en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖健(1997-),硕士,研究方向为农艺与种业,(E-mail)1318513279@qq.com。

通讯作者:

屈达才,博士,教授,主要从事蚕学研究,(E-mail)dacaiqu@gxu.edu.cn。

中图分类号:Q945.8

文献标识码:A

文章编号:1000-3142(2022)12-2099-10

DOI:10.11931/guihaia.gxzw202109069

参考文献
ANTHONY MA, FREYS D, STINSONT KA, 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion [J]. Ecosphere, 8(9): 1-12.
参考文献
BAI LY, FAN XD, ZHOU ZY, et al. , 2016. Polyclonal antibody preparation and detection of endoglucanase as a rapid detection target against Ralstonia solanacearum [J]. Acta Sericol Sin, 2016, 42(2): 203-209. [白利叶, 范晓东, 周泽扬, 等, 2016. 用于青枯劳尔氏菌快速检测的靶标内切葡聚糖酶抗体制备与检测试验 [J]. 蚕业科学, 42(2): 203-209. ]
参考文献
BAKKER PAHM, DOORNBOS RF, ZAMIOUDIS C, et al. , 2013. Induced systemic resistance and the rhizosphere microbiome [J]. Plant Pathol J, 29(2): 136-143.
参考文献
BONILLA N, GUTIERREZ-BARRANQUERO JA, VICENTE AD, et al. , 2012. Enhancing soil quality and plant health through suppressive organic amendments [J]. Diversity, 4(4): 475-491.
参考文献
COMPANT S, SAMAD A, FAIST H, et al. , 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application [J]. J Adv Res, 19: 29-37.
参考文献
DONG XW, 2011. Screening and identification of antagonistic fungi against Ralstonia solanacearum and research on the active products [D]. Yangzhou: Yangzhou University. [董夏伟, 2011. 烟草青枯病拮抗真菌的筛选、鉴定及活性产物研究 [D]. 扬州: 扬州大学. ]
参考文献
DONG ZX, YU C, DENG W, et al. , 2019. Research progress on the occurrence and control of mulberry bacterial wilt [J]. N Sericul, 40(4): 1-7. [董朝霞, 于翠, 邓文, 等, 2019. 桑树青枯病的发生与防治研究进展 [J]. 北方蚕业, 40(4): 1-7. ]
参考文献
FU YJ, ZHANG JL, HOU XQ, 2019. Comparative analysis of fungi diversity in rhizospheric and non-rhizospheric soil from Cypripedium macranthum estimated via high-throughput sequencing [J]. Acta Agric Boreal-Occident Sin, 28(2): 253-259. [付亚娟, 张江丽, 侯晓强, 2019. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析 [J]. 西北农业学报, 28(2): 253-259. ]
参考文献
GAO Y, NING Q, YANG YZ, et al. , 2021. Endophytic Streptomyces hygroscopicus OsiSh-2-mediated balancing between growth and disease resistance in host rice [J]. mBio, 12(4): e0156621.
参考文献
GONG YL, BI YL, HU JJ, et al. , 2020. Effect of inoculation with AM fungi on maize growth and hyperspectral estimation of total nitrogen content in maize leaves [J]. Environ Eng, 38(5): 210-214. [龚云丽, 毕银丽, 胡晶晶, 等, 2020. 接种AM真菌对玉米生长的影响及叶片全氮含量的高光谱估测 [J]. 环境工程, 38(5): 210-214. ]
参考文献
IGIEHON NO, BABALOLA OO, 2017. Biofertilizers and sustainabl agriculture: exploring arbuscular mycorrhizal fungi [J]. Appl Microbiol Biotechnol, 101(12): 4871-4881.
参考文献
KULMATISKI A, BEARD KH, STEVENS JR, et al. , 2008. Plant-soil feedbacks: a meta-analytical review [J]. Ecol Lett, 11(9): 980-992.
参考文献
LI QQ, LIN W, CHEN YN, et al. , 1999. Screening of antagonistic fungi against soil-borne diseases [J]. J SW Agric Univ, 12(3): 81-84. [黎起秦, 林纬, 陈永宁, 等, 1999. 植物土传病害拮抗真菌的筛选 [J]. 西南农业学报, 12(3): 81-84. ]
参考文献
LIN CY, LI XL, ZHANG YX, et al. , 2021. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone [J]. Environ Sci, 42(8): 3971-3984. [林春英, 李希来, 张玉欣, 等, 2021. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应 [J]. 环境科学, 42(8): 3971-3984. ]
参考文献
LIU XL, 2014. Influence of arbuscular mycorrhizal fungi on the growth of tobacco and tobacco bacterial wilt [D]. Chongqing: Southwest University. [刘先良, 2014. 接种丛枝菌根真菌对烟草生长及烟草青枯病的影响 [D]. 重庆: 西南大学. ]
参考文献
MA SL, MA CX, XU PX, et al. , 2019. Effects of long-term monocropping of Lycium barbarum L. on function and composition of fungal community in rhizosphere of replanted Lycium barbarum L. [J]. Acta Pedol Sin, 56(6): 1493-1503. [马少兰, 马彩霞, 徐鹏鑫, 等, 2019. 再植枸杞根际真菌群落对长期连作的响应研究 [J]. 土壤学报, 56(6): 1493-1503. ]
参考文献
MENG PP, FENG H, CHEN W, et al. , 2021. Community structure and diversity of root-associated fungi of Catalpa bungei seedlings and grafted seedlings [J]. Mycosystema, 40(8): 1965-1979. [蒙盼盼, 冯欢, 陈伟, 等, 2021. 楸树实生苗和嫁接苗根相关真菌群落结构和多样性 [J]. 菌物学报, 40(8): 1965-1979. ]
参考文献
NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]
参考文献
SANTHANAM R, LUU VT, WEINHOLD A, et al. , 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping [J]. Proc Natl Acad Sci USA, 112(36): E5013-E5020.
参考文献
SUN Q, WU HL, CHEN B, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]
参考文献
TU NN, WU HZ, LOU DZ, et al. , 2021. Diversity of fungi communities in rhizosphere soil of resistant and susceptible mulberry against bacterial wilt in Hainan [J]. Chin J Trop Crops, 42(12): 3671-3677. [涂娜娜, 武华周, 娄德钊, 等, 2021. 海南青枯病抗、感桑品种根际土壤真菌群落多样性分析 [J]. 热带作物学报, 42(12): 3671-3677. ]
参考文献
WANG RH, ZHANG QF, ZHOU BL, et al. , 2007. Analysis on the interaction between root exudates and rhizosphere microbes [J]. Chin J Soil Sci, 38(1): 167-172. [王茹华, 张启发, 周宝利, 等, 2007. 浅析植物根分泌物与根际微生物的相互作用关系 [J]. 土壤通报, 38(1): 167-172. ]
参考文献
XIAN J, REN KY, WU SY, et al. , 2020. Characteristics of soil biological properties and bacterial diversity in different yields of Illicium verum plantations [J]. J SW Agric Univ, 33(12): 2872-2878. [肖健, 任奎瑜, 伍思宇, 等, 2020. 不同产量八角林土壤的生物学性状与细菌多样性特征 [J]. 西南农业学报, 33(12): 2872-2878. ]
参考文献
XIAO J, HUANG XD, LIN GY, et al. , 2021. Comparison on soil biological properties and bacterial community structures in rhizospheres between sensitive and insensitive mulberry varieties to bacterial wilt [J]. Acta Sericol Sin, 47(2): 138-146. [肖健, 黄小丹, 林刚云, 等, 2021. 青枯病易感和钝感桑树根际土壤生物学性状及细菌群落结构比较 [J]. 蚕业科学, 47(2): 138-146. ]
参考文献
XU HC, YOU LH, YU JL, et al. , 2021. Effects of different soil management patterns on soil fungal community composition in Castanea henryiorchard [J/OL]. J Fruit Sci: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. [徐惠昌, 尤龙辉, 余锦林, 等, 2021. 不同土壤管理模式对锥栗园土壤真菌群组成的影响 [J/OL]. 果树学报: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. ]
参考文献
XU QZ, SUN MD, LI F, et al. , 2017. Separation and diversity analysis of endophytic fungi from Lycium barbarum L. in Ningxia [J] N Hortic, (10): 103-109. [徐全智, 孙牧笛, 李帆, 等, 2017. 宁夏枸杞内生真菌的分离及多样性分析 [J]. 北方园艺, (10): 103-109. ]
参考文献
YANG S, YANG T, LIN B, et al. , 2018. Isolation and evaluation of two phosphate-dissolving fungi [J]. Acta Microbiol Sin, 58(2): 264-273. [杨顺, 杨婷, 林斌, 等, 2018. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价 [J]. 微生物学报, 58(2): 264-273. ]
参考文献
YONEYAMA K, 2019. How do Strigolactones ameliorate nutrient deficiencies in plants? [J]. CSH Perspect Biol, 11: a034686.
参考文献
ZHANG S, 2007. Selection of microorganisms resistant to wilt disease of tobacco and research on properties of antibionts [D]. Chongqing: Southwest University. [张深, 2007. 烟草青枯病拮抗菌的筛选及抗菌物质的研究 [D]. 重庆: 西南大学. ]
目录contents

    摘要

    为研究青枯病易感和钝感桑树品种植株根际土壤真菌群落组成,该研究以ITS1F和ITS2R为引物,基于高通量测序技术对桑树青枯病易感品种(台湾长果桑,SM)和桑树青枯病钝感品种(桂桑12号,IM)植株根际土壤真菌群落结构进行分析。结果表明:(1)两个品种间指示真菌丰富度的ACE、Chao1指数及表征多样性的Shannon指数无显著差异,门分类水平,被孢霉门(Mortierellomycota)和球囊菌门(Glomeromycota)是青枯病钝感桑树品种植株根际土壤中特有的优势真菌门;而属分类水平,Apiotrichum、地丝菌属(Geotrichum)、足放线病菌属(Scedosporium)和腐质霉属(Humicola)等是青枯病易感桑树品种植株根际土壤中富集的特有优势真菌属。(2)青枯病易感桑树品种植株根际土壤中,缺失了被孢霉门、球囊菌门真菌,以及被孢霉属(Mortierella)、镰刀菌属(Fusarium)、曲霉菌属(Aspergillus)和毛壳菌属(Chaetomium)等具有生防功能的优势真菌门属,可能是其易感青枯病的重要原因。(3)根据真菌群落对同类环境资源的利用途径进行功能预测发现,青枯病易感桑树品种根际土壤中,富集了相对较多的病理营养型和腐生营养型真菌;而青枯病钝感桑树品种根际土壤中,富集了相对丰富的共生营养型真菌。(4)特有真菌数量更为丰富的土壤真菌OTU分类水平,可能是青枯病钝感桑树品种田间表现出更强抗性的重要原因。可见,在青枯病钝感桑树品种植株根际土壤中,富集的被孢霉属、镰刀菌属、曲霉菌属和毛壳菌属等优势特异真菌属,具有作为拮抗桑树青枯病备选菌属的潜力。

    Abstract

    To reveal the resistant mechanism of fungal community structures in rhizosphere soil of sensitive and insensitive mulberries to bacterial wilt. Based on high-throughput sequencing technology, using ITS1F and ITS2R as primers, fungal community structures in rhizosphere soil between sensitive mulberry (Taiwan Morus macroura) and insensitive mulberry (Guisang 12) to bacterial wilt were analyzed. The results were as follows : (1) Although the indexes of soil fungal richness and diversity, such as ACE, Chao1 and Shannon were not significantly different between sensitive and insensitive mulberry varieties, but at phylum level, Mortierellomycota and Glomeromycota were the unique soil dominant fungi in rhizosphere soil of sensitive mulberry variety to bacterial wilt. At genus level, in comparison to the insensitive mulberry variety to bacterial wilt, Apiotrichum, Geotrichum, Scedosporium and Humicola were the special soil dominant fungi in rhizosphere soil of sensitive mulberry variety to bacterial wilt. (2) Compared to the insensitive mulberry variety, some soil fungal phyla and genera, such as Glomeromycota and Mortierellomycota, Mortierella, Fusarium, Aspergillus and Chaetomium were all lost in rhizosphere soil of sensitive mulberry variety to bacterial wilt. It suggests that higher abundance and diversity of soil fungal community structure in rhizosphere soil of insensitive mulberry variety to bacterial wilt were the important reasons for its higher resistance to bacterial wilt. (3) Based on the functional prediction according to the utilization pathways of fungal communities under similar environmental resources, higher abundance of pathotrophic and saprotrophic fungi enriched in rhizosphere soil of bacterial wilt susceptible mulberry varieties; On the contrary, higher abundance of symbiotrophic fungi enriched in rhizosphere soil of bacterial wilt resistant mulberry varieties. (4) Higher abundant soil unique fungi at OTU taxonomic level in rhizosphere of bacterial wilt resistant mulberry variety maybe can be considered as the important reason for its higher bacterial wilt resistant ability. The results suggest that Mortierella, Fusarium, Aspergillus and Chaetomium can be considered as the candidate antagonistic fungi for bio-controlling bacterial wilt in the rhizosphere soil of insensitve mulberry varieties to bacterial wilt.

  • 桑青枯病(Mulberry bacterial)是由青枯劳尔氏菌(Ralstonia solanacearum)引起的一种毁灭性土传病害,会对桑蚕生产产生毁灭性危害(白利叶等,2016)。广西壮族自治区是我国重点蚕区,桑园面积占全国桑园总面积30%以上。近年来,桑青枯病在广西全区范围内蔓延较快,局部桑园发病严重,并出现桑园缺株和面积骤减等现象,已经严重制约广西桑蚕产业发展(肖健等,2021)。

  • 在农业生产中,为了减少各种病害带来的重大损失,目前常用的经济且环保的方法是选育作物抗病品种或利用抗病基因增加作物抗病性。但是,植物防御病害能力与其正常生长发育是一对矛盾体,为了提高其抗病害能力,植物通常会以牺牲自己部分生长发育为代价,将更多的能量转移到防御机制上(Gao et al.,2021)。因此,平衡植物生长和防御之间的矛盾是实现作物抗病增产的关键,探究其调控机制亦成为当前研究的热点和难点。Yoneyama(2019)研究发现,植物可以通过与微生物建立共生关系来获取营养,以克服营养限制的困难。植物从微生物中获取营养,反过来又向微生物提供碳水化合物。同时,为了调节共生关系,植物会产生和释放化学信号。Compant等(2019)研究也表明,植物会通过招募有益的微生物来改善植物的生长、健康和抗压能力。

  • 根际-土壤之间的相互反馈作用被认为是植物群落动态与营养循环的主要驱动力(Kulmatiski et al.,2008)。根际土壤微生物既可通过养分竞争、拮抗作用和诱导系统抗性等机制抑制土壤中病原菌防止病害的发生,促进植物的生长发育(Bonilla et al.,2012; Bakker et al.,2013),也可通过积累大量的病原菌导致植株的感染死亡(Santhanam et al.,2015)。研究表明,众多土传病害的发生与微生物有非常密切的关系。王茹华等(2007)研究发现,植物对土传病害表现出的抗性与根际真菌有密切关系; 刘先良(2014)和董朝霞等(2019)研究发现,接种丛枝菌根真菌能提高植株对青枯病的抗性并能促进植株生长; 龚云丽等(2020)研究发现,丛植菌根真菌会抑制青枯雷尔氏菌引起的姜瘟病; 张深(2007)通过平板拮抗实验从烟草中筛选出15个对青枯病有抑制作用的菌株,其中分泌抗菌活性物质最强的2株均为真菌菌株; 董夏伟(2011)从59株真菌中分离出的烟曲霉(Aspergillus fumigatus)和浅黄新萨托菌(Neosartoryaaureola)对烟草青枯病菌有较好抑制作用; 黎起秦等(1999)筛选到5株经鉴定属于康氏木霉菌的真菌,它们对西瓜枯萎病、番茄青枯病有抑制活性,并且在人工接种条件下仍有防效。

  • 本课题组基于长期的田间调查发现,在本校桑园教学基地中,台湾长果桑品种极易受青枯病危害且普遍存在; 同一块桑园,与青枯病易感桑树品种相邻的桂桑12号未曾发现过青枯病易感症状。青枯病钝感品种是否通过招募有益的微生物来提高抗性和强化根际微环境生防能力,其不易感染青枯病的原因是否与其根际特有微生物的富集有关等问题均有待研究。因此,本研究以青枯病易感桑树品种(台湾长果桑)和钝感桑树品种(桂桑12号)为对象,基于高通量测序技术,比较2个桑树青枯病抗性不同品种植株根际土壤真菌群落结构特征,旨在探究青枯病易感桑树品种易感青枯病的生态机制,为筛选青枯病的拮抗微生物以及构建生态防控桑树青枯病技术体系提供理论依据和技术支撑。

  • 1 材料与方法

  • 1.1 试验地概况

  • 广西壮族自治区南宁市广西大学农学院教学实习基地(108°17′14″ E、22°51′17″ N),土壤类型为赤红壤,土壤pH 5.79,含有机质6.75 g·kg-1,全氮0.84 g·kg-1,全磷0.53 g·kg-1,全钾14.54 g·kg-1,碱解氮57.45 mg·kg-1,速效磷3.39 mg·kg-1,速效钾81.77 mg·kg-1。当地年平均气温21.7℃,属亚热带季风气候,阳光充足,雨量充沛,年均降雨量达1 600 mm。

  • 1.2 样品采集

  • 2020年6月,于广西大学农学院教学实验桑园随机采集青枯病易感(台湾长果桑,6 a,SM)和钝感(桂桑12号,6 a,IM)品种植株根际土壤样品。采用五点取样法,随机选取青枯病易感桑树品种和钝感桑树品种各3株,以每株桑树为中心,直径60 cm左右,挖取植株地下10~60 cm根系,抖落根系上的大块土壤后,收集附着在根系表面的土壤于样品袋中,共6个土样,放入冰盒带回实验室,放入-80℃冰箱中保存。干冰保存送至测序公司提取DNA,进行高通量测序。

  • 1.3 土壤真菌多样性分析

  • 土壤总DNA抽提根据Fast DNA® SPIN Kit for Soil 试剂盒(MP Biomedicals,U.S.)操作说明进行,DNA浓度和纯度使用NanoDrop 2000分光光度计(Thermo Fisher Scientific,U.S.)进行检测。利用1%琼脂糖凝胶电泳检测DNA提取质量,并以提取的土壤微生物DNA为模板,选用ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS2R(5′-GCTGCGTTCTTCATCGATGC-3′)为引物对真菌ITS区进行PCR扩增。常规方法回收PCR产物,并进行纯化、检测定量。

  • 将同一样本的PCR产物混合后使用2%琼脂糖凝胶回收PCR产物,利用AxyPrep DNA Gel Extraction Kit(Axygen Biosciences,Union City,CA,USA)进行回收产物纯化,2%琼脂糖凝胶电泳检测,并用QuantusTM Fluorometer(Promega,USA)对回收产物进行检测定量。基于Illumina MiSeq平台(Illumina,SanDiego,USA)标准操作规程,将纯化后的扩增片段构建文库。利用Illumina公司的Miseq PE300平台进行测序(上海美吉生物医药科技有限公司)。

  • 原始测序序列使用Trimmomatic软件进行质控,使用FLASH软件进行拼接,设置50 bp的窗口,去除质控后长度低于50 bp的序列,根据重叠碱基overlap将两端序列进行拼接,根据序列首尾两端的barcode和引物将序列拆分至每个样本,使用UPARSE(version 7.1 http://drive5.com/uparse/)软件根据97%的相似度对序列进行OTU聚类并剔除嵌合体,生成OTU表格,利用RDP classifier(http://rdp.cme.msu.edu/)对每条序列进行物种分类注释,比对Silva数据库,设置比对阈值为70%。获得分类学信息和各个样本在各分类水平上的群落组成,用图形进行可视化表示,使用Usearch和Mothur软件分别进行OTU丰度和Alpha多样性计算,得到样品物种信息。

  • 1.4 数据统计分析

  • 利用Microsoft Excel2019软件进行数据计算,用IBM SPSS Statistics 21软件进行方差分析,使用独立样本t检验进行显著性检验(P<0.05),并利用上海美吉生物医药科技有限公司的I-sanger云数据分析平台进行在线数据分析。平均数据以“平均数±标准差”表示。

  • 2 结果与分析

  • 2.1 青枯病不同抗性桑树品种植株根际土壤真菌Alpha多样性分析

  • 由表1可知,青枯病易感桑树品种植株根际土壤中,指示真菌丰富度的ACE指数和Chao1指数与钝感桑树品种植株根际土壤之间并不存在显著差异; 指示真菌多样性的Shannon指数在青枯病不同抗性桑树品种之间亦无显著差异。这表明相同非胁迫条件下,青枯病易感和钝感桑树品种植株根际土壤的真菌多样性与丰富度并不存在显著差异。

  • 表1 青枯病易感和钝感桑树品种植株根际土壤真菌群落Alpha多样性分析

  • Table1 Analysis of Alpha diversity of fungi community in rhizosphere soil between sensitive and insensitive mulberry varieties to bacterial wilt

  • 注: 表中数据为平均值±标准差; 数据后不同小写字母表示青枯病易感和钝感桑树品种之间差异显著(P<0.05)。

  • Note: Data in the table are x-±s; values followed by different small letters mean significant differences between sensitive and insensitive mulberry varieties to bacterial wilt (P<0.05) .

  • 2.2 真菌门分类水平组成

  • 门分类水平,青枯病易感(SM)和钝感(IM)桑树品种植株根际土壤中,丰度占比大于1%的优势真菌门分类数量及丰度占比如图1所示。青枯病易感和钝感桑树品种植株根际土壤中,丰度占比大于1%的优势真菌门分类数量分别为3个和5个。其中,青枯病易感桑树品种植株根际土壤中,优势真菌门分类水平丰度占比大小顺序分别为子囊菌门(Ascomycota,89.45%)、担子菌门(Basidiomycota,6.42%)、unclassified_k__Fungi(2.61%)和其他(others,0.64%)门类; 钝感桑树品种植株根际土壤中,优势真菌门分类组成丰度占比及大小排序均发生变化,丰度占比大小分别为子囊菌门(Ascomycota,72.89%)、担子菌门(Basidiomycota,14.61%)、unclassified_k__Fungi(6.66%)、被孢霉门(Mortierellomycota,2.75%)、球囊菌门(Glomeromycota,1.20%)和其他(others,1.89%)门类。被孢霉门和球囊菌门是青枯病钝感桑树品种植株根际土壤中特有的优势真菌门类。

  • 2.3 真菌属分类水平组成

  • 属分类水平,青枯病易感(SM)和钝感(IM)桑树品种植株根际土壤中,丰度占比大于1%的优势真菌属分类数量及丰度占比如图2所示。其中,青枯病易感和钝感桑树品种植株根际土壤中,丰度占比大于1%的优势真菌属分类数量分别为10个和24个。青枯病易感桑树品种优势真菌属丰度占比分别为杯盘菌属(Ciboria,47.18%)、unclassified_f__Nectriaceae(11.95%)、Apiotrichum(5.45%)、unclassified_c__Sordariomycetes(4.37%)、新赤壳属(Neocosmospora,3.44%)、地丝菌属(Geotrichum,4.13%)、unclassified_f__Microascaceae(3.09%)、unclassified_k__Fungi(2.61%)、足放线病菌属(Scedosporium,1.28%)、腐质霉属(Humicola,1.04%)及其他(others,9.95%); 青枯病钝感桑树品种植株根际土壤中,优势真菌属丰度占比大小顺序分别为杯盘菌属(Ciboria,14.15%)、unclassified_f__Microascaceae(11.57%)、油瓶霉属(Lecythophora,8.18%)、unclassified_k__Fungi(6.66%)、新赤壳属(Neocosmospora,5.48%)、unclassified_c__Agaricomycetes(5.18%)、Apiotrichum(3.27%)、Gibellulopsis(2.89%)、被孢霉属(Mortierella,2.75%)、unclassified_c__Sordariomycetes(2.00%)、Roussoella(1.87%)、毛壳菌属(Chaetomium,1.74%)、Saitozyma(1.62%)、曲霉属(Aspergillus,1.53%)、毛孢子菌属(Trichosporon,1.48%)、unclassified_o__Eurotiales(1.42%)、锐孔菌属(Oxyporus,1.34%)、unclassified_o__Coniochaetales(1.33%)、镰刀菌属(Fusarium,1.27%)、假埃希氏菌属(Pseudallescheria,1.23%)、unclassified_f_Glomeraceae(1.14%)、unclassified_o__Pleosporales(1.06%)、Plectosphaerella(1.05%)、翅孢壳属(Emericellopsis,1.03%)及其他(others,15.96%)。

  • 图1 青枯病易感(SM)和钝感桑树品种(IM)植株根际土壤优势真菌门分类水平

  • Fig.1 Composition of fungi at phylum level in rhizosphere soil between sensitive (SM) and insensitive mulberry varieties (IM) to bacterial wilt

  • 图2 桑树青枯病易感(SM)和钝感品种(IM)植株根际土壤真菌属分类水平

  • Fig.2 Composition of fungi at genus level in rhizosphere soil between sensitive (SM) and insensitive mulberry varieties (IM) to bacterial wilt

  • 与青枯病钝感桑树品种相比,unclassified_f__NectriaceaeApiotrichum、unclassified_c__Sordariomycetes、地丝菌属(Geotrichum)、足放线病菌属(Scedosporium)和腐质霉属(Humicola)等在青枯病易感桑树品种植株根际土壤中虽是富集的特有优势真菌属,但缺失了诸如油瓶霉属(Lecythophora)、unclassified_c__AgaricomycetesApiotrichum、被孢霉属、Gibellulopsis、unclassified_c__SordariomycetesRoussoella、毛壳菌属、Saitozyma、曲霉属、毛孢子菌属、unclassified_o__Eurotiales、锐孔菌属、unclassified_o__Coniochaetales、镰刀菌属、假埃希氏菌属(Pseudallescheria)、unclassified_f__Glomeraceae、unclassified_o__PleosporalesPlectosphaerella和翅孢壳属等优势真菌属(图2)。

  • 2.4 青枯病不同抗性桑树品种根际土壤真菌群落结构间的差异

  • 物种进化分支图(图3:A)从内圈到外圈依次展示了样本群落中从门到属的所有等级关系以及各分类单元在不同模式间的差异情况。通过LDA值分布柱状图(筛选标准为P<0.05,LDA score>3.0),可以找出对青枯病易感(SM)和钝感(IM)桑树品种产生显著影响的真菌物种类群(图3:B)。门分类水平上,被孢霉门(Mortierellomycota)和球囊菌门(Glomeromycota)在钝感(IM)桑树品种植株根际土壤中具有显著优势。属分类水平上,unclassified_f__Nectriaceae、瓶霉属(Phialophora)、枝顶孢霉属(Acremonium)、PleiocarponSavoryella在青枯病易感桑树品种(SM)植株根际土壤中具有显著优势。Gibellulopsis、被孢霉属(Mortierella)、毛壳菌属(Chaetomium)、Roussoella、unclassified_o__EurotialesSagenomella、unclassified_o__PleosporalesFusicollaChordomyces、柱霉属(Scytalidium)、漆斑菌属(Myrothecium)、笋顶孢属(Acrostalagmus)、根内球囊霉属(Rhizophagus)、unclassified_f__Plectosphaerellaceae、unclassified_f__Didymellaceae在钝感(IM)桑树品种植株根际土壤中具有显著优势。

  • 2.5 真菌FUNGuild功能预测

  • 利用FUNGuild软件,根据真菌群落对同类环境资源的利用途径进行功能预测发现,本研究检测出的土壤根际真菌根据对环境资源吸收利用方式,主要可划分为共生营养型、病理营养型和腐生营养型3种类型和14个Guilds(图4)。主要包括植物病原菌(plant pathogen)、未定义腐生菌(undefined saprotroph)、不明真菌(unknown)、土壤腐生真菌(soil saprotroph)、凋落物腐生真菌(litter saprotroph)、粪腐真菌(dung saprotroph)、体表寄生菌(epiphyte)、植物腐生真菌(plant saprotroph)、地衣寄生真菌(lichen parasite)、木质腐生真菌(wood saprotroph)、寄生真菌(fungal parasite)、动物病原菌(animal pathogen)、丛枝菌根真菌(arbuscular mycorrhizal)和内生真菌(endophyte)。其中,青枯病易感桑树品种根际土壤中,富集了相对较多的病理营养型和腐生营养型真菌; 而青枯病钝感桑树品种根际土壤中,富集了相对丰富的共生营养型真菌。

  • 2.6 物种Venn分析

  • 97%的相似度水平上,针对青枯病不同抗性桑树品种植株根际土壤真菌不同分类水平进行聚类分析,获得12个门、34个纲、84个目、177个科、322个属、491个种及1 281个OTU(Operational Taxonomic Units)分类水平(图4)。由Venn图可知,青枯病易感和钝感桑树品种植株根际土壤中,分别检测到781个和973个OTU。其中,共有OTU为473个,易感桑树品种特有的OTU为76个,钝感桑树品种特有的OTU为91个。特有真菌数量更为丰富的土壤真菌OTU分类水平,可能是青枯病钝感桑树品种田间表现出更强抗性的重要原因。

  • 3 讨论与结论

  • 微生物是生态系统中功能活跃、开发潜力最大、最宝贵的生物资源库(肖健等,2021)。土壤中丰富的微生物多样性在陆地生态系统中具有非常重要的功能,微生物群落结构越丰富、物种越均匀及多样性越丰富时,植物对抗病原菌的综合能力就越强(肖健等,2020)。本研究发现,非胁迫条件(均无发病症状)下,青枯病易感和钝感桑树品种植株根际土壤中,指示真菌丰富度的ACE指数和Chao1指数以及指示真菌多样性的Shannon指数在两者间均无显著差异。这一现象不仅可能与相近植被、气候和土壤条件下,真菌群落组成具有较高的相似性有关(付亚娟等,2019),而且可能与样品采集时,两个抗性不同桑树品种均未出现发病症状,处于非胁迫条件有关。另外,青枯病钝感桑树品种植株根际土壤中,拥有更为多样的不同分类水平的特有优势真菌。由此推测,桑树植株根际土壤微环境中,更为丰富多样的不同分类水平特有优势真菌数量,可能是青枯病钝感桑树品种田间表现出抗性更强的重要原因。

  • 图3 青枯病不同抗性桑树品种根际土壤真菌的LEfSe分析(LAD阈值3.0)

  • Fig.3 LEfSe analysis of fungi in rhizosphere soil between different resistance mulberry varieties to bacterial wilt (LAD score = 3.0)

  • 门分类水平,与青枯病钝感桑树品种相比,青枯病易感桑树品种植株根际土壤中,子囊菌门(Ascomycota)真菌丰度占比从89.45%下降至72.89%; 担子菌门(Basidiomycota)真菌丰度占比从6.42%上升至14.61%。子囊菌门和担子菌门真菌丰度占比的变化趋势与涂娜娜等(2021)的研究结果相似。林春英等(2021)研究证实,青枯病钝感桑树品种植株根际土壤中富集的被孢霉门(Mortierellomycota)真菌是一类好氧真菌,喜欢透气性较好的土壤环境,具有分解木质素、纤维素和半纤维素等难分解物质的能力,能够利用土壤中的糖类物质进行生长代谢,增加土壤有机质和养分含量。另外,青枯病钝感桑树品种植株根际土壤中,富集的球囊菌门(Glomeromycota)真菌被认为具有帮助植物吸收氮、磷等元素、提高植物对土传病害和干旱等生物及非生物胁迫的耐受性等功能(马少兰等,2019)。

  • 图4 青枯病易感(SM)和钝感桑树品种(IM)植株根际土壤真菌群落功能预测

  • Fig.4 Functional predictions of the fungal communities in rhizosphere soil between sensitive (SM) and insensitive mulberry varieties (IM) to bacterial wilt

  • 图5 青枯病易感和钝感桑树品种植株根际土壤中真菌OTU分类水平Venn图

  • Fig.5 Venn diagram of fungi OTU level in rhizosphere soil between sensitive (SM) and insensitive mulberry varieties (IM) to bacterial wilt

  • 属分类水平,被孢霉属(Mortierella)、镰刀菌属(Fusarium)、曲霉菌属(Aspergillus)和毛壳菌属(Chaetomium)是青枯病钝感桑树品种植株根际土壤中富集的特有优势真菌属。宁琪等(2022)研究已证实,被孢霉属真菌具有促进土壤中氮、磷和钾等养分元素有效化的能力; 被孢霉真菌分泌的不饱和脂肪酸(如花生四烯酸和二十碳五烯酸等),是土壤微生物吸收利用的重要碳源,可使土壤微生物生境发生改变,从而影响土壤微生物群落组成(徐惠昌等,2021)。毛壳菌属真菌因产生丰富的降解纤维素的酶和产生具有生理活性的次生代谢产物(如球毛壳素、毛壳素等)而著称,能对多种植物的多种病害的病原菌产生抑制作用(徐全智等,2017; 蒙盼盼等,2021)。镰刀菌属真菌可产生纤维素酶对碳的分解起作用,并与曲霉菌属真菌一起参与土壤难溶性磷的溶解,可有效提高植物对磷的获取,是溶磷微生物的重要类群(杨顺等,2018)。

  • 通过FUNGuild功能预测发现,青枯病易感桑树品种根际土壤中,主要富集了病理营养型和腐生营养型真菌,与之相比,青枯病钝感桑树品种根际土壤中,富集了丰度更高的共生营养型真菌。孙倩等(2019)研究证实,腐生营养型真菌是土壤中重要的分解者,可以分解难降解的有机质,在养分循环方面起着重要作用; 病理营养型真菌主要从宿主获取营养来源,容易导致植物宿主发生病害(Anthony et al.,2017); 而共生营养型真菌则对植物宿主生长和品质等产生有益作用(Igiehon &Babaola,2017)。

  • 综上所述,青枯病钝感桑树品种植株根际土壤中,富集的被孢霉门、球囊菌门、被孢霉属、镰刀菌属和曲霉菌属等特异优势真菌门属,具有促进桑树吸收养分,保障植株根际土壤养分均衡供应微环境的作用; 毛壳菌属等优势真菌属,具有分泌抑菌代谢产物、提高植株抗性和强化宿主植株根际微环境生防能力的作用。青枯病钝感桑树品种植株根际土壤中,富集了更为丰富及多样的优势真菌门属,可能是其田间表现上呈现出抗性更强的重要原因。由此可见,在青枯病钝感桑树品种植株根际土壤中,富集的被孢霉属、镰刀菌属、曲霉菌属和毛壳菌属等优势特异真菌属,具有作为拮抗桑树青枯病备选菌属的潜力。

  • 参考文献

    • ANTHONY MA, FREYS D, STINSONT KA, 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion [J]. Ecosphere, 8(9): 1-12.

    • BAI LY, FAN XD, ZHOU ZY, et al. , 2016. Polyclonal antibody preparation and detection of endoglucanase as a rapid detection target against Ralstonia solanacearum [J]. Acta Sericol Sin, 2016, 42(2): 203-209. [白利叶, 范晓东, 周泽扬, 等, 2016. 用于青枯劳尔氏菌快速检测的靶标内切葡聚糖酶抗体制备与检测试验 [J]. 蚕业科学, 42(2): 203-209. ]

    • BAKKER PAHM, DOORNBOS RF, ZAMIOUDIS C, et al. , 2013. Induced systemic resistance and the rhizosphere microbiome [J]. Plant Pathol J, 29(2): 136-143.

    • BONILLA N, GUTIERREZ-BARRANQUERO JA, VICENTE AD, et al. , 2012. Enhancing soil quality and plant health through suppressive organic amendments [J]. Diversity, 4(4): 475-491.

    • COMPANT S, SAMAD A, FAIST H, et al. , 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application [J]. J Adv Res, 19: 29-37.

    • DONG XW, 2011. Screening and identification of antagonistic fungi against Ralstonia solanacearum and research on the active products [D]. Yangzhou: Yangzhou University. [董夏伟, 2011. 烟草青枯病拮抗真菌的筛选、鉴定及活性产物研究 [D]. 扬州: 扬州大学. ]

    • DONG ZX, YU C, DENG W, et al. , 2019. Research progress on the occurrence and control of mulberry bacterial wilt [J]. N Sericul, 40(4): 1-7. [董朝霞, 于翠, 邓文, 等, 2019. 桑树青枯病的发生与防治研究进展 [J]. 北方蚕业, 40(4): 1-7. ]

    • FU YJ, ZHANG JL, HOU XQ, 2019. Comparative analysis of fungi diversity in rhizospheric and non-rhizospheric soil from Cypripedium macranthum estimated via high-throughput sequencing [J]. Acta Agric Boreal-Occident Sin, 28(2): 253-259. [付亚娟, 张江丽, 侯晓强, 2019. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析 [J]. 西北农业学报, 28(2): 253-259. ]

    • GAO Y, NING Q, YANG YZ, et al. , 2021. Endophytic Streptomyces hygroscopicus OsiSh-2-mediated balancing between growth and disease resistance in host rice [J]. mBio, 12(4): e0156621.

    • GONG YL, BI YL, HU JJ, et al. , 2020. Effect of inoculation with AM fungi on maize growth and hyperspectral estimation of total nitrogen content in maize leaves [J]. Environ Eng, 38(5): 210-214. [龚云丽, 毕银丽, 胡晶晶, 等, 2020. 接种AM真菌对玉米生长的影响及叶片全氮含量的高光谱估测 [J]. 环境工程, 38(5): 210-214. ]

    • IGIEHON NO, BABALOLA OO, 2017. Biofertilizers and sustainabl agriculture: exploring arbuscular mycorrhizal fungi [J]. Appl Microbiol Biotechnol, 101(12): 4871-4881.

    • KULMATISKI A, BEARD KH, STEVENS JR, et al. , 2008. Plant-soil feedbacks: a meta-analytical review [J]. Ecol Lett, 11(9): 980-992.

    • LI QQ, LIN W, CHEN YN, et al. , 1999. Screening of antagonistic fungi against soil-borne diseases [J]. J SW Agric Univ, 12(3): 81-84. [黎起秦, 林纬, 陈永宁, 等, 1999. 植物土传病害拮抗真菌的筛选 [J]. 西南农业学报, 12(3): 81-84. ]

    • LIN CY, LI XL, ZHANG YX, et al. , 2021. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone [J]. Environ Sci, 42(8): 3971-3984. [林春英, 李希来, 张玉欣, 等, 2021. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应 [J]. 环境科学, 42(8): 3971-3984. ]

    • LIU XL, 2014. Influence of arbuscular mycorrhizal fungi on the growth of tobacco and tobacco bacterial wilt [D]. Chongqing: Southwest University. [刘先良, 2014. 接种丛枝菌根真菌对烟草生长及烟草青枯病的影响 [D]. 重庆: 西南大学. ]

    • MA SL, MA CX, XU PX, et al. , 2019. Effects of long-term monocropping of Lycium barbarum L. on function and composition of fungal community in rhizosphere of replanted Lycium barbarum L. [J]. Acta Pedol Sin, 56(6): 1493-1503. [马少兰, 马彩霞, 徐鹏鑫, 等, 2019. 再植枸杞根际真菌群落对长期连作的响应研究 [J]. 土壤学报, 56(6): 1493-1503. ]

    • MENG PP, FENG H, CHEN W, et al. , 2021. Community structure and diversity of root-associated fungi of Catalpa bungei seedlings and grafted seedlings [J]. Mycosystema, 40(8): 1965-1979. [蒙盼盼, 冯欢, 陈伟, 等, 2021. 楸树实生苗和嫁接苗根相关真菌群落结构和多样性 [J]. 菌物学报, 40(8): 1965-1979. ]

    • NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]

    • SANTHANAM R, LUU VT, WEINHOLD A, et al. , 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping [J]. Proc Natl Acad Sci USA, 112(36): E5013-E5020.

    • SUN Q, WU HL, CHEN B, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]

    • TU NN, WU HZ, LOU DZ, et al. , 2021. Diversity of fungi communities in rhizosphere soil of resistant and susceptible mulberry against bacterial wilt in Hainan [J]. Chin J Trop Crops, 42(12): 3671-3677. [涂娜娜, 武华周, 娄德钊, 等, 2021. 海南青枯病抗、感桑品种根际土壤真菌群落多样性分析 [J]. 热带作物学报, 42(12): 3671-3677. ]

    • WANG RH, ZHANG QF, ZHOU BL, et al. , 2007. Analysis on the interaction between root exudates and rhizosphere microbes [J]. Chin J Soil Sci, 38(1): 167-172. [王茹华, 张启发, 周宝利, 等, 2007. 浅析植物根分泌物与根际微生物的相互作用关系 [J]. 土壤通报, 38(1): 167-172. ]

    • XIAN J, REN KY, WU SY, et al. , 2020. Characteristics of soil biological properties and bacterial diversity in different yields of Illicium verum plantations [J]. J SW Agric Univ, 33(12): 2872-2878. [肖健, 任奎瑜, 伍思宇, 等, 2020. 不同产量八角林土壤的生物学性状与细菌多样性特征 [J]. 西南农业学报, 33(12): 2872-2878. ]

    • XIAO J, HUANG XD, LIN GY, et al. , 2021. Comparison on soil biological properties and bacterial community structures in rhizospheres between sensitive and insensitive mulberry varieties to bacterial wilt [J]. Acta Sericol Sin, 47(2): 138-146. [肖健, 黄小丹, 林刚云, 等, 2021. 青枯病易感和钝感桑树根际土壤生物学性状及细菌群落结构比较 [J]. 蚕业科学, 47(2): 138-146. ]

    • XU HC, YOU LH, YU JL, et al. , 2021. Effects of different soil management patterns on soil fungal community composition in Castanea henryiorchard [J/OL]. J Fruit Sci: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. [徐惠昌, 尤龙辉, 余锦林, 等, 2021. 不同土壤管理模式对锥栗园土壤真菌群组成的影响 [J/OL]. 果树学报: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. ]

    • XU QZ, SUN MD, LI F, et al. , 2017. Separation and diversity analysis of endophytic fungi from Lycium barbarum L. in Ningxia [J] N Hortic, (10): 103-109. [徐全智, 孙牧笛, 李帆, 等, 2017. 宁夏枸杞内生真菌的分离及多样性分析 [J]. 北方园艺, (10): 103-109. ]

    • YANG S, YANG T, LIN B, et al. , 2018. Isolation and evaluation of two phosphate-dissolving fungi [J]. Acta Microbiol Sin, 58(2): 264-273. [杨顺, 杨婷, 林斌, 等, 2018. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价 [J]. 微生物学报, 58(2): 264-273. ]

    • YONEYAMA K, 2019. How do Strigolactones ameliorate nutrient deficiencies in plants? [J]. CSH Perspect Biol, 11: a034686.

    • ZHANG S, 2007. Selection of microorganisms resistant to wilt disease of tobacco and research on properties of antibionts [D]. Chongqing: Southwest University. [张深, 2007. 烟草青枯病拮抗菌的筛选及抗菌物质的研究 [D]. 重庆: 西南大学. ]

  • 参考文献

    • ANTHONY MA, FREYS D, STINSONT KA, 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion [J]. Ecosphere, 8(9): 1-12.

    • BAI LY, FAN XD, ZHOU ZY, et al. , 2016. Polyclonal antibody preparation and detection of endoglucanase as a rapid detection target against Ralstonia solanacearum [J]. Acta Sericol Sin, 2016, 42(2): 203-209. [白利叶, 范晓东, 周泽扬, 等, 2016. 用于青枯劳尔氏菌快速检测的靶标内切葡聚糖酶抗体制备与检测试验 [J]. 蚕业科学, 42(2): 203-209. ]

    • BAKKER PAHM, DOORNBOS RF, ZAMIOUDIS C, et al. , 2013. Induced systemic resistance and the rhizosphere microbiome [J]. Plant Pathol J, 29(2): 136-143.

    • BONILLA N, GUTIERREZ-BARRANQUERO JA, VICENTE AD, et al. , 2012. Enhancing soil quality and plant health through suppressive organic amendments [J]. Diversity, 4(4): 475-491.

    • COMPANT S, SAMAD A, FAIST H, et al. , 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application [J]. J Adv Res, 19: 29-37.

    • DONG XW, 2011. Screening and identification of antagonistic fungi against Ralstonia solanacearum and research on the active products [D]. Yangzhou: Yangzhou University. [董夏伟, 2011. 烟草青枯病拮抗真菌的筛选、鉴定及活性产物研究 [D]. 扬州: 扬州大学. ]

    • DONG ZX, YU C, DENG W, et al. , 2019. Research progress on the occurrence and control of mulberry bacterial wilt [J]. N Sericul, 40(4): 1-7. [董朝霞, 于翠, 邓文, 等, 2019. 桑树青枯病的发生与防治研究进展 [J]. 北方蚕业, 40(4): 1-7. ]

    • FU YJ, ZHANG JL, HOU XQ, 2019. Comparative analysis of fungi diversity in rhizospheric and non-rhizospheric soil from Cypripedium macranthum estimated via high-throughput sequencing [J]. Acta Agric Boreal-Occident Sin, 28(2): 253-259. [付亚娟, 张江丽, 侯晓强, 2019. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析 [J]. 西北农业学报, 28(2): 253-259. ]

    • GAO Y, NING Q, YANG YZ, et al. , 2021. Endophytic Streptomyces hygroscopicus OsiSh-2-mediated balancing between growth and disease resistance in host rice [J]. mBio, 12(4): e0156621.

    • GONG YL, BI YL, HU JJ, et al. , 2020. Effect of inoculation with AM fungi on maize growth and hyperspectral estimation of total nitrogen content in maize leaves [J]. Environ Eng, 38(5): 210-214. [龚云丽, 毕银丽, 胡晶晶, 等, 2020. 接种AM真菌对玉米生长的影响及叶片全氮含量的高光谱估测 [J]. 环境工程, 38(5): 210-214. ]

    • IGIEHON NO, BABALOLA OO, 2017. Biofertilizers and sustainabl agriculture: exploring arbuscular mycorrhizal fungi [J]. Appl Microbiol Biotechnol, 101(12): 4871-4881.

    • KULMATISKI A, BEARD KH, STEVENS JR, et al. , 2008. Plant-soil feedbacks: a meta-analytical review [J]. Ecol Lett, 11(9): 980-992.

    • LI QQ, LIN W, CHEN YN, et al. , 1999. Screening of antagonistic fungi against soil-borne diseases [J]. J SW Agric Univ, 12(3): 81-84. [黎起秦, 林纬, 陈永宁, 等, 1999. 植物土传病害拮抗真菌的筛选 [J]. 西南农业学报, 12(3): 81-84. ]

    • LIN CY, LI XL, ZHANG YX, et al. , 2021. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone [J]. Environ Sci, 42(8): 3971-3984. [林春英, 李希来, 张玉欣, 等, 2021. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应 [J]. 环境科学, 42(8): 3971-3984. ]

    • LIU XL, 2014. Influence of arbuscular mycorrhizal fungi on the growth of tobacco and tobacco bacterial wilt [D]. Chongqing: Southwest University. [刘先良, 2014. 接种丛枝菌根真菌对烟草生长及烟草青枯病的影响 [D]. 重庆: 西南大学. ]

    • MA SL, MA CX, XU PX, et al. , 2019. Effects of long-term monocropping of Lycium barbarum L. on function and composition of fungal community in rhizosphere of replanted Lycium barbarum L. [J]. Acta Pedol Sin, 56(6): 1493-1503. [马少兰, 马彩霞, 徐鹏鑫, 等, 2019. 再植枸杞根际真菌群落对长期连作的响应研究 [J]. 土壤学报, 56(6): 1493-1503. ]

    • MENG PP, FENG H, CHEN W, et al. , 2021. Community structure and diversity of root-associated fungi of Catalpa bungei seedlings and grafted seedlings [J]. Mycosystema, 40(8): 1965-1979. [蒙盼盼, 冯欢, 陈伟, 等, 2021. 楸树实生苗和嫁接苗根相关真菌群落结构和多样性 [J]. 菌物学报, 40(8): 1965-1979. ]

    • NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]

    • SANTHANAM R, LUU VT, WEINHOLD A, et al. , 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping [J]. Proc Natl Acad Sci USA, 112(36): E5013-E5020.

    • SUN Q, WU HL, CHEN B, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]

    • TU NN, WU HZ, LOU DZ, et al. , 2021. Diversity of fungi communities in rhizosphere soil of resistant and susceptible mulberry against bacterial wilt in Hainan [J]. Chin J Trop Crops, 42(12): 3671-3677. [涂娜娜, 武华周, 娄德钊, 等, 2021. 海南青枯病抗、感桑品种根际土壤真菌群落多样性分析 [J]. 热带作物学报, 42(12): 3671-3677. ]

    • WANG RH, ZHANG QF, ZHOU BL, et al. , 2007. Analysis on the interaction between root exudates and rhizosphere microbes [J]. Chin J Soil Sci, 38(1): 167-172. [王茹华, 张启发, 周宝利, 等, 2007. 浅析植物根分泌物与根际微生物的相互作用关系 [J]. 土壤通报, 38(1): 167-172. ]

    • XIAN J, REN KY, WU SY, et al. , 2020. Characteristics of soil biological properties and bacterial diversity in different yields of Illicium verum plantations [J]. J SW Agric Univ, 33(12): 2872-2878. [肖健, 任奎瑜, 伍思宇, 等, 2020. 不同产量八角林土壤的生物学性状与细菌多样性特征 [J]. 西南农业学报, 33(12): 2872-2878. ]

    • XIAO J, HUANG XD, LIN GY, et al. , 2021. Comparison on soil biological properties and bacterial community structures in rhizospheres between sensitive and insensitive mulberry varieties to bacterial wilt [J]. Acta Sericol Sin, 47(2): 138-146. [肖健, 黄小丹, 林刚云, 等, 2021. 青枯病易感和钝感桑树根际土壤生物学性状及细菌群落结构比较 [J]. 蚕业科学, 47(2): 138-146. ]

    • XU HC, YOU LH, YU JL, et al. , 2021. Effects of different soil management patterns on soil fungal community composition in Castanea henryiorchard [J/OL]. J Fruit Sci: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. [徐惠昌, 尤龙辉, 余锦林, 等, 2021. 不同土壤管理模式对锥栗园土壤真菌群组成的影响 [J/OL]. 果树学报: 1-16 [2021-09-07]. https: //doi. org/10. 13925/j. cnki. gsxb. 20210227. ]

    • XU QZ, SUN MD, LI F, et al. , 2017. Separation and diversity analysis of endophytic fungi from Lycium barbarum L. in Ningxia [J] N Hortic, (10): 103-109. [徐全智, 孙牧笛, 李帆, 等, 2017. 宁夏枸杞内生真菌的分离及多样性分析 [J]. 北方园艺, (10): 103-109. ]

    • YANG S, YANG T, LIN B, et al. , 2018. Isolation and evaluation of two phosphate-dissolving fungi [J]. Acta Microbiol Sin, 58(2): 264-273. [杨顺, 杨婷, 林斌, 等, 2018. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价 [J]. 微生物学报, 58(2): 264-273. ]

    • YONEYAMA K, 2019. How do Strigolactones ameliorate nutrient deficiencies in plants? [J]. CSH Perspect Biol, 11: a034686.

    • ZHANG S, 2007. Selection of microorganisms resistant to wilt disease of tobacco and research on properties of antibionts [D]. Chongqing: Southwest University. [张深, 2007. 烟草青枯病拮抗菌的筛选及抗菌物质的研究 [D]. 重庆: 西南大学. ]