en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王公达(1997-),硕士,从事莲光信号转导与逆境生理相关研究,(E-mail)w1713819157@sjtu.edu.cn。

通讯作者:

张荻,研究员,博士研究生导师,研究方向为观赏植物种质资源保存,(E-mail)zhangdi2013@sjtu.edu.cn。

中图分类号:Q948.1

文献标识码:A

文章编号:1000-3142(2022)12-2128-10

DOI:10.11931/guihaia.gxzw202107003

参考文献
CAKMAK I, 2010. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J]. NewPhytol, 146(2): 185-205.
参考文献
CHU P, 2011. Identification of lotus annexin and its function in seed heat tolerance and vigor [D]. Guangzhou: Sun Yat-sen University. [楚璞, 2011. 莲膜联蛋白的鉴定及其在种子耐热性和活力中的功能研究 [D]. 广州: 中山大学. ]
参考文献
DING YF, CHENG HY, SONG SQ, 2008. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds [J]. Sci Chin Life Sci, 51(9): 842-853.
参考文献
DOWNS CA, COLEMAN JS, HECKATHORN SA, 1999. The chloroplast 22-Ku heat-shock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem Ⅱ during heat stress [J]. J Plant Physiol, 155(4): 477-487.
参考文献
FENG JC, ZHANG YJ, YANG TZ, 2002. Effect of low temperature stress on the membrane-lipidperoxidation and the concentration of free proline in Camptotheca acuminata seedling [J]. For Res, 15(2): 197-202. [冯建灿, 张玉洁, 杨天柱, 2002. 低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响 [J]. 林业科学研究, 15(2): 197-202. ]
参考文献
GAO Q, LI XX, JIA JT, et al. , 2016. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants [J]. Plant Biotechnol J, 14(3): 861-874.
参考文献
HASSAN NM, EL-BASTAWISY ZM, EL-SAYED AK, et al. , 2015. Roles of dehydrin genes in wheat tolerance to drought stress [J]. J Adv Res, 6(2): 179-188.
参考文献
HEGARTY TW, 2010. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review [J]. Plant Cell Environ, 1(2): 101-119.
参考文献
HU XW, FAN Y, BASKIN CC, et al. , 2015. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland [J]. Am J Bot, 102(5): 649-660.
参考文献
HUANG SZ, TANG XJ, ZHANG L, et al. , 2003. Thermotolerance and activity of antioxidative enzymes in lotus seeds [J]. J Plant Physiol Mol Biol, 29(5): 421-424. [黄上志, 汤学军, 张玲, 等, 2003. 莲种子的耐热性及抗氧化酶活性 [J]. 植物生理与分子生物学学报, 29(5): 421-424. ]
参考文献
JIA SS, GAO QH, LIU GX, et al. , 2017. Effect of short-term extreme high temperature on seed vigor of Celosia cristata and physiological characteristics of early seedlings [J]. J Trop Subtrop Bot, 25(2): 141-148. [贾双双, 高青海, 刘国祥, 等, 2017. 短期极端高温对鸡冠花种子活力及早期幼苗生理特性的影响 [J]. 热带亚热带植物学报, 25(2): 141-148. ]
参考文献
JIANG JL, SU M, CHEN YR, et al. , 2013. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment [J]. Biologia, 68(2): 231-240.
参考文献
JIANG JL, LI L, ZHAO H, et al. , 2016. Low temperature stress affected physiological characters in three varieties of Citrus leaves [J]. Guihaia, 36(2): 208-215. [蒋景龙, 李丽, 赵桦, 等, 2016. 低温胁迫对三种柑橘叶片抗性生理特性影响 [J]. 广西植物, 36(2): 208-215. ]
参考文献
LI SJ, GONG YH, WANG JR, et al. , 2005. Discussion on the reaction between proline and ninhydrin in the determination of proline content by ninhydrin method [J]. Plant Physiol Commun, 41(3): 365-368. [李绍军, 龚月桦, 王俊儒, 等, 2005. 关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨 [J]. 植物生理学通讯, 41(3): 365-368. ]
参考文献
LIU L, ZHANG L, CAI J, et al. , 2021. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration [J]. J Beijing For Univ, 43(7): 22-30. [刘丽, 张立, 蔡靖, 等, 2021. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究 [J]. 北京林业大学学报, 43(7): 22-30. ]
参考文献
LIU W, HUANG Y, HU ZY, et al. , 2020. Effect of low temperature on germination of capsicum seeds and analysis of cold resistance [J]. Acta Agric Jiangxi, 32(10): 68-71. [刘伟, 黄勇, 胡展育, 等, 2020. 低温对辣椒种子萌发的影响及其抗寒性分析 [J]. 江西农业学报, 32(10): 68-71. ]
参考文献
LU L, CHEN FL, TAN Y, 2013. Extraction of Fe-SOD from lotus seed and its high temperature tolerance [J]. Biotechnol World, (2): 65-66. [路蕾, 陈富霖, 谭茵, 2013. 莲子Fe-SOD的提取及其耐高温能力的初探 [J]. 生物技术世界, (2): 65-66. ]
参考文献
LÜ S, 2020. Study on cell protection mechanism during maturation and dehydration of lotus seed embryo [D]. Shanghai: Shanghai Jiaotong University. [吕珊, 2020. 莲种胚成熟脱水过程中细胞保护机制研究 [D]. 上海: 上海交通大学. ]
参考文献
MIURA C, SUGAWARA K, NERIYA Y, et al. , 2012. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma [J]. Gene, 510(2): 107-112.
参考文献
OHGA I, 1927. Supramaximal temperature and life duration of the ancient fruit of Indian lotus [J]. Shokubutsugaku Zasshi, 41(483): 161-172.
参考文献
OMRAN GR, 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings [J]. Plant Physiol, 65(2): 407-408.
参考文献
REN L, ZHANG D, JIANG XN, et al. , 2013. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation [J]. Plant Sci: 21237-21247.
参考文献
RENTEL MC, LECOURIEUX D, OUAKED F, et al. , 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis [J]. Nature, 427(6977): 858-861.
参考文献
SHEN-MILLER J, 2002. Sacred lotus, the long-living fruits of China Antique [J]. Seed Sci Res, 12(3): 131-143.
参考文献
SHENG JY, ZHANG D, 2020. Correlation analysis of gene expression of LEA protein and seed moisture content during embryo maturation in Nelumbo nucifera [J]. J NW For Univ, 35(3): 75-81. [盛江源, 张荻, 2020. 莲种胚发育过程中胚胎晚期丰度蛋白基因表达量与种子含水量相关性分析 [J]. 西北林学院学报, 35(3): 75-81. ]
参考文献
SHENG W, WANG YF, YU Q, et al. , 2016. Effects of priming treatment on the characteristics of germination and physiological and biochemical of lettuce seed under high temperature stress [J]. Seed, 35(4): 44-47. [盛伟, 王艳芳, 于茜, 等, 2016. 引发对高温胁迫下莴苣种子萌发及生理生化特性的影响 [J]. 种子, 35(4): 44-47. ]
参考文献
SINGH BK, SHARMA SR, SINGH B, 2010. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase [J]. Sci Hortic, 124(1): 9-13.
参考文献
TANAKA-ODA A, KENZO T, FUKUDA K, 2009. Optimal germination condition by sulfuric acid pretreatment to improve seed germination of Sabina vulgaris Ant. [J]. J For Res, 14(4): 251-256.
参考文献
WAHID A, GELANI S, ASHRAF M, et al. , 2007. Heat tolerance in plants: An overview [J]. Environ Exp Bot, 61(3): 199-223.
参考文献
WANG TT, YANG JY, ZHANG WM, et al. , 2014. Influence on vigor of maize seeds after liquid nitrogen cryopreservation [J]. Seed, 33(12): 30-32. [王婷婷, 杨建宇, 张文明, 等, 2014. 液氮超低温贮藏对玉米种子活力的影响 [J]. 种子, 33(12): 30-32. ]
参考文献
WANG YF, PAN FB, WANG GS, et al. , 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions [J]. Sci Hortic, 175: 9-15.
参考文献
WANG YM, HUANG T, CHEN FJ, et al. , 2021. Effects of simulated drought stress on seed germination and seedling growth of Manglietia patungensis [J]. Guihaia, 41(6): 953-960. [王毅敏, 黄婷, 陈发菊, 等, 2021. 模拟干旱胁迫对巴东木莲种子萌发和芽苗生长的影响 [J]. 广西植物, 41(6): 953-960. ]
参考文献
XU J, JIANG J, WANG H, et al. , 2019. Verification of internal reference genes of real-time quantitative PCR under waterlogging stress in lotus [J]. Jiangsu Agric Sci, 47(17): 50-53. [徐君, 江君, 王欢, 等, 2019. 荷花淹水胁迫下实时定量PCR内参基因的验证 [J]. 江苏农业科学, 47(17): 50-53. ]
参考文献
XU S, YAN J, YANG XK, et al. , 2016. Effect of high temperature stress on seed germination, growth and chlorophyll fluorescence parameters of celery seedlings [J]. Seed, 35(8): 42-46. [许爽, 阎君, 杨学科, 等, 2016. 高温胁迫对芹菜种子萌发和幼苗生长以及叶绿素荧光参数的影响 [J]. 种子, 35(8): 42-46. ]
参考文献
XUE TT, LIU J, SHEN YB, et al. , 2017. Study on the seed germination characteristic of Carya illinoensis [J]. J Cent S Univ For Technol, 37(11): 42-50. [薛婷婷, 刘嘉, 沈永宝, 等, 2017. 温度对薄壳山核桃种子萌发的影响及其机制初探 [J]. 中南林业科技大学学报, 37(11): 42-50. ]
参考文献
YAN QJ, HUANG Q, CHEN JB, et al. , 2017. SYTA has positive effects on the heat resistance of Arabidopsis [J]. Plant Growth Regul, 81(3): 467-476.
参考文献
YANG Z, SHENG JY, LÜ K, et al. , 2019. Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants [J]. Plant Sci, 284: 143-160.
参考文献
YUN JY, YANG JD, ZHAO HL, et al. , 2006. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis [J]. Acta Bot Boreal-Occident Sin, 26(3): 641-648. [云建英, 杨甲定, 赵哈林, 2006. 干旱和高温对植物光合作用的影响机制研究进展 [J]. 西北植物学报, 26(3): 641-648. ]
参考文献
ZHANG D, REN L, CHEN GQ, et al. , 2015. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox [J]. Plant Cell Rep, 34(9): 1499-1513.
参考文献
ZHANG LY, CHENG GM, WEI HL, et al. , 2021. Chilling tolerance identification and response to cold stress of Gossypium hirsutum varieties (lines) during germination stage [J]. Sci Agric Sin, 54(1): 19-33. [张陇艳, 程功敏, 魏恒玲, 等, 2021. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定 [J]. 中国农业科学, 54(1): 19-33. ]
参考文献
ZHAO WJ, 2013. Research progress of lotus cultivation technology [J]. Contemp Hortic, (5): 9-10. [赵文进, 2013. 荷花栽培技术研究进展 [J]. 现代园艺, (5): 9-10. ]
目录contents

    摘要

    为明确莲种胚对不同温度胁迫的耐受能力,探索莲种胚细胞在逆境胁迫下的生理响应规律,该研究以成熟莲子为材料,从形态学、抗性生理和抗氧化相关基因表达定量3个层面进行了研究。结果表明:(1)莲子对于高温与超低温具有较好的胁迫耐受能力,经70 ℃高温与-196 ℃超低温处理后,其发芽率和种芽长相比对照组无显著变化;80 ℃及以上的高温处理会使莲种胚吸水萌发迟缓,发芽率降低50%及以上,种芽萌发变慢。(2)高温处理后,莲种胚细胞中抗氧化酶活性随吸水萌发过程呈上升趋势,非酶促抗氧化剂含量下降,细胞膜脂过氧化程度逐渐减轻,质膜完整性有所恢复。(3)高温处理下,莲种胚氧化应激相关基因(DHN Rab18、Cu/Zn SODMn SODPOD41、POD73、CAT1、GRAPX)积极参与胁迫响应,出现不同程度的上调表达,100 ℃处理组中DHN Rab18、Cu/Zn SODPOD41、GRAPX上调表达幅度较大。综上结果认为,莲种胚具有良好的高温与低温胁迫耐受性,在不同温度胁迫下抗氧化系统与抗逆保护类蛋白对维持莲种胚的细胞活力可能发挥重要保护作用。

    Abstract

    In order to reveal the tolerance of lotus seed embryo to different temperature stress and explore the physiological response of lotus seed embryo cells under stress, mature lotus seeds were used as materials to perform morphology, stress physiology and quantitative analysis of antioxidant related gene expression. The results were as follows: (1) Lotus seeds had a good tolerance to high temperature and ultra-low temperature stress. The germination percentage and germination length of lotus seeds had no significant differences between the 70 ℃, -196 ℃ and the control group; at 80 ℃ and above treatment condition, the germination percentage of lotus seeds decreased more than 50%, and the germination of seed bud was slowed down. (2) The lotus seeds were germinated after high temperature treatment, the activities of antioxidant enzymes in lotus seed embryo cells gradually increased, the content of non-enzymatic antioxidant and the degree of membrane lipid peroxidation were continuously decreased during the whole germination process, and the integrity of plosma membrane recovered. (3) The oxidative stress-related genes including DHN Rab18, Cu/Zn SOD, Mn SOD, POD41, POD73, CAT1, GR, APX were up-regulated response to high temperature treatment, indicating that these genes had positive responses to heat stress. Furthermore, the DHN Rab18, Cu/Zn SOD, POD41, GR and APX were up-regulated significantly in the 100 ℃ treatment group. In summary, lotus seed embryo has good tolerance to high temperature and low temperature stress, and the antioxidant system and stress-resistant protective proteins may play important roles in maintaining the cell viability of lotus seed embryo under different temperature stresses.

  • 莲(Nelumbo nucifera),别名荷花、莲花、水芙蓉,是莲科(Nelumbonaceae)莲属(Nelumbo)多年生水生草本植物。莲作为我国传统的十大名花之一,栽培历史悠久、文化底蕴深厚、观赏价值高。莲的果实称为莲子,耐贮藏,可存千年之久,有“千年古莲”之称(Shen-Miller,2002)。针对莲子的结构特性、长寿性及优良抗逆性有过研究报道(路蕾等,2013),黄上志等(2003)的研究已初步证实莲子的种皮具有一定的密封保护作用,种胚具有优良的高温抗逆能力。

  • 温度是影响植物种子萌发的关键因素,只有在适宜温度条件下种胚含水量达到一定阈值时,植物胚细胞才可以萌动,胚根胚芽伸长,种子得以萌发(Hegarty,2010)。种子在萌发过程中生理代谢过程活跃,基于温度胁迫开展植物种子萌发的相关研究较多。许爽等(2016)研究发现,不同植物或同一植物不同品种的种子,其发芽率对温度的耐受能力具有差异性; Hu等(2015)研究发现,适宜的温度有助于提高种子发芽率,加快发芽速度,促进幼苗生长; Tanaka-Oda等(2009)研究证明,高温和超低温会使膜的透性、膜结合蛋白及其他相关酶活性降低,从而影响种子的发芽率和萌发速度。不同温度胁迫对植物生长发育的影响及调控响应机制一直是观赏植物抗逆生理领域关注的热点。

  • 温度胁迫会造成细胞膜脂的变相,进而影响植物细胞质膜系统的选择透性和流动性,引发植物体内生理生化活动的变化,激活一系列酶促反应(云建英等,2006),直接表现为植物体内的相对电导率(relative electrolyte leakage,REC)和渗透调节物质脯氨酸(proline,Pro)含量的变化(Downs et al.,1999)。面对逆境胁迫导致的胞内活性氧(reactive oxygen species,ROS)组分积累,植物常会通过增强其抗氧化酶活性以及抗氧化物质含量来清除过量的ROS,以减轻受胁迫程度(Talaat &Shawky,2014)。超氧化物歧化酶(superoxide dismutase,SOD)是抗氧化系统的第一道防线,特异性催化超氧阴离子(O2-·)歧化为H2O2和O2; 过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)能催化H2O2分解为O2和H2O(Miura et al.,2012),以及非酶促抗氧化剂如还原型谷胱甘肽(glutathione,r-glutamyl cysteingl+glycine,GSH)和还原型抗坏血酸(ascorbic acid,AsA)等积极响应温度胁迫,清除过量的ROS,保护细胞免受活性氧积累带来的氧化胁迫损伤(Cakmak,2010)。温度胁迫下,植物会对逆境做出响应并建立应答机制,调节自身的抗逆基因(CBF/DREBMYC/MYBbZIP等)表达量以适应胁迫造成的环境变化(Hassan et al.,2015)。Serine/threonine protein kinase1(OXI1)在ROS信号转导过程中发挥重要作用,并关联着下游多种氧化应激反应(Rentel et al.,2004); Ren等(2013)研究结果及Zhang等(2015)建立的氧化应激相关模型表明,ROS信号转导基因OXI1,抗氧化酶相关基因SODPODCAT等以及非酶促抗氧化剂相关的基因APXGR等均会相应地调节其表达模式,以提高植物对逆境的适应能力。脱水素蛋白(dehydrin,DHN)是一类功能保护类蛋白,可在多种逆境胁迫下保护细胞活性,缓解氧化损伤,在植物种胚成熟后期脱水过程中显著性富集表达,在ROS清除、抗氧化、质膜完整性、蛋白和酶活的保护等多方面发挥功能(Yang et al.,2019)。盛江源和张荻(2020)研究发现,随着莲胚脱水成熟,DHN Rab18在转录与翻译水平上均显著富集,为莲胚应对逆境胁迫可能发挥重要作用。

  • 莲子是目前寿命最长的种子之一,莲种胚作为莲子中最具萌发活力的组织,因其具备较好的储藏耐性和抗逆能力而成为研究植物种子抗高温与超低温的优良材料。吕珊(2020)前期研究证实莲子的脱水耐性与其种胚特殊的抗逆保护机制有关,但莲种胚在不同温度逆境下抗逆机制如何发挥作用的科学问题至今尚未彻底阐明。本研究通过高温和超低温处理,从形态学、抗性生理和基因定量3个层面,对莲种胚的抗高温与超低温能力做出科学评价,初步揭示莲种胚细胞在不同温度处理下的生理响应规律。莲组织培养是品种快繁和遗传转化的重要技术,而莲子作为组织培养中重要的外殖体材料,因其含有大量的内生菌,从而导致组培过程中以莲子作为外殖体染菌率高、成功率低(赵文进,2013)。因此,探究莲胚在不同温度下的响应规律,以期为开展以莲胚作为组培外殖体材料的高温杀菌技术、优化莲子超低温保存方法提供技术指导,同时为拓展莲种质资源的保存途径、揭示莲子特殊的抗逆能力奠定理论基础。

  • 1 材料与方法

  • 1.1 材料

  • 所用材料为太空莲36号成熟莲子,产自江苏宿迁。

  • 1.2 方法

  • 1.2.1 高温与超低温处理

  • 选取大小一致、成熟饱满的莲子进行分组,并采用不同温度处理。高温处理参考楚璞(2011)的方法并加以改进,参考黄上志等(2003)、路蕾等(2013)的研究方法,将去壳莲子置于70、80、90、100℃烘箱中处理12 h; 超低温处理是将莲子置于-80℃冰箱中处理12 h(刘伟等,2020),液氮中处理30 min(王婷婷等,2014),处理后将各组莲子置于室温下过夜。每个处理组设置3组重复,每组20粒莲子。以开壳后室温静置24 h的莲子作为对照组(CK)。

  • 1.2.2 形态指标测定

  • 将CK组与处理组的莲子置于黑色塑料盒中吸水萌发,于 25℃/20℃(昼/夜)、16 h光周期(光强3 000 lx)的恒温光照培养箱中培养。每天换2次水并拍照记录莲种胚的萌发状态(王毅敏等,2021)。培养7 d后取出莲子,测定每组莲子种芽长度并计算发芽率(以胚芽突破果皮作为发芽标准)。根据不同处理组在莲种胚萌发状态、发芽率上的差异,确定适宜的胁迫处理温度(张陇艳等,2021)。

  • 1.2.3 生理指标测定

  • 参考刘丽等(2021)的方法且优化,选定吸水3、6、12、18、24、36 h作为取样时间点,完成各组莲子的相对电导率、鲜重及含水量的测定,选择具有显著性差异的时间作为适宜的生理取样点。采用Bradford法完成蛋白浓度标准曲线的绘制,以及考马斯亮蓝法测定莲胚的可溶性蛋白(SP)含量。采用TBA法(冯建灿等,2002)测定丙二醛(malondialdehyde,MDA)含量,结合相对电导率评价莲胚在吸水萌发过程中的质膜完整性; 采用比色法进行测定SOD含量(Wang et al.,2014)、愈创木酚法测定POD含量(Omran,1980)、紫外分光光度法测定CAT活性(Singh et al.,2010); 参考南京建成生物公司的试剂盒使用说明测定GSH和AsA含量; 参考Jiang等(2013)方法,测定ROS组分中的H2O2水平、O2-·抑制能力和OH·抑制能力; 采用酸性茚三酮法测定游离Pro含量(李绍军等,2005)。依据以下的胁迫耐受指数公式计算:

  • 胁迫耐受指数(SR)= Ps / Pc计算胁迫耐受值。

  • 式中: Ps为胁迫条件下的脯氨酸含量; Pc为正常条件下脯氨酸含量。

  • 1.2.4 莲胚抗逆基因的选择与实时荧光定量PCR检测

  • 选择ACTIN2作为内参基因(徐君等,2019),登陆NCBI下载OXI1、Rab18、Cu/Zn SODMn SODCAT1、POD41、POD73、APXGR基因序列,使用Primer Premier 5设计引物如表1所示。莲胚的RNA提取参考TaKaRa公司的RNA提取试剂盒说明书进行,反转录参考 TaKaRa PrimeScriptTM RT Master Mix(Perfect Real Time)的使用说明,将得到的cDNA作为模板,参考Takara公司的SYBR® Prime ScriptTMRT-PCR KitⅡ试剂盒的使用说明,用2-ΔΔCt法进行基因相对表达量分析。

  • 1.2.5 数据处理与分析

  • 使用SPSS 24.0和Microsoft Excel软件计算各指标的平均值和标准误,使用LSD和Dunnett软件检验进行差异显著性以及相关性分析,统计结果使用Microsoft Excel及Oringin 9软件进行图形绘制。

  • 表1 莲目的基因qRT-PCR引物

  • Table1 qRT-PCR primers of Nelumbo nucifera target gene

  • 2 结果与分析

  • 2.1 高温与超低温处理下莲种胚的逆境形态观测

  • 超低温(-80℃和-196℃)与高温70℃胁迫处理对莲子的生长发育没有显著影响,其发芽率与种芽长相比CK组无明显变化(图2:A,B); 80、90℃和100℃处理组的莲子生长发育减缓(图1),其发芽率相对CK组分别显著降低39%、52%和57%,莲子种芽长相比CK组分别显著降低3.35、9.07、10.03 cm。这表明超低温处理对莲子细胞活力无显著影响,莲子在接受超低温处理后仍能保持完好的生长发育活性; 莲子尚能接受70~80℃的高温胁迫,表现出较好的胁迫耐受能力,随着胁迫温度的升高,莲子的胁迫表现越显严重,发芽率、种芽长度均有不同程度的降低。由于在90℃和100℃胁迫处理下,表现出显著变化,因此选定CK(常温处理)、80℃和100℃进行胁迫生理评价。

  • 图1 高温与超低温下莲子萌发的形态差异

  • Fig.1 Morphological differences of lotus seed germination under high temperature and ultra-low temperature treatments

  • 2.2 高温与超低温处理下莲种胚的形态指标测定

  • 由图3可知,CK组和80℃处理组莲种胚的相对电导率在吸水萌发18 h分别显著下降38%和20%,而100℃处理组莲种胚相对电导率在吸水萌发期间持续保持在80%以上的较高水平,仅在12 h和24 h时有小幅下降。CK组、80℃和100℃处理组莲种胚的含水量在18 h均出现显著上升,对比12 h分别上升19%、13%和11%; 其鲜重变化规律则与含水量变化规律略有不同,CK组在吸水24 h后出现种胚鲜重的显著上升,80℃处理组在吸水萌发18 h时即出现鲜重的显著上升,而100℃处理组在36 h时出现显著上升。

  • 图2 高温与超低温处理下莲子形态指标测定

  • Fig.2 Determination of morphological indexes of lotus seeds under high temperature and ultra-low temperature treatments

  • 综合上述,根据形态学指标推测,吸水萌发后的18 h是莲子萌发过程中较为关键的时间节点。因此,选择CK(常温处理)、80℃处理和100℃处理后吸水萌发的0 h(胁迫后的成熟种胚)、3 h(种胚水合初期)、18 h(种胚水合末期)和36 h(种胚发育初期)作为测定生理指标的适宜取样点。

  • 2.3 高温处理下莲种胚生理指标测定

  • 2.3.1 高温处理对莲种胚质膜完整性的影响

  • 对莲种胚的REC和MDA的测定结果显示,在吸水萌发过程中,CK组和80℃处理组莲种胚的REC值随吸水萌发过程而逐步降低,而100℃处理组莲种胚的REC值持续保持较高水平(图4:A),推测是由于100℃处理对莲种胚膜系统造成的伤害较大,吸水萌发短期内难以修复; 随吸水萌发时长的增加,CK组、80℃和100℃处理组莲种胚的MDA含量均呈现下降趋势(图4:B),吸水萌发3 h时CK组和80℃处理组的MDA含量对比0 h分别下降20%和25%,吸水萌发18 h时100℃处理组的MDA含量对比0 h显著下降36%,表明脱水成熟种胚与高温胁迫处理种胚细胞均发生一定的膜脂过氧化伤害,在种胚吸水萌发过程中膜脂过氧化程度逐渐减轻。

  • 2.3.2 高温处理对莲种胚抗氧化系统的影响

  • 对抗氧化酶活性检测结果表明,吸水萌发过程中,莲种胚中SOD与POD活性变化规律相似,均呈现逐步升高的趋势,CAT活力总体上呈现先下降后上升的趋势。其中,CK组、80℃和100℃处理组莲种胚的SOD活性在0~18 h呈现上升趋势,18~36 h活性相对稳定(图4:C); POD活性变化相比SOD更快,CK组和80℃处理组在吸水3 h后即出现POD活性的显著上升,100℃处理组在18 h出现POD活性的显著上升,36 h时有所回落(图4:D); CK组、80℃和100℃处理组的CAT活性均在18 h出现下降,在36 h显著上升(图4:E)。吸水萌发过程中,莲种胚内的SOD、POD与CAT活性总体呈现上升趋势,表明莲胚水合过程中抗氧化酶活性提升与修复细胞氧化损伤修复具有积极作用。

  • 对非酶类抗氧化剂含量的检测结果表明,不同处理组的GSH和AsA含量在莲胚吸水萌发过程中均总体呈现逐渐下降的趋势。其中,CK组、80℃和100℃处理组的AsA含量在3 h有所上升,其后显著下降(图4:F); GSH含量在3组中均呈现持续下降的趋势(图4:G)。这可能是成熟脱水莲种胚富含非酶促抗氧化剂,在种胚吸水萌发过程中,因水合作用而导致非酶促抗氧化剂含量逐渐降低。

  • 图3 高温处理下莲种胚相对电导率、含水量与鲜重的变化

  • Fig.3 Changes of relative electrolyte leakage, water content and fresh weight in lotus embryo under high temperature treatment

  • 2.3.3 高温处理对莲种胚活性氧组分含量的影响

  • 莲子吸水萌发过程中过氧化氢(H2O2)含量、超氧阴离子(O2-·)抑制能力和OH·抑制能力测定结果显示,CK组、80℃和100℃处理组均在36 h处出现H2O2含量的显著下降(图4:H); 而O2-·抑制能力的变化则更为迅速,CK组、80℃和100℃处理组在吸水萌发3 h时即出现O2-·抑制能力的显著上升(图4:I); OH·抑制能力的变化规律在不同处理组之间具有一定差异,CK组的OH·抑制能力在各个时间点无显著差异,80℃处理组先显著下降后维持相对稳定,而100℃处理组则出现了先显著下降、上升后再下降的趋势(图4:J)。综合吸水萌发过程中,通过莲种胚抗氧化酶活性与ROS组分测定结果可推测,莲种胚在吸水萌发初期H2O2与O2-·水平持续上升,此过程中抗氧化系统逐渐发挥作用,增强对H2O2与O2-·的抑制能力,从而减轻了莲种胚细胞经受的氧化胁迫伤害。

  • 表2 莲种胚发育过程中高温胁迫耐受指数变化

  • Table2 Changes of high temperature stress tolerance index during the development in lotus seed embryo

  • 2.3.4 高温处理对莲种胚渗透调节物含量的影响

  • 莲种胚的脯氨酸含量测定结果显示,CK组、80℃和100℃处理组的Pro含量均呈下降趋势。其中,CK组和80℃处理组分别在3、18 h出现Pro含量的显著下降,100℃处理组先在3 h处出现Pro含量的显著上升,后逐渐下降(图4:K)。计算各处理组间的胁迫耐受指数如表2所示,80℃处理组的莲种胚在吸水过程中胁迫耐受指数保持相对恒定,其Pro含量的下降速率与CK组大致相同,100℃处理组的耐受指数持续上升,说明其Pro含量的下降速率低于CK组。由此可见,随着吸水萌发的进行,莲种胚的渗透胁迫伤害逐渐降低,细胞内Pro含量也逐渐降低。80℃处理组莲种胚的胁迫损伤在吸水期间修复较快,体现出较好的胁迫耐受能力; 而100℃处理组莲种胚则恢复较慢,其细胞的胁迫耐受能力受到较大影响。

  • 2.4 高温处理下莲种胚的抗逆基因表达定量

  • 抗逆基因定量检测结果表明,CK组随着吸水萌发时长的增加,莲种胚 9个抗逆保护基因的相对表达量总体上呈现先上升后下降的趋势,18 h基因表达量显著上调; 80℃处理组随着莲种胚吸水萌发的进行,抗逆基因表达量大体上呈现出逐渐下降的趋势,并在吸水0 h时基因表达量最高; 100℃处理下,基因表达水平整体呈现先上升再下降的趋势,并在吸水萌发3 h处显著上调表达,其中OXI1、Rab18、GRAPX表达量分别是CK组吸水萌发3 h表达量的12、13、26倍。与CK组对比,80℃和100℃处理组莲种胚中抗逆保护相关基因整体上均呈现不同程度的上调表达,表明上述抗逆保护基因积极的响应高温胁迫。

  • 图4 莲种胚发育过程中生理指标测定

  • Fig.4 Determination of physiological indexes during embryo development of lotus seeds

  • 3 讨论与结论

  • 温度是影响植物种子萌发的重要因子,不同温度条件下,种子会表现出成活率与生长发育的差异(薛婷婷等,2017)。本研究中,莲子在-196℃的超低温及70℃的高温处理下发芽率达到近100%,芽长无显著性变化; 80℃下莲子发芽率近50%,芽长降低25%; 而Ohga(1927)研究表明印度古莲子在90℃的水浴中处理2 h发芽率可达到50%,与本研究中莲子的耐高温上限大体相符。Ding等(2008)研究发现玉米种子在100℃下高温处理仅15 min,发芽率降为0; 莴苣种子在35℃处理下,发芽率为0(盛伟等,2016)。而本研究中发现莲子在100℃下处理12 h,发芽率仍近30%,证明莲子具有较强的极端高温耐受性,可以完全耐受70℃的高温,但80℃及以上高温胁迫会对莲子的萌发产生影响,不同于黄上志(2003)100℃高温处理24 h莲子发芽率可达100%的研究结论。REC作为衡量细胞膜系统受损程度的重要指标(Gao et al.,2016),MDA作为膜脂过氧化的最终产物,其含量可以反映膜质过氧化程度。本研究中,80℃和100℃处理组的莲胚REC、MDA含量显著高于CK组,表明高温处理导致莲胚膜系统受损,对莲胚细胞造成氧化损伤,造成胞内电解液的外渗。Pro是植物体内有效的渗透调节剂,保护蛋白分子和酶活性,SOD、POD、CAT作为酶促系统中重要组成成分,降低活性氧含量以减轻胁迫伤害(蒋景龙等,2016)。本研究中,高温处理下Pro含量均显著升高,SOD、POD酶活性对比CK组也有所升高,表明高温逆境会影响莲胚渗透调节物的含量,激活抗氧化酶的活性,从而抵御高温对莲胚细胞造成的损伤。

  • 图5 莲种胚萌发过程中抗性基因表达量变化

  • Fig.5 Changes of resistance gene expression during embryo germination of lotus seeds

  • 随着莲子吸水萌发的进行,高温处理组和CK组莲胚含水量和鲜重均在上升,80℃处理组的REC、MDA含量、H2O2含量及Pro含量均呈持续下降趋势,表明吸水过程使得莲胚胁迫伤害逐渐降低,氧化损伤在缓慢修复,莲胚的吸水萌发进程可以缓解高温胁迫伤害。100℃处理组的REC持续保持近100%的较高水平,100℃处理下POD酶活性随吸水过程几乎无变化,推测100℃高温超出了莲种胚细胞的胁迫耐受“阈值”,给质膜系统及酶活造成不可逆的损伤(Wahid et al.,2007)。随着吸水萌发的进行,高温处理组下莲胚中SOD、POD酶活性先急速上升,后缓慢升高,对应高温处理下MDA含量的先急速再缓慢的下降趋势,表明在吸水萌发初期抗氧化酶在积极地发挥作用,参与氧化还原过程,清除MDA,减轻氧化胁迫对莲子造成的伤害。但本研究中,CAT并不是与SOD、POD酶呈现相同的上升趋势,而是表现出波动变化。贾双双等(2017)的研究也有类似的发现,鸡冠花幼苗在高温处理后SOD、POD呈上升趋势,CAT含量先上升后下降,呈波动变化,推测高活性的SOD、POD可能是高温胁迫下参与细胞抗氧化过程的主要抗氧化酶,发挥重要的抗氧化功能,SOD、POD、CAT等抗氧化酶在高温下是否协同发挥作用及其高温耐受机理有待今后深入研究。

  • 高温信号的感知与转导是植物细胞应对高温胁迫的重要过程之一,高温信号可以诱导且调控ROS与抗逆基因的转录与表达(Yan et al.,2017),降低植物在高温环境下的胁迫伤害,提高植物对高温的耐受性。本研究对氧化应激相关基因进行定量分析发现,吸水萌发期间,莲种胚氧化应激相关基因Cu/Zn SODMn SODPOD41、POD73、CAT1、GRAPX积极参与胁迫响应,相比CK组,高温处理组下的抗逆基因出现不同程度的上调表达,其中100℃处理下吸水萌发3 h,大多数抗逆相关基因表达显著升高,推测吸水萌发的3 h是莲种胚在经受100℃高温胁迫下比较关键的时间点。此时,种胚生理代谢活动更为旺盛,抗逆基因表达量上调,积极响应高温胁迫。本研究中,Rab18在高温处理下显著上调表达,100℃下表达量上调最明显,与抗氧化酶类蛋白表达模式相类似,推测Rab18可能参与了莲胚高温处理过程中胞内大分子的保护作用。

  • 综上所述,莲种胚可以耐-196℃超低温和70~80℃的高温环境。在80℃以上的高温逆境中,莲种胚含水量、REC、MDA、抗氧化保护酶SOD、POD、CAT活性,以及非酶促抗氧化剂GSH、AsA含量、渗透调节物质Pro等一系列生理指标对高温胁迫积极响应且参与调节,减弱膜脂过氧化程度,以降低高温对自身的损伤程度; 同时,高温处理会使莲种胚内的DHN Rab18、OXI1、Cu/Zn SODGRAPXPOD41等多个抗逆基因呈现大幅上调表达,表明这些基因参与莲种胚极端温度下的胁迫伤害过程,高温胁迫下积极响应,为后续深入开展基因功能研究和莲超低温保存技术,以及莲组织培养外殖体消毒技术奠定了理论基础。

  • 参考文献

    • CAKMAK I, 2010. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J]. NewPhytol, 146(2): 185-205.

    • CHU P, 2011. Identification of lotus annexin and its function in seed heat tolerance and vigor [D]. Guangzhou: Sun Yat-sen University. [楚璞, 2011. 莲膜联蛋白的鉴定及其在种子耐热性和活力中的功能研究 [D]. 广州: 中山大学. ]

    • DING YF, CHENG HY, SONG SQ, 2008. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds [J]. Sci Chin Life Sci, 51(9): 842-853.

    • DOWNS CA, COLEMAN JS, HECKATHORN SA, 1999. The chloroplast 22-Ku heat-shock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem Ⅱ during heat stress [J]. J Plant Physiol, 155(4): 477-487.

    • FENG JC, ZHANG YJ, YANG TZ, 2002. Effect of low temperature stress on the membrane-lipidperoxidation and the concentration of free proline in Camptotheca acuminata seedling [J]. For Res, 15(2): 197-202. [冯建灿, 张玉洁, 杨天柱, 2002. 低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响 [J]. 林业科学研究, 15(2): 197-202. ]

    • GAO Q, LI XX, JIA JT, et al. , 2016. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants [J]. Plant Biotechnol J, 14(3): 861-874.

    • HASSAN NM, EL-BASTAWISY ZM, EL-SAYED AK, et al. , 2015. Roles of dehydrin genes in wheat tolerance to drought stress [J]. J Adv Res, 6(2): 179-188.

    • HEGARTY TW, 2010. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review [J]. Plant Cell Environ, 1(2): 101-119.

    • HU XW, FAN Y, BASKIN CC, et al. , 2015. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland [J]. Am J Bot, 102(5): 649-660.

    • HUANG SZ, TANG XJ, ZHANG L, et al. , 2003. Thermotolerance and activity of antioxidative enzymes in lotus seeds [J]. J Plant Physiol Mol Biol, 29(5): 421-424. [黄上志, 汤学军, 张玲, 等, 2003. 莲种子的耐热性及抗氧化酶活性 [J]. 植物生理与分子生物学学报, 29(5): 421-424. ]

    • JIA SS, GAO QH, LIU GX, et al. , 2017. Effect of short-term extreme high temperature on seed vigor of Celosia cristata and physiological characteristics of early seedlings [J]. J Trop Subtrop Bot, 25(2): 141-148. [贾双双, 高青海, 刘国祥, 等, 2017. 短期极端高温对鸡冠花种子活力及早期幼苗生理特性的影响 [J]. 热带亚热带植物学报, 25(2): 141-148. ]

    • JIANG JL, SU M, CHEN YR, et al. , 2013. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment [J]. Biologia, 68(2): 231-240.

    • JIANG JL, LI L, ZHAO H, et al. , 2016. Low temperature stress affected physiological characters in three varieties of Citrus leaves [J]. Guihaia, 36(2): 208-215. [蒋景龙, 李丽, 赵桦, 等, 2016. 低温胁迫对三种柑橘叶片抗性生理特性影响 [J]. 广西植物, 36(2): 208-215. ]

    • LI SJ, GONG YH, WANG JR, et al. , 2005. Discussion on the reaction between proline and ninhydrin in the determination of proline content by ninhydrin method [J]. Plant Physiol Commun, 41(3): 365-368. [李绍军, 龚月桦, 王俊儒, 等, 2005. 关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨 [J]. 植物生理学通讯, 41(3): 365-368. ]

    • LIU L, ZHANG L, CAI J, et al. , 2021. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration [J]. J Beijing For Univ, 43(7): 22-30. [刘丽, 张立, 蔡靖, 等, 2021. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究 [J]. 北京林业大学学报, 43(7): 22-30. ]

    • LIU W, HUANG Y, HU ZY, et al. , 2020. Effect of low temperature on germination of capsicum seeds and analysis of cold resistance [J]. Acta Agric Jiangxi, 32(10): 68-71. [刘伟, 黄勇, 胡展育, 等, 2020. 低温对辣椒种子萌发的影响及其抗寒性分析 [J]. 江西农业学报, 32(10): 68-71. ]

    • LU L, CHEN FL, TAN Y, 2013. Extraction of Fe-SOD from lotus seed and its high temperature tolerance [J]. Biotechnol World, (2): 65-66. [路蕾, 陈富霖, 谭茵, 2013. 莲子Fe-SOD的提取及其耐高温能力的初探 [J]. 生物技术世界, (2): 65-66. ]

    • LÜ S, 2020. Study on cell protection mechanism during maturation and dehydration of lotus seed embryo [D]. Shanghai: Shanghai Jiaotong University. [吕珊, 2020. 莲种胚成熟脱水过程中细胞保护机制研究 [D]. 上海: 上海交通大学. ]

    • MIURA C, SUGAWARA K, NERIYA Y, et al. , 2012. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma [J]. Gene, 510(2): 107-112.

    • OHGA I, 1927. Supramaximal temperature and life duration of the ancient fruit of Indian lotus [J]. Shokubutsugaku Zasshi, 41(483): 161-172.

    • OMRAN GR, 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings [J]. Plant Physiol, 65(2): 407-408.

    • REN L, ZHANG D, JIANG XN, et al. , 2013. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation [J]. Plant Sci: 21237-21247.

    • RENTEL MC, LECOURIEUX D, OUAKED F, et al. , 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis [J]. Nature, 427(6977): 858-861.

    • SHEN-MILLER J, 2002. Sacred lotus, the long-living fruits of China Antique [J]. Seed Sci Res, 12(3): 131-143.

    • SHENG JY, ZHANG D, 2020. Correlation analysis of gene expression of LEA protein and seed moisture content during embryo maturation in Nelumbo nucifera [J]. J NW For Univ, 35(3): 75-81. [盛江源, 张荻, 2020. 莲种胚发育过程中胚胎晚期丰度蛋白基因表达量与种子含水量相关性分析 [J]. 西北林学院学报, 35(3): 75-81. ]

    • SHENG W, WANG YF, YU Q, et al. , 2016. Effects of priming treatment on the characteristics of germination and physiological and biochemical of lettuce seed under high temperature stress [J]. Seed, 35(4): 44-47. [盛伟, 王艳芳, 于茜, 等, 2016. 引发对高温胁迫下莴苣种子萌发及生理生化特性的影响 [J]. 种子, 35(4): 44-47. ]

    • SINGH BK, SHARMA SR, SINGH B, 2010. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase [J]. Sci Hortic, 124(1): 9-13.

    • TANAKA-ODA A, KENZO T, FUKUDA K, 2009. Optimal germination condition by sulfuric acid pretreatment to improve seed germination of Sabina vulgaris Ant. [J]. J For Res, 14(4): 251-256.

    • WAHID A, GELANI S, ASHRAF M, et al. , 2007. Heat tolerance in plants: An overview [J]. Environ Exp Bot, 61(3): 199-223.

    • WANG TT, YANG JY, ZHANG WM, et al. , 2014. Influence on vigor of maize seeds after liquid nitrogen cryopreservation [J]. Seed, 33(12): 30-32. [王婷婷, 杨建宇, 张文明, 等, 2014. 液氮超低温贮藏对玉米种子活力的影响 [J]. 种子, 33(12): 30-32. ]

    • WANG YF, PAN FB, WANG GS, et al. , 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions [J]. Sci Hortic, 175: 9-15.

    • WANG YM, HUANG T, CHEN FJ, et al. , 2021. Effects of simulated drought stress on seed germination and seedling growth of Manglietia patungensis [J]. Guihaia, 41(6): 953-960. [王毅敏, 黄婷, 陈发菊, 等, 2021. 模拟干旱胁迫对巴东木莲种子萌发和芽苗生长的影响 [J]. 广西植物, 41(6): 953-960. ]

    • XU J, JIANG J, WANG H, et al. , 2019. Verification of internal reference genes of real-time quantitative PCR under waterlogging stress in lotus [J]. Jiangsu Agric Sci, 47(17): 50-53. [徐君, 江君, 王欢, 等, 2019. 荷花淹水胁迫下实时定量PCR内参基因的验证 [J]. 江苏农业科学, 47(17): 50-53. ]

    • XU S, YAN J, YANG XK, et al. , 2016. Effect of high temperature stress on seed germination, growth and chlorophyll fluorescence parameters of celery seedlings [J]. Seed, 35(8): 42-46. [许爽, 阎君, 杨学科, 等, 2016. 高温胁迫对芹菜种子萌发和幼苗生长以及叶绿素荧光参数的影响 [J]. 种子, 35(8): 42-46. ]

    • XUE TT, LIU J, SHEN YB, et al. , 2017. Study on the seed germination characteristic of Carya illinoensis [J]. J Cent S Univ For Technol, 37(11): 42-50. [薛婷婷, 刘嘉, 沈永宝, 等, 2017. 温度对薄壳山核桃种子萌发的影响及其机制初探 [J]. 中南林业科技大学学报, 37(11): 42-50. ]

    • YAN QJ, HUANG Q, CHEN JB, et al. , 2017. SYTA has positive effects on the heat resistance of Arabidopsis [J]. Plant Growth Regul, 81(3): 467-476.

    • YANG Z, SHENG JY, LÜ K, et al. , 2019. Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants [J]. Plant Sci, 284: 143-160.

    • YUN JY, YANG JD, ZHAO HL, et al. , 2006. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis [J]. Acta Bot Boreal-Occident Sin, 26(3): 641-648. [云建英, 杨甲定, 赵哈林, 2006. 干旱和高温对植物光合作用的影响机制研究进展 [J]. 西北植物学报, 26(3): 641-648. ]

    • ZHANG D, REN L, CHEN GQ, et al. , 2015. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox [J]. Plant Cell Rep, 34(9): 1499-1513.

    • ZHANG LY, CHENG GM, WEI HL, et al. , 2021. Chilling tolerance identification and response to cold stress of Gossypium hirsutum varieties (lines) during germination stage [J]. Sci Agric Sin, 54(1): 19-33. [张陇艳, 程功敏, 魏恒玲, 等, 2021. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定 [J]. 中国农业科学, 54(1): 19-33. ]

    • ZHAO WJ, 2013. Research progress of lotus cultivation technology [J]. Contemp Hortic, (5): 9-10. [赵文进, 2013. 荷花栽培技术研究进展 [J]. 现代园艺, (5): 9-10. ]

  • 参考文献

    • CAKMAK I, 2010. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J]. NewPhytol, 146(2): 185-205.

    • CHU P, 2011. Identification of lotus annexin and its function in seed heat tolerance and vigor [D]. Guangzhou: Sun Yat-sen University. [楚璞, 2011. 莲膜联蛋白的鉴定及其在种子耐热性和活力中的功能研究 [D]. 广州: 中山大学. ]

    • DING YF, CHENG HY, SONG SQ, 2008. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds [J]. Sci Chin Life Sci, 51(9): 842-853.

    • DOWNS CA, COLEMAN JS, HECKATHORN SA, 1999. The chloroplast 22-Ku heat-shock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem Ⅱ during heat stress [J]. J Plant Physiol, 155(4): 477-487.

    • FENG JC, ZHANG YJ, YANG TZ, 2002. Effect of low temperature stress on the membrane-lipidperoxidation and the concentration of free proline in Camptotheca acuminata seedling [J]. For Res, 15(2): 197-202. [冯建灿, 张玉洁, 杨天柱, 2002. 低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响 [J]. 林业科学研究, 15(2): 197-202. ]

    • GAO Q, LI XX, JIA JT, et al. , 2016. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants [J]. Plant Biotechnol J, 14(3): 861-874.

    • HASSAN NM, EL-BASTAWISY ZM, EL-SAYED AK, et al. , 2015. Roles of dehydrin genes in wheat tolerance to drought stress [J]. J Adv Res, 6(2): 179-188.

    • HEGARTY TW, 2010. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review [J]. Plant Cell Environ, 1(2): 101-119.

    • HU XW, FAN Y, BASKIN CC, et al. , 2015. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland [J]. Am J Bot, 102(5): 649-660.

    • HUANG SZ, TANG XJ, ZHANG L, et al. , 2003. Thermotolerance and activity of antioxidative enzymes in lotus seeds [J]. J Plant Physiol Mol Biol, 29(5): 421-424. [黄上志, 汤学军, 张玲, 等, 2003. 莲种子的耐热性及抗氧化酶活性 [J]. 植物生理与分子生物学学报, 29(5): 421-424. ]

    • JIA SS, GAO QH, LIU GX, et al. , 2017. Effect of short-term extreme high temperature on seed vigor of Celosia cristata and physiological characteristics of early seedlings [J]. J Trop Subtrop Bot, 25(2): 141-148. [贾双双, 高青海, 刘国祥, 等, 2017. 短期极端高温对鸡冠花种子活力及早期幼苗生理特性的影响 [J]. 热带亚热带植物学报, 25(2): 141-148. ]

    • JIANG JL, SU M, CHEN YR, et al. , 2013. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment [J]. Biologia, 68(2): 231-240.

    • JIANG JL, LI L, ZHAO H, et al. , 2016. Low temperature stress affected physiological characters in three varieties of Citrus leaves [J]. Guihaia, 36(2): 208-215. [蒋景龙, 李丽, 赵桦, 等, 2016. 低温胁迫对三种柑橘叶片抗性生理特性影响 [J]. 广西植物, 36(2): 208-215. ]

    • LI SJ, GONG YH, WANG JR, et al. , 2005. Discussion on the reaction between proline and ninhydrin in the determination of proline content by ninhydrin method [J]. Plant Physiol Commun, 41(3): 365-368. [李绍军, 龚月桦, 王俊儒, 等, 2005. 关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨 [J]. 植物生理学通讯, 41(3): 365-368. ]

    • LIU L, ZHANG L, CAI J, et al. , 2021. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration [J]. J Beijing For Univ, 43(7): 22-30. [刘丽, 张立, 蔡靖, 等, 2021. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究 [J]. 北京林业大学学报, 43(7): 22-30. ]

    • LIU W, HUANG Y, HU ZY, et al. , 2020. Effect of low temperature on germination of capsicum seeds and analysis of cold resistance [J]. Acta Agric Jiangxi, 32(10): 68-71. [刘伟, 黄勇, 胡展育, 等, 2020. 低温对辣椒种子萌发的影响及其抗寒性分析 [J]. 江西农业学报, 32(10): 68-71. ]

    • LU L, CHEN FL, TAN Y, 2013. Extraction of Fe-SOD from lotus seed and its high temperature tolerance [J]. Biotechnol World, (2): 65-66. [路蕾, 陈富霖, 谭茵, 2013. 莲子Fe-SOD的提取及其耐高温能力的初探 [J]. 生物技术世界, (2): 65-66. ]

    • LÜ S, 2020. Study on cell protection mechanism during maturation and dehydration of lotus seed embryo [D]. Shanghai: Shanghai Jiaotong University. [吕珊, 2020. 莲种胚成熟脱水过程中细胞保护机制研究 [D]. 上海: 上海交通大学. ]

    • MIURA C, SUGAWARA K, NERIYA Y, et al. , 2012. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma [J]. Gene, 510(2): 107-112.

    • OHGA I, 1927. Supramaximal temperature and life duration of the ancient fruit of Indian lotus [J]. Shokubutsugaku Zasshi, 41(483): 161-172.

    • OMRAN GR, 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings [J]. Plant Physiol, 65(2): 407-408.

    • REN L, ZHANG D, JIANG XN, et al. , 2013. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation [J]. Plant Sci: 21237-21247.

    • RENTEL MC, LECOURIEUX D, OUAKED F, et al. , 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis [J]. Nature, 427(6977): 858-861.

    • SHEN-MILLER J, 2002. Sacred lotus, the long-living fruits of China Antique [J]. Seed Sci Res, 12(3): 131-143.

    • SHENG JY, ZHANG D, 2020. Correlation analysis of gene expression of LEA protein and seed moisture content during embryo maturation in Nelumbo nucifera [J]. J NW For Univ, 35(3): 75-81. [盛江源, 张荻, 2020. 莲种胚发育过程中胚胎晚期丰度蛋白基因表达量与种子含水量相关性分析 [J]. 西北林学院学报, 35(3): 75-81. ]

    • SHENG W, WANG YF, YU Q, et al. , 2016. Effects of priming treatment on the characteristics of germination and physiological and biochemical of lettuce seed under high temperature stress [J]. Seed, 35(4): 44-47. [盛伟, 王艳芳, 于茜, 等, 2016. 引发对高温胁迫下莴苣种子萌发及生理生化特性的影响 [J]. 种子, 35(4): 44-47. ]

    • SINGH BK, SHARMA SR, SINGH B, 2010. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase [J]. Sci Hortic, 124(1): 9-13.

    • TANAKA-ODA A, KENZO T, FUKUDA K, 2009. Optimal germination condition by sulfuric acid pretreatment to improve seed germination of Sabina vulgaris Ant. [J]. J For Res, 14(4): 251-256.

    • WAHID A, GELANI S, ASHRAF M, et al. , 2007. Heat tolerance in plants: An overview [J]. Environ Exp Bot, 61(3): 199-223.

    • WANG TT, YANG JY, ZHANG WM, et al. , 2014. Influence on vigor of maize seeds after liquid nitrogen cryopreservation [J]. Seed, 33(12): 30-32. [王婷婷, 杨建宇, 张文明, 等, 2014. 液氮超低温贮藏对玉米种子活力的影响 [J]. 种子, 33(12): 30-32. ]

    • WANG YF, PAN FB, WANG GS, et al. , 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions [J]. Sci Hortic, 175: 9-15.

    • WANG YM, HUANG T, CHEN FJ, et al. , 2021. Effects of simulated drought stress on seed germination and seedling growth of Manglietia patungensis [J]. Guihaia, 41(6): 953-960. [王毅敏, 黄婷, 陈发菊, 等, 2021. 模拟干旱胁迫对巴东木莲种子萌发和芽苗生长的影响 [J]. 广西植物, 41(6): 953-960. ]

    • XU J, JIANG J, WANG H, et al. , 2019. Verification of internal reference genes of real-time quantitative PCR under waterlogging stress in lotus [J]. Jiangsu Agric Sci, 47(17): 50-53. [徐君, 江君, 王欢, 等, 2019. 荷花淹水胁迫下实时定量PCR内参基因的验证 [J]. 江苏农业科学, 47(17): 50-53. ]

    • XU S, YAN J, YANG XK, et al. , 2016. Effect of high temperature stress on seed germination, growth and chlorophyll fluorescence parameters of celery seedlings [J]. Seed, 35(8): 42-46. [许爽, 阎君, 杨学科, 等, 2016. 高温胁迫对芹菜种子萌发和幼苗生长以及叶绿素荧光参数的影响 [J]. 种子, 35(8): 42-46. ]

    • XUE TT, LIU J, SHEN YB, et al. , 2017. Study on the seed germination characteristic of Carya illinoensis [J]. J Cent S Univ For Technol, 37(11): 42-50. [薛婷婷, 刘嘉, 沈永宝, 等, 2017. 温度对薄壳山核桃种子萌发的影响及其机制初探 [J]. 中南林业科技大学学报, 37(11): 42-50. ]

    • YAN QJ, HUANG Q, CHEN JB, et al. , 2017. SYTA has positive effects on the heat resistance of Arabidopsis [J]. Plant Growth Regul, 81(3): 467-476.

    • YANG Z, SHENG JY, LÜ K, et al. , 2019. Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants [J]. Plant Sci, 284: 143-160.

    • YUN JY, YANG JD, ZHAO HL, et al. , 2006. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis [J]. Acta Bot Boreal-Occident Sin, 26(3): 641-648. [云建英, 杨甲定, 赵哈林, 2006. 干旱和高温对植物光合作用的影响机制研究进展 [J]. 西北植物学报, 26(3): 641-648. ]

    • ZHANG D, REN L, CHEN GQ, et al. , 2015. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox [J]. Plant Cell Rep, 34(9): 1499-1513.

    • ZHANG LY, CHENG GM, WEI HL, et al. , 2021. Chilling tolerance identification and response to cold stress of Gossypium hirsutum varieties (lines) during germination stage [J]. Sci Agric Sin, 54(1): 19-33. [张陇艳, 程功敏, 魏恒玲, 等, 2021. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定 [J]. 中国农业科学, 54(1): 19-33. ]

    • ZHAO WJ, 2013. Research progress of lotus cultivation technology [J]. Contemp Hortic, (5): 9-10. [赵文进, 2013. 荷花栽培技术研究进展 [J]. 现代园艺, (5): 9-10. ]