high nutrient except for Jiangsu Population. When grown with four populations together, the competitive responses of the growth parameters of each population of B. frondosa under high nutrient were significantly lower than those under low nutrient, indicating that this invasive weed was suppressed less under high nutrient compared with that under low nutrient conditions. (2) Under all nutrient conditions, Guangxi and Jiangxi populations significantly grew higher and had a greater total biomass than Hebei Population. Guangxi Population had the highest number of branches among the four populations when grown at low, medium and high nutrients [(12±0.86), (16.83±0.95) and (21.83±1.14), respectively]. The reproduction ratios of Hebei Population grown under low and high nutrients [(47.33±3.29)% and (25.74±2.82)%, respectively] were significantly greater than those of Guangxi Population when grown under comparable conditions [(30.92±1.78)% and (19.77±1.22)%, respectively]. In addition, the competitive response of total biomass were significantly greater for Hebei Population (-0.51±0.04) than for Guangxi Population (-0.35±0.06) under medium nutrient. The competitive response of reproductive biomass of Hebei Population (-0.46±0.03) was also significantly greater than that of Guangxi Population (-0.28±0.07) under medium nutrient. Our results indicate that nutrient addition can enhance the growth and competitive ability of B. frondosa, there are variations in the growth and competitive response among the introduced populations, and increasing nutrient and gene flow among populations may enhance the potential risks of invasion by B. frondosa, the results will help to predict the invasion risk of alien plants.

    关键词

    大狼耙草入侵种群生长竞争响应养分

  • 由于人类活动,许多外来植物被引入到新的分布区,其中有些种类已成为入侵植物,与本地植物竞争,降低了本地植物多样性(Powell et al.,2011; Power &Vilas,2020)。了解外来植物的入侵性及其影响因素对于预测外来植物的入侵风险和管理外来入侵植物具有重要作用。人类活动如施肥、排污等使生境中的养分增加,影响入侵植物和本地植物的生长、繁殖和竞争(Zhang et al.,2017; Wan et al.,2019; 王亚等,2021),最终影响入侵植物是否成功入侵(Huang et al.,2018)。例如,土壤氮养分增加提高斑点矢车菊(Centauseastoebe)、粗毛牛膝菊(Galinsogaquadriradiata)和加拿大一枝黄花(Solidago canadensis)等对本地植物的竞争能力(He et al.,2012; Liu et al.,2018; Wan et al.,2019),促进其成功入侵。但是,也有研究发现土壤养分增加降低入侵植物香菇草(Hydrocotyle vulgaris)的竞争和提高本地群落的抗入侵性(Liu et al.,2017)。因此,了解养分增加对不同入侵植物生长和竞争的影响有助于预测入侵植物的入侵风险。

  • 目前,土壤养分增加对入侵植物的影响,大多集中于对入侵植物与本地植物之间生长和竞争的比较或入侵种群与原产地种群间的比较(He et al,2012; Liao et al.,2013; Wan et al,2019),较少关注不同入侵种群间是否有差异。不同入侵种群对环境的可塑性响应可能存在差异,一旦不同种群间发生基因流,会增加遗传多样性,使入侵植物进化出更高的可塑性,入侵更多样化的生境和群落(Richards et al.,2006; Lavergne &Molofsku,2007),提高入侵风险。入侵植物对本地植物的竞争能力在不同种群间也会不同(He et al.,2012)。了解不同种群间对环境变化的响应是否有差异,可为采取措施阻止入侵植物进化出更高的入侵性提供依据(Droste et al.,2010)。

  • 大狼耙草(Bidens frondosa)隶属菊科(Compositae),原产北美,近10多年在我国分布范围不断扩大,在河北、河南、安徽、北京、广东、广西等21个省区有分布(马金双,2013)。该入侵植物具有花序生物量分配较高(周兵等,2012)、化感作用强(闫小红等,2012)、适宜温度下异型瘦果萌发率高(周超群等,2015)、繁殖能力强(Yan et al.,2016)、竞争能力强(Pan et al.,2016)和表型可塑性较高(Wei et al.,2017)等入侵性相关特征。金盏银盘(B. biternata)为本地杂草,与大狼耙草同属,有时和大狼耙草伴生,二者常分布于耕地、弃耕地、路边和稻田边等人为干扰的具有不同养分的生境中(Pan et al.,2016)。近缘植物对资源的需求相似,它们之间往往竞争较大(Balestri et al.,2018)。目前,养分增加对大狼耙草入侵种群生长和竞争的影响以及入侵种群间对养分的响应是否有差异尚不清楚。

  • 本研究选择大狼耙草在我国比较典型的4个入侵种群即河北、江苏、江西和广西种群,设置各入侵种群单种和各入侵种群分别与同属本地植物金盏银盘混种,比较不同养分水平下各入侵种群的生长和竞争响应。拟探讨:(1)养分增加是否提高大狼耙草入侵种群的生长和竞争能力;(2)大狼耙草生长和竞争能力对养分的可塑性响应在入侵种群间是否有差异。本研究旨在为预测大狼耙草的入侵风险和管理提供依据。

  • 1 材料与方法

  • 1.1 研究地点与植物材料

  • 本实验于2013年,在广西壮族自治区中国科学院广西植物研究所实验场地进行(位于桂林市雁山区雁山镇,110°18′01.8″ E,25°04′49.6″ N,170 m a.s.l.)。该地属中亚热带季风气候,年平均气温17.8℃,最冷月1月平均温度5.8℃,最热月7月平均温度28℃; 年平均降水量1 949.5 mm。

  • 大狼耙草种子于2012年10月采自广西壮族自治区桂林市(110°28′53″ E,25°51′34″ N,390 m a.s.l.)、江西省吉安市(115°1′4″ E,27°5′33″ N,150 m a.s.l.)、江苏省吴江区(120°23′40″ E,30°56′34″ N,2 m a.s.l.)和河北省保定市(115°57′45″ E,38°56′28″ N,12 m a.s.l.),分别称作广西种群、江西种群、江苏种群和河北种群。这4个采集地沿纬度梯度,基本代表大狼耙草在我国从北到南的分布,用于竞争的近缘本地种金盏银盘的种子采自广西桂林市。

  • 1.2 方法

  • 2013年5月3日,将大狼耙草各个种群的种子以及本地种金盏银盘的种子分别播种于10个花盆(内径23 cm、深18 cm)内,一个半月后,株高约15 cm时,选择各种植物大小较一致的幼苗移栽到塑料花盆中。设置大狼耙草各种群单种和各种群分别与本地种金盏银盘混种2种种植方式。单种为每盆一株植物,混种为每盆两株植物(一株大狼耙草和一株金盏银盘)。生长18 d后,各植株均已长出新根,开始进行试验处理。

  • 所用养分为复合肥“施丰源”(硫酸钾型)(N∶P∶K=15∶15∶15),从市场上购买。本文设置高养分、中养分与低养分3个养分水平处理。参考Liao等(2013),高养分为每盆施加4 g复合肥; 中养分为每盆施加2 g复合肥,分两次施肥,间隔时间为10 d; 不施肥为低养分处理。试验处理过程中,每天浇足水,保证水分充足,促进其生长。每个种群每处理6个重复,共计:4个种群×2种种植方式×3个养分处理×6个重复=144盆。

  • 9月20日,在大狼耙草盛花期,测定各植物的株高和分枝数。植株分根、茎、叶和头状花序收获,分装标记后置于80℃下烘干至恒重,分别测其干重(g)。计算植株总生物量=根干重+茎干重+叶干重+花序干重、繁殖比=花序干重/总生物量。混种中大狼耙草的竞争能力用株高、分枝数、总生物量和繁殖生物量等参数对竞争的响应表示。各参数的竞争响应参照Armas等(2004)的计算方法,总生物量的竞争响应=(混种时的生物量-单种时的生物量)/(混种时的生物量+单种时的生物量),值介于-1和1之间,值越小,竞争响应越大,表示受到的抑制越大; 值越大,竞争响应越小,表示受到的抑制越小。

  • 1.3 数据统计分析方法

  • 所有统计和方差分析采用SPSS 18.0统计分析软件进行。同一种群不同养分间的生长和竞争响应差异以及相同养分水平下不同种群间生长和竞争响应的差异用One-way ANOVA分析,种群和养分及其交互作用对各生长和竞争响应参数的影响用Two-way ANOVA分析,处理间的差异显著水平为0.05。

  • 2 结果与分析

  • 2.1 大狼耙草不同入侵种群生长对养分的响应

  • 单种时,Two-way ANOVA分析表明,种群和养分均对各生长参数(株高、分枝数、总生物量和繁殖比)有显著的影响; 并且种群和养分交互对总生物量和繁殖比也有显著影响(表1)。

  • 各种群的株高、分枝和总生物量在高养分下显著高于低养分下(P<0.05)(图1: a-c)。在各养分条件下,广西和江西种群株高最高,江苏种群其次,河北种群最低(图1: a); 广西种群的分枝数最多[低、中和高养分下分别为(12±0.86)、(16.83±0.95)和(21.83±1.14)],且显著多于其余3 个种群在相同养分下的分枝数(P<0.05)(图1: b); 广西和江西种群的生物量显著高于河北种群,且在高养分下还显著高于江苏种群(P<0.05)(图1: c)。4个种群的繁殖比在各养分下均较高(低、中和高养分下分别为29.62%~47.33%、22.67%~25.71%和19.77%~25.74%)。除江苏种群外,广西、江西和河北种群的繁殖比在低养分下显著高于中养分和高养分下(P<0.05)(图1: d)。低养分下,河北种群的繁殖比 [(47.33±3.29)%]最高,且显著高于其余3个种群(P<0.05); 中养分下,4个种群的繁殖比无显著差异(P>0.05); 高养分下,河北种群的繁殖比 [(25.74±2.82)%]最高,显著高于广西种群 [(19.77±1.22)%](P<0.05)(图1: d)。

  • 表1 种群、养分及其交互作用对大狼耙草生长和竞争响应的影响(F-值)

  • Table1 Effects of population, nutrient and their interactions on the growth and competitive response of Bidens frondosa (F-value)

  • 注: *表示差异显著(*0.01<P<0.05,**0.001<P<0.01,***P<0.001)

  • Note: *indicates significant differences (*0.01<P<0.05, **0.001<P<0.01, ***P<0.001)

  • 2.2 大狼耙草不同入侵种群竞争对养分的响应

  • Two-way ANOVA分析表明,当与近缘本地种混种时,种群对株高和分枝数的竞争响应虽无显著影响,但对总生物量和繁殖生物量的竞争响应有显著影响; 而养分对所有参数的竞争响应均有显著影响(表1)。

  • 各种群间株高的竞争响应和分枝数的竞争响应无显著差异(P>0.05)(图2: a-b)。除了中养分下河北种群总生物量的竞争响应(-0.51±0.04)显著大于广西种群(-0.35±0.06)(P<0.05),以及繁殖生物量的竞争响应(-0.46±0.03)显著高于广西种群(-0.28±0.07)外(P<0.05),其余养分下各种群间总生物量和繁殖生物量的竞争响应无显著差异(P>0.05)(图2: c-d)。广西和江苏种群株高的竞争响应在高养分下显著小于低养分下(P<0.05),江西和河北种群株高的竞争响应在各养分条件下无显著差异(P>0.05)(图2: a)。广西种群分枝数的竞争响应在各养分条件下无显著差异(P>0.05),其余3个种群分枝数的竞争响应在高养分下显著小于低养分下(P<0.05)(图2: b)。4个种群总生物量和繁殖生物量的竞争响应在高养分下显著小于低养分下(P<0.05)(图2: c-d)。这说明高养分下大狼耙草4个种群受到的竞争抑制降低,高养分有利于大狼耙草的竞争。

  • 3 讨论与结论

  • 3.1 大狼耙草入侵种群生长和竞争对养分的响应

  • 养分的增加利于外来植物入侵(Huang et al.,2016; Nackley et al.,2017)。本研究发现,养分的增加提高了大狼耙草4个入侵种群的株高、分枝数和总生物量。这可能与大狼耙草具有较大的表型可塑性(Wei et a.,2017),能够在资源丰富的生境中最大化地提高适合度有关(Dawson et al.,2012)。并且,大狼耙草还具有较高的比叶面积、较大的净光合速率和相对生长速率等与资源捕获能力和利用效率相关的性状(Pan et al.,2017),可使其在优越的生境中快速生长,增加生物量积累,提高竞争能力。本研究结果与刘明超等(2012)对同属入侵植物三叶鬼针草(B. pilosa)和白花鬼针草(B. alba)的研究结果相似。

  • 株高、分枝数和总生物量代表植物的生长状况和竞争能力。入侵植物较大的株高和较多的分枝数可使其不但避免被遮阴,获得更多的光照,还可遮阴相邻植物,抑制相邻植物的生长(王满莲和冯玉龙,2005; Gupta &Narayan,2012)。并且,较高的植株具有繁殖优势,它们通常能够产生更多的种子(Annapunra &Singh,2003)。

  • 图1 养分对大狼耙草不同入侵种群生长的影响

  • Fig.1 Effects of nutrients on the growth of invasive populations of Bidens frondosa

  • 生物量是表征植物入侵性的重要参数之一(Hwang &Lauenroth 2008),具有较高生物量的植物常具有较强的繁殖能力以及较高的适合度(Droste et al.,2010)。外来植物如果能在某一类型的生境中产生较高的生物量,说明其在此生境中的入侵性较高(王坤等,2010)。在本研究中,大狼耙草4个入侵种群总生物量均表现为高养分下显著高于低养分下。这与刘明超等(2012)研究中三叶鬼针草和白花鬼针草的表现相同。说明高养分十分有利于包括大狼耙草在内的鬼针草属入侵植物的生物量积累。

  • 大狼耙草入侵种群在各养分下繁殖比均较高(19.77%~47.33%),与周兵等(2012)野外研究的结果相似,高于同科入侵植物银胶菊(Parthenium hysterophorus)的繁殖比(10.6%~21.6%)(唐赛春等,2010)。并且,大狼耙草的繁殖比在低养分下显著高于高养分下。说明大狼耙草不但对繁殖器官的投资大,还能在不利生境中增加繁殖比,确保产生足够多的瘦果。周超群等(2015)研究表明,大狼耙草的瘦果萌发率高,可达90%以上,导致该植物产生的幼苗数量多,植株密度大。较高的植株密度能够提高入侵植物在新的区域定居、扩散和入侵的可能性(Gupta &Narayan,2012)。

  • 在与近缘本地植物金盏银盘混种中,本研究发现,大狼耙草株高、分枝数、生物量和繁殖生物量的竞争响应均表现为高养分下小于低养分下,可见其在高养分下受到的竞争抑制降低,表明高养分有利于大狼耙草的竞争。这与大狼耙草具有较大的资源捕获能力和利用效率,以及在高养分下株高、分枝数和生物量等生长参数显著提高,从而在很大程度上提高其竞争能力有关。韦春强等(2016)发现,增加养分可提高大狼耙草对近缘本地植物狼耙草(B. tripartita)的竞争能力。这可能与大狼耙草具有较大的表型可塑性相关,使其能够在养分丰富的生境中提高生长,增强竞争。高养分也可提高入侵植物斑点矢车菊、粗毛牛膝菊和加拿大一枝黄花等的竞争能力(He et al.,2012; Liu et al.,2018; Wan et al.,2019)。

  • 图2 养分对大狼耙草不同入侵种群竞争响应的影响

  • Fig.2 Effects of nutrient on the competitive response of invasive populations of Bidens frondosa

  • 3.2 大狼耙草入侵种群间生长和竞争的差异

  • 在本研究中,各养分下,大狼耙草广西和江西种群株高和生物量最高,河北种群最低,广西种群的分枝数显著多于其余3个种群; 低养分下,河北种群的繁殖比显著高于其余3个种群; 高养分下,河北种群的繁殖比显著高于广西种群。此外,中养分下,河北种群总生物量的竞争响应和繁殖生物量的竞争响应显著大于广西种群。这些结果表明,大狼耙草生长和竞争对养分的可塑性响应在4个种群间有差异。这可能与各种群对入侵地产生了不同的快速适应性有关,也可能是各入侵种群间发生了遗传分化。入侵植物不同种群间对环境条件的可塑性响应有差异,可使入侵植物进化出更大的可塑性,入侵更多样化的生境和群落(Richards et al.,2006; Lavergne &Molofsku,2007)。柔枝莠竹(Microstegiumvimineum)在美国印第安纳州南部的入侵种群间对光照和水分的可塑性响应有差异,具有进化出更大入侵性的潜力(Droste et al.,2010)。Luo等(2019)发现,北美车前(Plantago virginica)不同入侵种群间对氮养分的可塑性响应不同。大狼耙草生长和竞争对养分的可塑性响应在入侵种群间有差异,如果入侵种群间发生基因流,会增加其遗传多样性,进而增强入侵种群的进化潜力,进化出更高的入侵性。

  • 综上所述,增加养分提高大狼耙草入侵种群的生长和竞争能力,高养分更利于大狼耙草的入侵。大狼耙草具有杂草类植物(ruderal)的特性,即表现为:常出现在养分丰饶的扰动生境,且具有较高的繁殖能力和生长率,在低养分生境中增加繁殖比,保障更多种子的产生(Grime,1979)。并且,种群间生长和竞争对养分的响应有差异,如果发生杂交,可能会进化出更高的入侵性。对大狼耙草的管理不但要密切关注干扰较大的养分较高的生境,还需要控制不同地区间的种群相互传播,以免发生基因流,进化出更高的入侵性。本文研究结果为预测大狼耙草的入侵风险和管理提供了重要依据。

  • 参考文献

    • ANNAPURNA C, SINGH JS, 2003. Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness [J]. Weed Res, 43(3): 190-198.

    • ARMAS C, ORDIALES R, PUGNAIRE FI, 2004. Measuring plant interactions: a new comparative index [J]. Ecology, 85(10): 2682-2686.

    • BALESTRI E, VALLERINI F, MENICAGLI V, et al. , 2018. Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte [J]. Sci Rep, 8(1): 16621.

    • DAWSON W, ROHR RP, VAN KLEUNEN M, et al. , 2012. Alien plant species with a wider global distribution arebetter able to capitalize on increased resource availability [J]. New Phytol, 194(3): 859-867.

    • DROSTE T, FLORY SL, CLAY K, 2010. Variation for phenotypic plasticity among populations of an invasive exotic grass [J]. Plant Ecol, 207(2): 297-306.

    • GRIME JP, 1979. Plant strategies and vegetation processes [M]. New York: John Wiley & Sons.

    • GUPTA S, NARAYAN R, 2012. Phenotypic plasticity of Chenopodium murale across contrasting habitat conditions in peri-urban areas in Indian dry tropics: Is it indicative of its invasiveness [J]. Plant Ecol, 213(3): 493-503.

    • HE WM, MONTESINOS D, THELEN G, et al. , 2012. Growth and competitive effects of Centaurea stoebe populations in response to simulated nitrogen deposition [J]. PLoS ONE, 7(4): e36257.

    • HUANG QQ, FAN ZW, LI XX, et al. , 2018. Effects of nutrient addition and clipping on biomass production of invasive and native annual Asteraceae plants [J]. Weed Res, 58(4): 318-326.

    • HUANG QQ, SHEN YD, LI XX, et al. , 2016. Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments [J]. Ecol Res, 31(1): 145-152.

    • HWANG BC, LAUENROTH WK, 2008. Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials [J]. Biol Inv, 10(5): 771-779.

    • LAVERGNE S, MOLOFSKY J, 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass [J]. PNAS, 104(10): 3883-3888.

    • LIAO ZY, ZHANG R, BARCLAY GF, et al. , 2013. Difference in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments [J]. PLoS ONE, 8(8): e71767.

    • LIU G, YANG YB, ZHU ZH, 2018. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition [J]. Sci Rep, 8: 3136.

    • LIU L, QUAN H, DONG BC, et al. , 2017. Nutrient enrichment alters impacts of Hydrocotyle vulgaris invasion on native plant communities [J]. Sci Rep, 6(1): 39468.

    • LIU MC, WEI CQ, TANG SC, et al. , 2012. Bionomics of two invasive weeds, Bidens alba and B. pilosa , and their native congeners grown different nutrient levels [J]. J Biosafety, 21(1): 32-40. [刘明超, 韦春强, 唐赛春, 等, 2012. 不同土壤养分水平下2种外来鬼针草和近缘本地种的比较研究 [J]. 生物安全学报, 21(1): 32-40. ]

    • LUO X, XU XY, ZHENG Y, et al. , 2019. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica [J]. Biol Inv, 21(8): 2679-2692.

    • MA JS, 2013. The checklist of the Chinese invasive plants [M]. Beijing: Higher Education Press. [马金双, 2013. 中国入侵植物名录 [M]. 北京: 高等教育出版社. ]

    • NACKLEY L, HOUGH SN, KIM SH, 2017. Competitive traits of the invasive grass Arundo donax are enhanced by carbon dioxide and nitrogen enrichment [J]. Weed Res, 57(2): 67-71.

    • PAN YM, TANG SC, WEI CQ, et al. , 2016. Effects of global risks-nitrogen additions on growth and competitive relations among invasive and native congeneric species—Bidens frondosa [J]. Pol J Ecol, 64(4): 443-52.

    • PAN YM, TANG SC, WEI CQ, et al. , 2017. Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners [J]. Weed Biol Manag, 17(1): 36-44.

    • POWELL KI, CHASE JM, KNIGHT TM, 2011. A synthesis of plant invasion effects on biodiversity across spatial scales [J]. Am J Bot, 98(3): 539-548.

    • POWER G, VILAS JS, 2020. Competition between the invasive Impatiens glandulifer and UK native species: the role of soil conditioning and pre-existing resident communities [J]. Biol Invasions, 22(4): 1527-1537.

    • RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.

    • TANG SC, WEI CQ, PAN YM, et al. , 2010. Reproductive adaptability of the invasive weed Parthenium hysterophorus L. under different nitrogen and phosphorus levels [J]. J Wuhan Bot Res, 28(2): 213-217. [唐赛春, 韦春强, 潘玉梅, 等, 2010. 入侵植物银胶菊对不同氮、磷水平的繁殖适应性 [J]. 武汉植物学研究, 28(2): 213-217. ]

    • WAN LY, QI SS, XOU CB, et al. , 2019. Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils [J]. J Plant Ecol, 12(5): 846-856.

    • WANG K, YANG J, CHEN JK, 2010. Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions [J]. Biodivers Sci, 18(6): 615-621. [王坤, 杨继, 陈家宽, 2010. 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究 [J]. 生物多样性, 18(6): 615-621. ]

    • WANG ML, FENG YL, 2005. Effects of soil nitrogen levels on morphological, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata [J]. Acta Phytoecol Sin, 29(5): 697-705. [王满莲, 冯玉龙, 2005. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应 [J]. 植物生态学报, 29(5): 697-705. ]

    • WANG Y, WANG WQ, WANG QK, et al. , 2021. Effects of soil nutrients on reproductive traits of invasive and native annual Asteraceae plants [J]. Biodivers Sci, 29(1): 1-9. [王亚, 王玮倩, 王钦克, 等, 2021. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响 [J]. 生物多样性, 29(1): 1-9. ]

    • WEI CQ, TANG SC, PAN YM, et al. , 2016. Effects of nutrient on competition between invasive species Bidens frondosa and native congener B. tripartita [J]. J Trop Subtrop Bot, 24(6): 609-616. [韦春强, 唐赛春, 潘玉梅, 等, 2016. 养分对入侵植物大狼耙草和近缘本地植物狼耙草竞争的影响 [J]. 热带亚热带植物学报, 24(6): 609-616. ]

    • WEI CQ, TANG SC, PAN YM, et al. , 2017. Plastic responses of invasive Bidens frondosa to water and nitrogen addition [J]. Nordic J Bot, 35(2): 232-239.

    • YAN XH, ZENG JJ, ZHOU B, et al, 2012. Allelopathic potential of the extracts from alien invasive plant Bidens frondosa [J]. J Yangzhou Univ (Agric Life Sci Ed), 33(2): 88-94. [闫小红, 曾建军, 周兵, 等, 2012. 外来入侵植物大狼耙草提取物的化感潜力 [J]. 扬州大学学报: 农业与生命科学版, 33(2): 88-94. ]

    • YAN XH, ZHOU B, YIN ZF, et al. 2016. Reproductive biological characteristics potentially contributed to invasiveness in an alien invasive plant Bidens frondosa [J]. Plant Spec Biol, 31(2): 107-116.

    • ZHANG HJ, CHANG RY, GUO X, et al. , 2017. Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply [J]. Environ Exp Bot, 135: 118-125.

    • ZHOU B, YAN XH, XIAO YA, et al. , 2012. Module biomass structure traits of the alien invasive Bidens frondosa population [J]. Guihaia, 32(5): 650-655. [周兵, 闫小红, 肖宜安, 等, 2012. 外来入侵植物大狼把草种群构件生物量结构研究 [J]. 广西植物, 32(5): 650-655. ]

    • ZHOU CQ, TANG SC, PAN YM, et al. , 2015. Effects of light and temperature on germination of heteromorphic achenes of Bidens frondosa L. [J]. J Trop Subtrop Bot, 23(6): 662-668. [周超群, 唐赛春, 潘玉梅, 等, 2015. 光照和温度对入侵植物大狼耙草异型瘦果萌发的影响 [J]. 热带亚热带植物学报, 23(6): 662-668. ]

  • 参考文献

    • ANNAPURNA C, SINGH JS, 2003. Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness [J]. Weed Res, 43(3): 190-198.

    • ARMAS C, ORDIALES R, PUGNAIRE FI, 2004. Measuring plant interactions: a new comparative index [J]. Ecology, 85(10): 2682-2686.

    • BALESTRI E, VALLERINI F, MENICAGLI V, et al. , 2018. Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte [J]. Sci Rep, 8(1): 16621.

    • DAWSON W, ROHR RP, VAN KLEUNEN M, et al. , 2012. Alien plant species with a wider global distribution arebetter able to capitalize on increased resource availability [J]. New Phytol, 194(3): 859-867.

    • DROSTE T, FLORY SL, CLAY K, 2010. Variation for phenotypic plasticity among populations of an invasive exotic grass [J]. Plant Ecol, 207(2): 297-306.

    • GRIME JP, 1979. Plant strategies and vegetation processes [M]. New York: John Wiley & Sons.

    • GUPTA S, NARAYAN R, 2012. Phenotypic plasticity of Chenopodium murale across contrasting habitat conditions in peri-urban areas in Indian dry tropics: Is it indicative of its invasiveness [J]. Plant Ecol, 213(3): 493-503.

    • HE WM, MONTESINOS D, THELEN G, et al. , 2012. Growth and competitive effects of Centaurea stoebe populations in response to simulated nitrogen deposition [J]. PLoS ONE, 7(4): e36257.

    • HUANG QQ, FAN ZW, LI XX, et al. , 2018. Effects of nutrient addition and clipping on biomass production of invasive and native annual Asteraceae plants [J]. Weed Res, 58(4): 318-326.

    • HUANG QQ, SHEN YD, LI XX, et al. , 2016. Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments [J]. Ecol Res, 31(1): 145-152.

    • HWANG BC, LAUENROTH WK, 2008. Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials [J]. Biol Inv, 10(5): 771-779.

    • LAVERGNE S, MOLOFSKY J, 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass [J]. PNAS, 104(10): 3883-3888.

    • LIAO ZY, ZHANG R, BARCLAY GF, et al. , 2013. Difference in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments [J]. PLoS ONE, 8(8): e71767.

    • LIU G, YANG YB, ZHU ZH, 2018. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition [J]. Sci Rep, 8: 3136.

    • LIU L, QUAN H, DONG BC, et al. , 2017. Nutrient enrichment alters impacts of Hydrocotyle vulgaris invasion on native plant communities [J]. Sci Rep, 6(1): 39468.

    • LIU MC, WEI CQ, TANG SC, et al. , 2012. Bionomics of two invasive weeds, Bidens alba and B. pilosa , and their native congeners grown different nutrient levels [J]. J Biosafety, 21(1): 32-40. [刘明超, 韦春强, 唐赛春, 等, 2012. 不同土壤养分水平下2种外来鬼针草和近缘本地种的比较研究 [J]. 生物安全学报, 21(1): 32-40. ]

    • LUO X, XU XY, ZHENG Y, et al. , 2019. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica [J]. Biol Inv, 21(8): 2679-2692.

    • MA JS, 2013. The checklist of the Chinese invasive plants [M]. Beijing: Higher Education Press. [马金双, 2013. 中国入侵植物名录 [M]. 北京: 高等教育出版社. ]

    • NACKLEY L, HOUGH SN, KIM SH, 2017. Competitive traits of the invasive grass Arundo donax are enhanced by carbon dioxide and nitrogen enrichment [J]. Weed Res, 57(2): 67-71.

    • PAN YM, TANG SC, WEI CQ, et al. , 2016. Effects of global risks-nitrogen additions on growth and competitive relations among invasive and native congeneric species—Bidens frondosa [J]. Pol J Ecol, 64(4): 443-52.

    • PAN YM, TANG SC, WEI CQ, et al. , 2017. Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners [J]. Weed Biol Manag, 17(1): 36-44.

    • POWELL KI, CHASE JM, KNIGHT TM, 2011. A synthesis of plant invasion effects on biodiversity across spatial scales [J]. Am J Bot, 98(3): 539-548.

    • POWER G, VILAS JS, 2020. Competition between the invasive Impatiens glandulifer and UK native species: the role of soil conditioning and pre-existing resident communities [J]. Biol Invasions, 22(4): 1527-1537.

    • RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.

    • TANG SC, WEI CQ, PAN YM, et al. , 2010. Reproductive adaptability of the invasive weed Parthenium hysterophorus L. under different nitrogen and phosphorus levels [J]. J Wuhan Bot Res, 28(2): 213-217. [唐赛春, 韦春强, 潘玉梅, 等, 2010. 入侵植物银胶菊对不同氮、磷水平的繁殖适应性 [J]. 武汉植物学研究, 28(2): 213-217. ]

    • WAN LY, QI SS, XOU CB, et al. , 2019. Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils [J]. J Plant Ecol, 12(5): 846-856.

    • WANG K, YANG J, CHEN JK, 2010. Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions [J]. Biodivers Sci, 18(6): 615-621. [王坤, 杨继, 陈家宽, 2010. 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究 [J]. 生物多样性, 18(6): 615-621. ]

    • WANG ML, FENG YL, 2005. Effects of soil nitrogen levels on morphological, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata [J]. Acta Phytoecol Sin, 29(5): 697-705. [王满莲, 冯玉龙, 2005. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应 [J]. 植物生态学报, 29(5): 697-705. ]

    • WANG Y, WANG WQ, WANG QK, et al. , 2021. Effects of soil nutrients on reproductive traits of invasive and native annual Asteraceae plants [J]. Biodivers Sci, 29(1): 1-9. [王亚, 王玮倩, 王钦克, 等, 2021. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响 [J]. 生物多样性, 29(1): 1-9. ]

    • WEI CQ, TANG SC, PAN YM, et al. , 2016. Effects of nutrient on competition between invasive species Bidens frondosa and native congener B. tripartita [J]. J Trop Subtrop Bot, 24(6): 609-616. [韦春强, 唐赛春, 潘玉梅, 等, 2016. 养分对入侵植物大狼耙草和近缘本地植物狼耙草竞争的影响 [J]. 热带亚热带植物学报, 24(6): 609-616. ]

    • WEI CQ, TANG SC, PAN YM, et al. , 2017. Plastic responses of invasive Bidens frondosa to water and nitrogen addition [J]. Nordic J Bot, 35(2): 232-239.

    • YAN XH, ZENG JJ, ZHOU B, et al, 2012. Allelopathic potential of the extracts from alien invasive plant Bidens frondosa [J]. J Yangzhou Univ (Agric Life Sci Ed), 33(2): 88-94. [闫小红, 曾建军, 周兵, 等, 2012. 外来入侵植物大狼耙草提取物的化感潜力 [J]. 扬州大学学报: 农业与生命科学版, 33(2): 88-94. ]

    • YAN XH, ZHOU B, YIN ZF, et al. 2016. Reproductive biological characteristics potentially contributed to invasiveness in an alien invasive plant Bidens frondosa [J]. Plant Spec Biol, 31(2): 107-116.

    • ZHANG HJ, CHANG RY, GUO X, et al. , 2017. Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply [J]. Environ Exp Bot, 135: 118-125.

    • ZHOU B, YAN XH, XIAO YA, et al. , 2012. Module biomass structure traits of the alien invasive Bidens frondosa population [J]. Guihaia, 32(5): 650-655. [周兵, 闫小红, 肖宜安, 等, 2012. 外来入侵植物大狼把草种群构件生物量结构研究 [J]. 广西植物, 32(5): 650-655. ]

    • ZHOU CQ, TANG SC, PAN YM, et al. , 2015. Effects of light and temperature on germination of heteromorphic achenes of Bidens frondosa L. [J]. J Trop Subtrop Bot, 23(6): 662-668. [周超群, 唐赛春, 潘玉梅, 等, 2015. 光照和温度对入侵植物大狼耙草异型瘦果萌发的影响 [J]. 热带亚热带植物学报, 23(6): 662-668. ]