en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李志雄(1995-),硕士研究生,主要从事植物生理生态学研究,(E-mail)lizhixiong@mail.kib.ac.cn。

通讯作者:

张石宝,博士,研究员,研究方向为兰科植物生物学,(E-mail)sbzhang@mail.kib.ac.cn。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2022)12-2147-10

DOI:10.11931/guihaia.gxzw202107060

参考文献
ALLAKHVERDIEV SI, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves [J]. Photosynth Res, 126: 449-463.
参考文献
ALLAHVERDIYEVA Y, MUSTILA H, ERMAKOVA M, et al. , 2013. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light [J]. P Natl Acad Sci USA, 110(10): 4111-4116.
参考文献
ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. , 2010. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris [J]. Planta, 232: 887-898.
参考文献
AHMAD I, WAJID SA, AHMAD A, et al. , 2018. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environment [J]. Environ Sci Pollut Res, 26: 1227-1237.
参考文献
BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Low PSI content limits the photoprotection of PSI and PSⅡ in early growth stages of chlorophyll b-deficient wheat mutant lines [J]. Photosynth Res, 125(1/2): 151-166.
参考文献
CAMPANY CE, TJOELKER MG, VON CAEMMERER S, et al. , 2016. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks [J]. Plant Cell Environ, 39(12): 2762-2773.
参考文献
CHRISTENHUSZ MJM, BYNG JW, 2016. The number of known plants species in the world and its annual increase [J]. Phytotaxa, 261(3): 201-217.
参考文献
CHASE MW, CAMERON KM, FREUDENSTEIN JV, et al. , 2015. An updated classification of Orchidaceae [J]. Bot J Linn Soc, 177(2): 151-174.
参考文献
CHE SG, ZHAO BQ, LI YT, et al. , 2016. Nutrient uptake requirements with increasing grain yield for rice in China [J]. J Integr Agric, 15(4): 907-917.
参考文献
COHEN I, HALPERN M, YERMIYAHU U, et al. , 2019. CO2 and nitrogen interaction alters root anatomy, morphology, nitrogen partitioning and photosynthetic acclimation of tomato plants [J]. Planta, 250(5): 1423-1432.
参考文献
DRIEVER SM, BAKER NR, 2011. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted [J]. Plant Cell Environ, 34(5): 837-846.
参考文献
FAN YF, CHEN JX, WANG ZL, et al. , 2019. Soybean (Glycine max L. Merr. ) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis [J]. BMC Plant Biol, 19(1): 34.
参考文献
GRASSI G, MAGNANI F, 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees [J]. Plant Cell Environ, 28(7): 834-849.
参考文献
HUANG W, HU H, ZHANG SB, 2021. Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species [J]. J Photochem Photobiol B, 219: 112203.
参考文献
HUANG W, YANG YJ, ZHANG SB, 2019. The role of water-water cycle in regulating the redox state of photosystem I under fluctuating light [J]. BBA Bioenerg, 1860(5): 383-390.
参考文献
HUANG ZA, JIANG DA, YANG Y, et al. , 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica, 42(3): 357-364.
参考文献
ILÍK P, PAVLOVIČ A, KOUŘIL R, et al. , 2017. Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms [J]. New Phytol, 214(3): 967-972.
参考文献
JOKEL M, JOHNSON X, PELTIER G, et al. , 2018. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light [J]. Plant J, 94(5): 822-835.
参考文献
KONO M, TERASHIMA I, 2016. Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition [J]. Plant Cell Physiol, 57(7): 1405-1414.
参考文献
KONO M, NOGUCHI K, TERASHIMA I, 2014. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana [J]. Plant Cell Physiol, 55(5): 990-1004.
参考文献
KIM SH, KIM SW, AHN JW, et al. , 2020. Frequency, spectrum, and stability of leaf mutants induced by diverse γ-ray treatments in two Cymbidium hybrids [J]. Plants, 9(4): 546.
参考文献
LUO J, ZHOU JJ, MASCLAUX-DAUBRESSE C, et al. , 2019. Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/nitrogen partition [J]. Environ Exp Bot, 162: 247-255.
参考文献
LIU ZJ, CHEN SC, RU ZZ, et al. , 2006. The genus Cymbidium in China [M]. Beijing: Science Press: 10-13. [刘仲健, 陈心启, 茹正忠, 等, 2006. 中国兰属植物 [M]. 北京: 科学出版社: 10-13. ]
参考文献
MU XH, CHEN YL, 2021. The physiological response of photosynthesis to nitrogen deficiency [J]. Plant Physiol Biochem, 158: 76-82.
参考文献
MARLER TE, 2018. Bi-directional acclimation of Cycas micronesica leaves to abrupt changes in incident light in understory and open habitats [J]. Photosynthetica, 56(3): 776-785.
参考文献
MUNEKAGE Y, HOJO H, TASAKA M, et al. , 2002. Pgr5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis [J]. Cell, 110(3): 361-371.
参考文献
MUNEKAGE YN, GENTY B, PELTIER G, 2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana [J]. Plant Cell Physiol, 49(11): 1688-1698.
参考文献
MAKINO A, SHIMADAT, TAKUMI S, et al. , 1997. Does decrease in ribulose-1, 5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? [J]. Plant Physiol, 114(2): 483-491.
参考文献
MU XH, CHEN QW, CHEN FJ, et al. , 2016. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage [J]. Front Plant Sci, 24(7): 699.
参考文献
MU XH, CHEN QW, CHEN FJ, et al. , 2017. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf [J]. Int J Mol Sci, 18(12): 2624.
参考文献
MANTOVANI C, PRADO RDM, PIVETTA KFL, 2015. Foliar diagnosis in Phalaenopsis orchid plants subjected to application of nitrogen [J]. Afr J Agric Res, 10(53): 4906-4912.
参考文献
MARTIN RE, ASNER GP, SACK L, 2007. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden [J]. Oecologia, 151(3): 387-400.
参考文献
MA XD, ZHONG XL, SANG Y, 2018. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress [J]. Acta Ecol Sin, 38(20): 7508-7519. [马晓东, 钟小莉, 桑钰, 2018. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用 [J]. 生态学报, 38(20): 7508-7519. ]
参考文献
PAN RC, YE QS, HEW CS, 1997. Physiology of Cymbidium sinense: a review [J]. Sci Hortic (Amsterdam, Neth) , 70(2/3): 123-129.
参考文献
PONS TL, WESTBEEK MHM, 2004. Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species [J]. Physiol Plantarum, 122(1): 68-78.
参考文献
ROBINSON JM, BURKEY KO, 1997. Foliar CO2 photoassimilation and chloroplast linear electron transport rates in nitrogen-sufficient and nitrogen-limited soybean plants [J]. Photosynth Res, 54(3): 209-217.
参考文献
REICH A, EWEL JJ, NADKARNI NM, et al. , 2003. Nitrogen isotope ratios shift with plant size in tropical bromeliads [J]. Oecologia, 137: 587-590.
参考文献
SUN H, YANG YJ, HUANG W, 2020. The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport [J]. BBA Bioenerg, 1861(9): 148-235.
参考文献
SHINYA W, YAMAMOTO H, SUZUKI Y, et al, 2018. Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation [J]. Plant Physiol, 176(2): 1509-1518.
参考文献
STORTI M, ALBORESI A, GEROTTO C, et al. , 2019. Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens [J]. Plant Cell Environ, 42(5): 1590-1602.
参考文献
SHANGGUAN ZP, SHAO MG, DYCKMANS J, 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. J Plant Physiol, 156(1): 46-51.
参考文献
SONOIKE K, 2011. Photoinhibition of photosystem I [J]. Physiol Plant, 142(1): 56-64.
参考文献
SCIBILIA L, GIROLOMONI L, BERTEOTTI S, et al. , 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis [J]. Algal Res, 12: 170-181.
参考文献
TAO WH, WANG D, 2021. Effects of increased CO2 concentration on the photosynthetic physiology and root growth of indica and japonica rice [J]. J Nanjing Agric Univ, 2021, 44(1): 27-35. [陶文辉, 王丹, 2021. CO2浓度升高对籼、粳稻光合生理和根系生长的影响 [J]. 南京农业大学学报, 44(1): 27-35. ]
参考文献
TAKEHIRO S, DAISUKE T, HIROSHI F, et al. , 2014. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves [J]. Plant Cell Physiol, 55(6): 1184-1193.
参考文献
TAKASHIMA T, HIKOSAKA K, HIROSE T, 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species [J]. Plant Cell Environ, 27(8): 1047-1054.
参考文献
WANG XB, WANG LF, SHANGGUAN ZP, et al. , 2016. Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply [J]. PLoS ONE, 11(11): e0165733.
参考文献
WU WM, CHEN HJ, LI JC, et al. , 2013. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage [J]. Acta Agron Sin, 38(6): 1088-1096.
参考文献
WANG XL, LÜ XF, 2020. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance [J]. Guihaia, 40(4): 583-591. [王新磊, 吕新芳, 2020. 氮代谢参与植物逆境抵抗的作用机理研究进展 [J]. 广西植物, 40(4): 583-591. ]
参考文献
YAMORI W, MAKINO A, SHIKANAI T, 2016. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice [J]. Sci Rep-UK, 6: 20147.
参考文献
YAMAMOTO H, TAKAHASHI S, BADGER MR, et al. , 2016. Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis [J]. Nat Plants, 2(3): 16012.
参考文献
YAMAMOTO H, SHIKANAI T, 2019. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides [J]. Plant Physiol, 179(2): 588-600.
参考文献
YANG YJ, DING XX, HUANG W, 2019a. Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata [J]. Plant Sci, 287: 110-166.
参考文献
YANG YJ, ZHANG SB, HUANG W, 2019b. Photosynthetic regulation under fluctuating light in young and mature leaves of the CAM plant Bryophyllum pinnatum [J]. BBA Bioenerg, 1860(6): 469-477.
参考文献
YANG YJ, TAN SL, HUANG JL, et al. , 2020. The water-water cycle facilitates photosynthetic regulation under fluctuating light in the epiphytic orchid Dendrobium officinale [J]. Environ Exp Bot, 180: 104238.
参考文献
YU XH, LUO YB, DONG M, 2008. Pollination biology of Cymbidium goeringii (Orchidaceae) in China [J]. J Syst Evol, 46(2): 163-174.
参考文献
ZHANG WQ, HUANG FF, GAN XH, et al. , 2021. Effects of fertilization on the growth and photosynthetic characteristics of Heritiera littoralis seedlings [J]. Guihaia, 41(6): 862-871. [张卫强, 黄芳芳, 甘先华, 等, 2021. 施肥对银叶树幼苗生长及光合特性的影响 [J]. 广西植物, 41(6): 862-871. ]
参考文献
ZHANG SB, YANG YJ, LI JW, et al. , 2018. Physiological diversity of orchids [J]. Plant Divers, 40: 196-208.
参考文献
ZHONG C, JIAN SF, HUANG J, et al. , 2019. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L. ) [J]. Plant Physiol Biochem, 135: 41-50.
参考文献
ZHAO DL, REDDY KR, KAKANI VG, et al. , 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum [J]. Eur J Agron, 22(4): 391-403.
目录contents

    摘要

    墨兰(Cymbidium sinense)是我国的传统名花,具有悠久的栽培历史,该物种为林下荫生植物,生境破坏和森林冠层结构的改变都会导致其遭受氮素和光照波动的双重影响。为了探究墨兰的光合作用响应这种复合胁迫的机制,该文研究了不同氮浓度处理下墨兰叶片的氮含量、叶绿素含量、光系统I(PS I)和光系统Ⅱ(PS Ⅱ)对波动光强的影响。结果表明:(1) 0 mmol·L-1氮处理下,墨兰叶片的氮含量、叶绿素含量、PS Ⅱ最大量子效率(Fv/Fm)和PS I最大可氧化的P700信号(Pm)降低,而非光化学猝灭和PS Ⅱ非调节性能量耗散被大量激发。(2) 1.25、5、10 mmol·L-1氮处理下,光强突然增加使墨兰叶片的PS I反应中心表现为先过度还原,随后过度还原态被逐渐解除;环式电子传递的激发表现为先增加后逐渐下降,说明环式电子传递的动态调节和PS I的氧化还原态密切相关。(3) 波动光下,0 mmol·L-1氮处理的墨兰叶片没有表现出PS I的过度还原,主要是因为其PS Ⅱ释放的电子很少,避免了过量电子被传递到PS I。综上认为,氮素的波动会显著影响墨兰对波动光强的光合生理响应,这为墨兰的人工栽培和保护提供了科学依据,并有助于探究林下植物光合作用响应氮素和波动光复合胁迫的机制。

    Abstract

    Cymbidium sinense is a well-known traditional orchid in China, and has been widely cultivated for a long time. This species is typically a shade species under the forest, but habitat destruction and tree canopy structure change make it subject to the dual fluctuation of light and nutrients. To explore the photosynthetic response of C. sinense to the combined stress of nitrogen and fluctuating light intensity, the leaf nitrogen content, chlorophyll content, and the responses of photosystem I (PS I) and photosystem Ⅱ (PS Ⅱ) to fluctuating light intensity were investigated under different nitrogen treatments. The results were as follows: (1) The C. sinense under 0 mmol·L-1 nitrogen treatment had lower values for leaf nitrogen content, chlorophyll content, PS Ⅱ maximum quantum efficiency (Fv/Fm) and the value of maximum oxidizable P700 of PS I (Pm), but motivated a large amount of non-photochemical quenching and PS Ⅱ non-regulatory energy dissipation. (2) When the light intensity suddenly increased, the PS I reaction center showed over-reduction firstly, and then the over-reduction state was gradually released under 1.25 mmol·L-1, 5 mmol·L-1 and 10 mmol·L-1 nitrogen treatments. Meanwhile, the excitation degree of cyclic electron flow increased first and then gradually decreased, indicating that the dynamic adjustment of cyclic electron flow was closely linked to the redox state of PS I. (3) Under fluctuating light intensity, the excessive reduction of PS I was not observed in C. sinense under 0 mmol·L-1 nitrogen treatment. This was mainly because the few electrons were released by PS Ⅱ, thus avoiding the transfer of excess electrons to PS I. These results suggest that nitrogen fluctuation can affect significantly the response of C. sinense to fluctuating light intensity. These findings provide a scientific basis for the cultivation and conservation of C. sinense, and are helpful to explore how photosynthesis of shade plant responds to the combined stress of nitrogen and fluctuating light intensity.

  • 自然生境下,由于环境因子不断变化,尤其是生境受到干扰时变化更为激烈,因此植物适应环境变化的能力对其生存至关重要。光合作用作为植物感知环境变化、吸收转换光能和物质代谢的基础,对外界因子变化的响应极其敏锐。研究发现植物的光合作用受光照(Campany et al.,2016; Fan et al.,2019)、氮素等多种因素的影响(Grassi &Magnani,2005; 陶文辉和王丹,2021),如光强波动会影响光系统Ⅱ(PS Ⅱ)的光能吸收和光合电子传递(Yang et al.,2019a),当光强突然增加,PS Ⅱ的光能吸收和电子传递会迅速增强(Sun et al.,2020),而此时的卡尔文循环活性上升相对缓慢(Yamori et al.,2016; Marler,2018),这会引起NADP+/NADPH上升,导致NADP+供应不足。电子会在光系统I(PS I)处堆积,类囊体膜内产生大量活性氧(ROS)等物质,造成PS I损伤(Munekage et al.,2002; Shinya et al.,2018)。

  • PS I损伤会限制植物的光合线性电子传递(LEF)和环式电子传递(CEF),进而影响CO2的同化,降低植物光合效率(Takehiro et al.,2014; Allakhverdiev et al.,2015; Brestic et al.,2015),严重时会导致植物生长受损或死亡(Munekage et al.,2008; Allahverdiyeva et al.,2013; Jokel et al.,2018)。植物为了保护PS I不受波动光的损伤,进化出了多种光保护机制来调节光合电子传递链的氧化还原态,如在藻类、苔藓、蕨类及裸子植物中,flavodiiron蛋白(FDPs)会介导波动光下O2的快速还原,消耗PS I处多余的电子,最终保护PS I(Ilík et al.,2017; Storti et al.,2019)。但是,研究表明flavodiiron蛋白在被子植物进化过程中已经丢失(Yamamoto et al.,2016; Ilík et al.,2017),CEF被认为是被子植物中普遍存在的光保护机制(Kono et al.,2014; Kono &Terashima,2016; Yamamoto &Shikanai,2019)。

  • 当光照增强时,CEF的活性会迅速增加,之后逐渐下降,这种CEF的激发会促进跨类囊体膜质子梯度(ΔpH)的快速形成,并下调质体醌的氧化速率。同时,加强Cytb6f复合体(Cytb6f)处的光合控制,最终缓解PS I反应中心的过度还原。ΔpH的建立有利于提高ATP/NADPH的生成比例,促进卡尔文循环和光呼吸,这会加快电子从PS I到NADP+的传递。除CEF外,水-水循环(WWC)还是被子植物PS I免遭波动光损伤的重要保护策略( Huang et al.,2019; Huang et al.,2021)。WWC活性具有较强的种间特异性(Driever &Baker,2011)。Yang等(2019b)研究发现,落地生根(Bryophyllumpinnatum)中的WWC途径能快速耗散波动光下的PS I过剩电子,避免PS I的过度还原,保护了光系统I的活性。类似的研究结果在山茶(Camellia japonica)(Sun et al.,2020)、铁皮石斛(Dendrobium officinale)(Yang et al.,2020)等物种中被报道,说明植物会采取多种保护策略,避免自身遭受波动光的光抑制或损伤。

  • 氮是构建光合器官的物质基础。在稻(Oryza sativa)(Makino et al.,1997; Zhong et al.,2019; )、玉米(Zea mays)(Mu et al.,2016)和大豆(Glycine max)(Robinson &Burkey,1997)等植物中,氮素可通过调节LHCs、PS Ⅱ、PS I、Cytb6f、ATP和Rubisco等光合酶的合成,最终影响植物光合作用(王新磊和吕新芳,2020; Mu &Chen,2021)。植物缺氮会降低光能的吸收和转换效率、光合电子传递速率及CO2羧化效率等(Mu et al.,2016; Zhong et al.,2019),如低氮处理的小麦(Triticum aestivum),最大光化学效率(Fv/Fm)、PS Ⅱ量子产率 [Y(Ⅱ)]、光合电子传递速率(ETR)和光化学猝灭系数(qP)均下降(Shangguan et al.,2000; Wu et al.,2013; Wang et al.,2016)。水稻缺氮会降低Y(Ⅱ)和ETR,增加NPQ(Huang et al.,2004)。此外,低氮胁迫降低了玉米的Y(Ⅱ)、Fv/FmqPETR,同时增加热耗散和叶绿素荧光激发(Mu et al.,2017)。近年来,探究复合胁迫对植物光合作用、生长发育和代谢的影响受到广泛关注,如前人对氮素与干旱(马晓东等,2018)、CO2(Cohen et al.,2019)和光照(Scibilia et al.,2015)等复合胁迫进行了研究。但是,氮素与波动光的复合胁迫如何影响植物的光合生理调控尚未被研究,而这是植物经常遭受的环境胁迫。

  • 兰属(Cymbidium)是一类重要的观赏兰花,在亚洲热带、亚热带及澳大利亚北部等地区均有分布(Chase et al.,2015; Christenhusz &Byng,2016)。全属有50余种,其中2/3以上的物种在我国有分布(Pan et al.,1997; 刘仲健等,2006)。该属囊括了地生、附生和腐生3种生活型(Yu et al.,2008; Kim et al.,2020),表现出多样的生态适应性,其中地生种类主要从土壤获取氮素养分,而附生种类从大气沉积物、固体基质(如树皮或枯枝落叶)和微生物的固氮中获得营养(Reich et al.,2003; Zhang et al.,2018)。因此,该属植物的氮营养差异较大(Grassi &Magnani,2005),墨兰作为该属植物中的地生种类,生长在我国安徽、福建、广西、贵州、海南、云南、四川等海拔300~2 000 m的林下或阴湿灌木林下。生境的破坏经常会引起光照强度和土层养分的改变,导致墨兰遭受波动光和氮营养的复合胁迫。但是,波动光和氮营养的复合胁迫如何影响兰科植物的光合调控尚缺乏研究。本文在不同氮素处理条件下,研究了墨兰的光系统I和光系统Ⅱ对波动光强的响应,以期了解墨兰对氮素和波动光复合胁迫的光合调控响应。本研究的结果可为墨兰的人工栽培和保护提供科学依据,并对林下植物光合作用响应氮素和波动光复合胁迫的机制进行初步探索。

  • 1 材料与方法

  • 1.1 材料和处理

  • 以墨兰(C. sinense)的人工繁育苗为研究材料。选取两年生、大小一致的幼苗栽培在中国科学院昆明植物研究所温室(102°41′ E、25°01′ N),试验地海拔1 990 m,温室最高温度27℃,最低温度12℃,相对湿度为45%~75%,光照条件保持为15%~20%的全光照。

  • 试验于2020年7月至2021年4月进行,参照Mantovani等(2015)的方法,以NH4NO3为氮源,配置60 L改良后的霍格兰溶液(pH = 6)。设置0、1.25、5、10 mmol·L-1共4个处理氮浓度,每个氮浓度处理墨兰15盆,共计60盆。每周施氮1次,培养260 d后进行相关的指标测定。改良后的霍格兰营养液包含以下元素:Ca(NO32·4H2O 945 mg·L-1、KNO3 506 mg·L-1、KH2PO4 136 mg·L-1、MgSO4 29.58 mg·L-1和铁盐溶液2.5 mL(pH = 5.5)。其铁盐溶液包含FeSO4·7H2O 5.56 g·L-1、EDTA-Na7.46 g·L-1和5 mL微量元素。微量元素含KI 0.83 mg·L-1、H3BO3 6.2 mg·L-1、MnSO4 22.3 mg·L-1、ZnSO4 8.6 mg·L-1、Na2MoO4 0.25 mg·L-1、CuSO4 0.025 mg·L-1和CoCl2 0.025 mg·L-1

  • 1.2 指标测定

  • 1.2.1 叶绿素含量测定

  • 叶绿素含量使用SPAD-502 Plus手持式叶绿素仪(Konica Minolta,Inc. Japan,精度为±1.0 SPAD)测定。选取墨兰基部第3片叶,避开叶脉,活体测定最大叶宽位点的SPAD值,每个氮浓度处理测定30片成熟叶,最终计算平均值为该氮素水平下墨兰的SPAD值。

  • 1.2.2 PS I和PS Ⅱ光合参数测定

  • 叶绿素测定后,将墨兰整株暗适应30 min,利用DUAL-PAM-100测量系统(Heinz Walz,German)测定基部第3片叶的Fv/Fm比值,用于分析叶片的PS Ⅱ活性。随后再暗适应5 min,测定低光(59 μmol photons·m-2·s-1)和高光(1 455 μmol photons·m-2·s-1)处理过程中PS I和PS Ⅱ光合参数变化。PS I参数:PS I光化学量子产额Y(I)=(Pm′-P)/Pm; PS I供体端限制耗散的量子产额YND)= P/Pm; PS I受体端限制非光化学能量耗散的量子产额YNA)=(Pm-Pm′)/Pm。PS Ⅱ参数:PS Ⅱ的最大量子产额Fv/Fm =(Fm-Fo)/Fm; PS Ⅱ光化学的有效量子产额Y(Ⅱ)=(Fm′-Fs)/Fm′; PS Ⅱ中非调节能量耗散的量子产量YNO)= Fs/Fm; 非光化学猝灭/热耗散系数NPQ =(Fm-Fm′)/Fm′。式中,Fo为暗适应后的最小荧光强度,FmFm′分别为暗适应和光适应后的最大荧光强度,Fs为光适应荧光。PS I和PS Ⅱ的电子传递速率计算分别为ETRI = PPFD × Y(I)× 0.84× 0.5; ETRⅡ = PPFD × Y(Ⅱ)× 0.84× 0.5。式中,PPFD为光合光子通量密度,Y(I)是PS I光化学量子产额,Y(Ⅱ)是PS Ⅱ光化学的有效量子产额,光吸收比例根据入射强度的0.84计算,叶绿体吸收的光能分配到PS I和PS Ⅱ的份额分别为0.5。每个氮处理分别选择6株及以上的植物进行测定。

  • 1.2.3 叶氮含量测定

  • 待上述PS I、PS Ⅱ光合参数测定完成后,取叶片经80℃烘箱烘干48 h后磨样,在中国科学院昆明植物研究所生物技术实验中心利用Elementar Vario MICRO cube(Elementar,German)进行叶片氮含量(LNC)测定,样品在燃烧管内经高温燃烧和裂解,之后转化为气体产物被分析鉴定。

  • 1.3 数据统计分析

  • 利用Excel和GraphPad prism 6软件对测定数据进行统计、分析和数据可视化; 用ANOVA软件分析不同处理间的显著性差异(显著水平α=0.05),并用Tukey(HSD)软件进行组间多重比较。

  • 2 结果与分析

  • 2.1 氮浓度对墨兰叶片氮含量的影响

  • 如图1: A所示,墨兰的叶片氮含量(LNC)与氮处理浓度呈正相关。0 mmol·L-1低氮处理下,墨兰LNC最低,约为35.40 mg; 处理氮浓度增至1.25、5、10 mmol·L-1时,叶片氮含量随之增加,分别提升了64.30%(58.16 mg)、102.40%(71.65 mg)和156.27%(90.72 mg)(图1: A)。

  • 2.2 氮浓度对墨兰叶绿素含量的影响

  • 墨兰叶片的叶绿素含量(SPAD值)随着氮浓度的增加而升高(图1: B)。0 mmol·L-1氮处理下,墨兰的SPAD值仅为62.7 mg; 而1.25 mmol·L-1氮处理时,SPAD值升高为71.91 mg; 氮浓度增至5、10 mmol·L-1时,墨兰的叶绿素含量没有显著升高,分别为74.65、74.81 mg(图1: B)。另外,墨兰叶片的SPAD/LNC比值在0 mmol·L-1氮处理下最高,约为1.77; 随着氮浓度的增加,SPAD/LNC比值逐渐减小(图1: C),说明在低氮胁迫下,墨兰的叶绿素合成优先利用叶片中的氮素,随着氮供应的增加,叶片氮含量会继续积累(图1: A),而叶绿素合成并不会持续增加(图1: B),从而导致叶绿素含量与叶片氮含量的比值明显降低(图1: C)。

  • 2.3 氮和波动光强复合胁迫对墨兰PS Ⅱ的影响

  • 0 mmol·L-1氮处理下,墨兰叶片的Fv/Fm比值最低,仅为0.49,随着处理氮浓度增加,Fv/Fm比值分别提升了33.38%、35.81%、36.06%,说明墨兰的PS Ⅱ对缺氮较为敏感,并且0 mmol·L-1氮处理显著降低了PS Ⅱ的活性(图2: A)。0 mmol·L-1氮处理时,低光下的墨兰Y(Ⅱ)大幅下降,显著低于1.25、5、10 mmol·L-1氮处理组(图3: A),说明缺氮导致墨兰植株的PS Ⅱ光能利用率降低(图2: A)。1.25、5、10 mmol·L-1氮处理下,墨兰的Y(Ⅱ)差异不显著,而光照增强时,墨兰的Y(Ⅱ)均降低,同时0 mmol·L-1氮处理的Y(Ⅱ)显著低于其他氮浓度处理(图3: A)。

  • PS Ⅱ光能利用效率下降时,植物会激发NPQ耗散过剩光能,保护PS Ⅱ不受损伤。59 μmol photons·m-2·s-1低光条件下,0 mmol·L-1氮处理下的墨兰光能利用率较低(图3: A),激发了最高的NPQ,约为2.12(图3: B); 其次是10 mmol·L-1氮处理,NPQ约为1.74; 而1.25 mmol·L-1氮处理的墨兰NPQ为1.25(图3: B)。光照增强时,5 mmol·L-1氮处理的墨兰,激发了最小的NPQ,约为2.62; 而10 mmol·L-1氮处理激发的NPQ明显高于其他处理(图3: B)。尽管低光、低氮处理条件下的墨兰,激发了最大的NPQ,但激发的NPQ不足以耗散掉过多的光能,导致0 mmol·L-1氮处理下的墨兰YNO)较高(图3: C),这种较高的YNO)表明叶片还有较多的过剩光能仍不能正常耗散,会导致PS Ⅱ产生活性氧等物质,甚至造成PS Ⅱ损伤。

  • 图1 不同氮浓度处理下墨兰叶片氮含量(LNC)(A)、叶绿素含量(叶片SPAD值)(B)、叶绿素含量与叶片氮含量比值(SPAD/LNC)(C)

  • Fig.1 Leaf nitrogen content (LNC) (A) , chlorophyll content (Leaf SPAD value) (B) , ratio of chlorophyll content to leaf nitrogen content (SPAD/LNC) (C) in Cymbidium sinense under different concentrations of nitrogen treatments

  • 图2 不同氮浓度处理下墨兰PSⅡ最大量子效率(Fv/Fm)(A)和PS I最大可氧化的P700信号(Pm)(B)

  • Fig.2 Maximum quantum yield of PS Ⅱ after dark adaptation (Fv/Fm) (A) and the value of maximum oxidizable P700 of PS I (B) in Cymbidium sinense under different concentrations of nitrogen treatments

  • 2.4 氮和波动光强的复合胁迫对墨兰PS I的影响

  • 墨兰PS I的实际量子效率Y(I)和上述Y(Ⅱ)的情况类似(图3: A,4: A)。低光下,0 mmol·L-1氮处理的墨兰,Y(I)显著低于1.25、5、10 mmol·L-1氮处理组。光照突然增强时,墨兰的Y(I)迅速下降且0 mmol·L-1氮处理下的墨兰,Y(I)显著低于其他氮浓度处理(图4: A)。同时,墨兰的PS I活性也随着处理氮浓度的降低而显著下降,其中0 mmol·L-1氮处理下的墨兰,其Pm最低(图2: B)。

  • 0 mmol·L-1氮处理下,墨兰的PS Ⅱ活性较低,导致传递到PS I的电子较少,这使墨兰叶片遭受光强突然增加,其YNA)没有明显变化(图4: C)。相反,1.25、5、10 mmol·L-1氮处理下,墨兰的YND)在光强突然增加的前10秒增长较缓慢(图4: B),导致YNA)瞬间急剧增加(图4: C),说明1.25、5、10 mmol·L-1处理的墨兰在遭受波动光强时,从PS Ⅱ传递到PS I处的电子快速增加,从而引起光系统I反应中心的过度还原。

  • 2.5 氮和波动光强的复合胁迫对墨兰ETR的影响

  • 墨兰的ETR I和ETR Ⅱ高度依赖于光照强度,并受低氮胁迫的影响(图5: A,5: B)。波动光强下,0 mmol·L-1氮处理的墨兰,其ETR I明显低于其他氮处理,并始终保持稳定; 而1.25、5、10 mmol·L-1氮处理下的墨兰,ETR I在低光下无明显差异,光照增至1 455 μmol photons·m-2·s-1时,其ETR I先迅速增加后减少(图5: A)。另外,1.25、5、10 mmol·L-1氮处理下,墨兰在光照增强后的第60 s出现ETR Ⅱ的最大值,而0 mmol·L-1氮处理下的墨兰,其ETR Ⅱ较低(图5: B)。本研究结果显示,1.25、5、10 mmol·L-1氮处理下,墨兰在遭受波动光时,其CEF先迅速增加,之后逐渐降低(图5: C),而0 mmol·L-1处理的CEF一直处于较低水平(图5: C)。

  • 图3 不同氮浓度处理下墨兰的Y(Ⅱ)、NPQYNO)对波动光强的响应

  • Fig.3 Responses of Y (Ⅱ) , NPQ, Y (NO) of Cymbidium sinense to fluctuating light intensity under different concentrations of nitrogen treatments

  • 图4 不同氮浓度处理下墨兰Y(I)、YND)和 YNA)对波动光强的响应

  • Fig.4 Responses of Y (I) , Y (ND) , Y (NA) of Cymbidium sinense to fluctuating light intensity under different concentrations of nitrogen treatments

  • 3 讨论与结论

  • 氮素对植物的光合作用、生长发育和生理代谢具有重要影响(Makino et al.,1997; Zhong et al.,2019; 张卫强等,2021),其中叶片氮含量可以反映植物的供氮水平(Robinson &Burkey,1997; Martin et al.,2007)。氮素缺乏会导致玉米叶片氮含量的降低,叶绿素合成显著下降(Mu et al.,2016; Mu et al.2017)。本研究发现,低氮处理使墨兰的氮供应减少,影响氮素向叶片的转运和储存,导致墨兰叶片氮含量和叶绿素合成显著降低,而这种限制会随氮浓度的增加而解除,说明氮供应量直接影响墨兰叶片中的氮累积和叶绿素合成。

  • 图5 不同氮浓度处理下墨兰ETRIETRICEF对波动光强的响应

  • Fig.5 Responses of ETR I, ETR Ⅱ, CEF of Cymbidium sinense to fluctuating light intensity under different concentrations of nitrogen treatments

  • 叶片氮含量和叶绿素合成会影响植物的光合作用(Takashima et al.,2004; Mantovani et al.,2015)。植物的光合效率会随叶绿素含量的增加而增强(Pons &Westbeek,2004; Mu &Chen,2021),并且叶绿素的合成与氮供应量呈正相关(Takashima et al.,2004),氮是叶绿素的结构组分(Mantovani et al.,2015)。本研究中,0 mmol·L-1氮处理下的墨兰,其叶绿素含量显著降低。这与前人在玉米、水稻、小麦、大豆和杨树(Populus cathayana)等植物上的研究结果一致(Makino et al.,1997; Robinson &Burkey,1997; Takashima et al.,2004; Zhao et al.,2005; Antal et al.,2010; Mu et al.,2016; Luo et al.,2019)。当氮浓度增加至1.25 mmol·L-1时,墨兰的叶绿素含量显著升高,但更高浓度的氮处理没有使叶绿素含量继续增加,说明1.25 mmol·L-1的氮浓度就能满足墨兰的光合氮需求,这与水稻,玉米等植物相比,墨兰对氮素供应的需求明显较低(Che et al.,2016; Ahmad et al.,2018)。

  • 氮含量影响着光能的吸收、传递和转化等光反应过程(Huang et al.,2004; Wang et al.,2016)。增加氮素供应量能够提高光合色素捕捉光能的效率和PS Ⅱ反应中心开放的比例(Huang et al.,2004)。PS Ⅱ反应中心吸收的光量子,可以通过PS Ⅱ实际传递的能量Y(Ⅱ)、PS Ⅱ调节性能量耗散NPQ和非调节性能量耗散YNO)等途径进行转化和耗散(Huang et al.,2019),其中NPQ反映的是在PS Ⅱ天线色素吸收的光能中不能被用于光合电子传递而以热耗散形式耗散掉的部分。0 mmol·L-1氮处理下的墨兰,其Y(Ⅱ)和Y(I)显著低于其他氮处理,说明墨兰PS Ⅱ和PS I的量子转化效率受到缺氮的影响。当光照增强时,墨兰的NPQ激发显著升高。这和Huang等(2021)的研究结果类似,即当光照突然增强时,植物为了避免PS Ⅱ遭受损伤,会建立较高的跨类囊体质子梯度(ΔpH)并快速激发NPQ,将PS Ⅱ中多余的光能以热的形式无损耗散(Sonoike,2011; Driever &Baker,2011; Yang et al.,2019a)。虽然NPQ可以在一定程度上保护PS Ⅱ不被损伤(Driever &Baker,2011),但本研究结果显示,0 mmol·L-1氮处理的墨兰,即使激发了较高的NPQ,也不能完全耗散PS Ⅱ中过剩的光能,这可能会引起PS Ⅱ复合体产生大量的活性氧,影响PS Ⅱ蛋白合成和修复(Sonoike,2011)。

  • 本研究结果发现,0 mmol·L-1氮处理下的墨兰,Pm最低; 随着氮素供应的增加,Pm逐渐增大,表明墨兰的PS I受到氮素供应水平的影响。此外,0 mmol·L-1氮处理下的墨兰,其PS Ⅱ活性降低,导致PS Ⅱ处的电子传递速率显著低于其他氮处理,使得传递到PS I处的电子较少,没有引起Y(NA)的快速上升,说明在低氮胁迫下,墨兰叶片的PS Ⅱ活性下调有助于避免波动光强引起的PS I损伤。但当氮处理浓度高于1.25 mmol·L-1时,YNA)在照射强光后的前10秒瞬间快速上升,表明墨兰在光强突然增加的10秒内出现了PS I反应中心的过度还原。在PS Ⅱ电子传递迅速增加的同时,暗反应还没有完全活化,导致PS I处的还原能不能被暗反应立即消耗,最终造成PS I处活化电子的堆积。

  • 环式电子传递(CEF)的激发被认为与植物的光保护有关(Sonoike,2011; Yamamoto &Shikanai,2019)。Kono和Terashima等(2016)的研究结果显示,当光照增强时,植物的CEF会被快速激发,这种激发对于保护PS I至关重要。前人对拟南芥(Arabidopsis thaliana)和水稻等的诸多研究均证实了CEF的缺失会加剧波动光对植物PS I的光抑制(Kono &Noguchi,2014; Yamamoto et al.,2016)。在0 mmol·L-1氮处理下,墨兰的CEF活性较低; 光照突然增强时,CEF并没有被迅速激发,这可能是在低氮处理下,墨兰的PS Ⅱ活性下降导致PS Ⅱ处产生的电子较少,不足以引起PS I的过度还原。此外,CEF的激发还受PS I氧化还原态的调节。Yang等(2019b)认为,较低的YNA)不会引起CEF的高度激发。本研究也发现,0 mmol·L-1氮处理墨兰在波动光下的CEF激发较弱; 而1.25、5、10 mmol·L-1氮处理的墨兰,当光照突然增强时会选择快速激发CEF来加强ΔpH梯度的建立,缓解PS I的过度还原。随着YNA)下降到稳态,PS I反应中心便不再处于过度还原态。此时,CEF的激发程度也随之减弱,这可以避免类囊体腔因CEF的激发被过度酸化,防止光能利用效率受到抑制。

  • 综上所述,一方面,氮供应能直接影响墨兰叶片的氮累积和叶绿素合成,缺氮植株会降低叶片氮含量和叶绿素含量,同时叶片中的氮会优先用于合成叶绿素,这能在缺氮下改善的光合作用表现; 另一方面,缺氮会降低墨兰的PS I和PS Ⅱ的活性。当植株遭受剧烈的光强波动时,墨兰会大量激发非光学猝灭,但缺氮降低了植物的光能利用率,其依然会产生过剩光能,造成PS Ⅱ损伤。当光照突然增强,低氮处理的墨兰PS Ⅱ活性较低,避免PS I的过度还原和受到波动光强的损伤; 高氮处理下的墨兰会快速激发环式电子流,缓解PS I的过度还原,避免PS I受到损伤。因此,墨兰适应波动光强的光合调控策略可能受到氮供应水平、叶片氮含量及叶绿素含量的影响。本研究结果对认识兰属植物的光合适应机制具有重要意义,并能为物种保护和人工栽培提供重要的科学依据。

  • 参考文献

    • ALLAKHVERDIEV SI, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves [J]. Photosynth Res, 126: 449-463.

    • ALLAHVERDIYEVA Y, MUSTILA H, ERMAKOVA M, et al. , 2013. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light [J]. P Natl Acad Sci USA, 110(10): 4111-4116.

    • ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. , 2010. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris [J]. Planta, 232: 887-898.

    • AHMAD I, WAJID SA, AHMAD A, et al. , 2018. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environment [J]. Environ Sci Pollut Res, 26: 1227-1237.

    • BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Low PSI content limits the photoprotection of PSI and PSⅡ in early growth stages of chlorophyll b-deficient wheat mutant lines [J]. Photosynth Res, 125(1/2): 151-166.

    • CAMPANY CE, TJOELKER MG, VON CAEMMERER S, et al. , 2016. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks [J]. Plant Cell Environ, 39(12): 2762-2773.

    • CHRISTENHUSZ MJM, BYNG JW, 2016. The number of known plants species in the world and its annual increase [J]. Phytotaxa, 261(3): 201-217.

    • CHASE MW, CAMERON KM, FREUDENSTEIN JV, et al. , 2015. An updated classification of Orchidaceae [J]. Bot J Linn Soc, 177(2): 151-174.

    • CHE SG, ZHAO BQ, LI YT, et al. , 2016. Nutrient uptake requirements with increasing grain yield for rice in China [J]. J Integr Agric, 15(4): 907-917.

    • COHEN I, HALPERN M, YERMIYAHU U, et al. , 2019. CO2 and nitrogen interaction alters root anatomy, morphology, nitrogen partitioning and photosynthetic acclimation of tomato plants [J]. Planta, 250(5): 1423-1432.

    • DRIEVER SM, BAKER NR, 2011. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted [J]. Plant Cell Environ, 34(5): 837-846.

    • FAN YF, CHEN JX, WANG ZL, et al. , 2019. Soybean (Glycine max L. Merr. ) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis [J]. BMC Plant Biol, 19(1): 34.

    • GRASSI G, MAGNANI F, 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees [J]. Plant Cell Environ, 28(7): 834-849.

    • HUANG W, HU H, ZHANG SB, 2021. Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species [J]. J Photochem Photobiol B, 219: 112203.

    • HUANG W, YANG YJ, ZHANG SB, 2019. The role of water-water cycle in regulating the redox state of photosystem I under fluctuating light [J]. BBA Bioenerg, 1860(5): 383-390.

    • HUANG ZA, JIANG DA, YANG Y, et al. , 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica, 42(3): 357-364.

    • ILÍK P, PAVLOVIČ A, KOUŘIL R, et al. , 2017. Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms [J]. New Phytol, 214(3): 967-972.

    • JOKEL M, JOHNSON X, PELTIER G, et al. , 2018. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light [J]. Plant J, 94(5): 822-835.

    • KONO M, TERASHIMA I, 2016. Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition [J]. Plant Cell Physiol, 57(7): 1405-1414.

    • KONO M, NOGUCHI K, TERASHIMA I, 2014. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana [J]. Plant Cell Physiol, 55(5): 990-1004.

    • KIM SH, KIM SW, AHN JW, et al. , 2020. Frequency, spectrum, and stability of leaf mutants induced by diverse γ-ray treatments in two Cymbidium hybrids [J]. Plants, 9(4): 546.

    • LUO J, ZHOU JJ, MASCLAUX-DAUBRESSE C, et al. , 2019. Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/nitrogen partition [J]. Environ Exp Bot, 162: 247-255.

    • LIU ZJ, CHEN SC, RU ZZ, et al. , 2006. The genus Cymbidium in China [M]. Beijing: Science Press: 10-13. [刘仲健, 陈心启, 茹正忠, 等, 2006. 中国兰属植物 [M]. 北京: 科学出版社: 10-13. ]

    • MU XH, CHEN YL, 2021. The physiological response of photosynthesis to nitrogen deficiency [J]. Plant Physiol Biochem, 158: 76-82.

    • MARLER TE, 2018. Bi-directional acclimation of Cycas micronesica leaves to abrupt changes in incident light in understory and open habitats [J]. Photosynthetica, 56(3): 776-785.

    • MUNEKAGE Y, HOJO H, TASAKA M, et al. , 2002. Pgr5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis [J]. Cell, 110(3): 361-371.

    • MUNEKAGE YN, GENTY B, PELTIER G, 2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana [J]. Plant Cell Physiol, 49(11): 1688-1698.

    • MAKINO A, SHIMADAT, TAKUMI S, et al. , 1997. Does decrease in ribulose-1, 5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? [J]. Plant Physiol, 114(2): 483-491.

    • MU XH, CHEN QW, CHEN FJ, et al. , 2016. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage [J]. Front Plant Sci, 24(7): 699.

    • MU XH, CHEN QW, CHEN FJ, et al. , 2017. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf [J]. Int J Mol Sci, 18(12): 2624.

    • MANTOVANI C, PRADO RDM, PIVETTA KFL, 2015. Foliar diagnosis in Phalaenopsis orchid plants subjected to application of nitrogen [J]. Afr J Agric Res, 10(53): 4906-4912.

    • MARTIN RE, ASNER GP, SACK L, 2007. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden [J]. Oecologia, 151(3): 387-400.

    • MA XD, ZHONG XL, SANG Y, 2018. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress [J]. Acta Ecol Sin, 38(20): 7508-7519. [马晓东, 钟小莉, 桑钰, 2018. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用 [J]. 生态学报, 38(20): 7508-7519. ]

    • PAN RC, YE QS, HEW CS, 1997. Physiology of Cymbidium sinense: a review [J]. Sci Hortic (Amsterdam, Neth) , 70(2/3): 123-129.

    • PONS TL, WESTBEEK MHM, 2004. Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species [J]. Physiol Plantarum, 122(1): 68-78.

    • ROBINSON JM, BURKEY KO, 1997. Foliar CO2 photoassimilation and chloroplast linear electron transport rates in nitrogen-sufficient and nitrogen-limited soybean plants [J]. Photosynth Res, 54(3): 209-217.

    • REICH A, EWEL JJ, NADKARNI NM, et al. , 2003. Nitrogen isotope ratios shift with plant size in tropical bromeliads [J]. Oecologia, 137: 587-590.

    • SUN H, YANG YJ, HUANG W, 2020. The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport [J]. BBA Bioenerg, 1861(9): 148-235.

    • SHINYA W, YAMAMOTO H, SUZUKI Y, et al, 2018. Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation [J]. Plant Physiol, 176(2): 1509-1518.

    • STORTI M, ALBORESI A, GEROTTO C, et al. , 2019. Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens [J]. Plant Cell Environ, 42(5): 1590-1602.

    • SHANGGUAN ZP, SHAO MG, DYCKMANS J, 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. J Plant Physiol, 156(1): 46-51.

    • SONOIKE K, 2011. Photoinhibition of photosystem I [J]. Physiol Plant, 142(1): 56-64.

    • SCIBILIA L, GIROLOMONI L, BERTEOTTI S, et al. , 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis [J]. Algal Res, 12: 170-181.

    • TAO WH, WANG D, 2021. Effects of increased CO2 concentration on the photosynthetic physiology and root growth of indica and japonica rice [J]. J Nanjing Agric Univ, 2021, 44(1): 27-35. [陶文辉, 王丹, 2021. CO2浓度升高对籼、粳稻光合生理和根系生长的影响 [J]. 南京农业大学学报, 44(1): 27-35. ]

    • TAKEHIRO S, DAISUKE T, HIROSHI F, et al. , 2014. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves [J]. Plant Cell Physiol, 55(6): 1184-1193.

    • TAKASHIMA T, HIKOSAKA K, HIROSE T, 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species [J]. Plant Cell Environ, 27(8): 1047-1054.

    • WANG XB, WANG LF, SHANGGUAN ZP, et al. , 2016. Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply [J]. PLoS ONE, 11(11): e0165733.

    • WU WM, CHEN HJ, LI JC, et al. , 2013. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage [J]. Acta Agron Sin, 38(6): 1088-1096.

    • WANG XL, LÜ XF, 2020. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance [J]. Guihaia, 40(4): 583-591. [王新磊, 吕新芳, 2020. 氮代谢参与植物逆境抵抗的作用机理研究进展 [J]. 广西植物, 40(4): 583-591. ]

    • YAMORI W, MAKINO A, SHIKANAI T, 2016. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice [J]. Sci Rep-UK, 6: 20147.

    • YAMAMOTO H, TAKAHASHI S, BADGER MR, et al. , 2016. Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis [J]. Nat Plants, 2(3): 16012.

    • YAMAMOTO H, SHIKANAI T, 2019. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides [J]. Plant Physiol, 179(2): 588-600.

    • YANG YJ, DING XX, HUANG W, 2019a. Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata [J]. Plant Sci, 287: 110-166.

    • YANG YJ, ZHANG SB, HUANG W, 2019b. Photosynthetic regulation under fluctuating light in young and mature leaves of the CAM plant Bryophyllum pinnatum [J]. BBA Bioenerg, 1860(6): 469-477.

    • YANG YJ, TAN SL, HUANG JL, et al. , 2020. The water-water cycle facilitates photosynthetic regulation under fluctuating light in the epiphytic orchid Dendrobium officinale [J]. Environ Exp Bot, 180: 104238.

    • YU XH, LUO YB, DONG M, 2008. Pollination biology of Cymbidium goeringii (Orchidaceae) in China [J]. J Syst Evol, 46(2): 163-174.

    • ZHANG WQ, HUANG FF, GAN XH, et al. , 2021. Effects of fertilization on the growth and photosynthetic characteristics of Heritiera littoralis seedlings [J]. Guihaia, 41(6): 862-871. [张卫强, 黄芳芳, 甘先华, 等, 2021. 施肥对银叶树幼苗生长及光合特性的影响 [J]. 广西植物, 41(6): 862-871. ]

    • ZHANG SB, YANG YJ, LI JW, et al. , 2018. Physiological diversity of orchids [J]. Plant Divers, 40: 196-208.

    • ZHONG C, JIAN SF, HUANG J, et al. , 2019. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L. ) [J]. Plant Physiol Biochem, 135: 41-50.

    • ZHAO DL, REDDY KR, KAKANI VG, et al. , 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum [J]. Eur J Agron, 22(4): 391-403.

  • 参考文献

    • ALLAKHVERDIEV SI, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves [J]. Photosynth Res, 126: 449-463.

    • ALLAHVERDIYEVA Y, MUSTILA H, ERMAKOVA M, et al. , 2013. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light [J]. P Natl Acad Sci USA, 110(10): 4111-4116.

    • ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. , 2010. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris [J]. Planta, 232: 887-898.

    • AHMAD I, WAJID SA, AHMAD A, et al. , 2018. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environment [J]. Environ Sci Pollut Res, 26: 1227-1237.

    • BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. , 2015. Low PSI content limits the photoprotection of PSI and PSⅡ in early growth stages of chlorophyll b-deficient wheat mutant lines [J]. Photosynth Res, 125(1/2): 151-166.

    • CAMPANY CE, TJOELKER MG, VON CAEMMERER S, et al. , 2016. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks [J]. Plant Cell Environ, 39(12): 2762-2773.

    • CHRISTENHUSZ MJM, BYNG JW, 2016. The number of known plants species in the world and its annual increase [J]. Phytotaxa, 261(3): 201-217.

    • CHASE MW, CAMERON KM, FREUDENSTEIN JV, et al. , 2015. An updated classification of Orchidaceae [J]. Bot J Linn Soc, 177(2): 151-174.

    • CHE SG, ZHAO BQ, LI YT, et al. , 2016. Nutrient uptake requirements with increasing grain yield for rice in China [J]. J Integr Agric, 15(4): 907-917.

    • COHEN I, HALPERN M, YERMIYAHU U, et al. , 2019. CO2 and nitrogen interaction alters root anatomy, morphology, nitrogen partitioning and photosynthetic acclimation of tomato plants [J]. Planta, 250(5): 1423-1432.

    • DRIEVER SM, BAKER NR, 2011. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted [J]. Plant Cell Environ, 34(5): 837-846.

    • FAN YF, CHEN JX, WANG ZL, et al. , 2019. Soybean (Glycine max L. Merr. ) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis [J]. BMC Plant Biol, 19(1): 34.

    • GRASSI G, MAGNANI F, 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees [J]. Plant Cell Environ, 28(7): 834-849.

    • HUANG W, HU H, ZHANG SB, 2021. Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species [J]. J Photochem Photobiol B, 219: 112203.

    • HUANG W, YANG YJ, ZHANG SB, 2019. The role of water-water cycle in regulating the redox state of photosystem I under fluctuating light [J]. BBA Bioenerg, 1860(5): 383-390.

    • HUANG ZA, JIANG DA, YANG Y, et al. , 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica, 42(3): 357-364.

    • ILÍK P, PAVLOVIČ A, KOUŘIL R, et al. , 2017. Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms [J]. New Phytol, 214(3): 967-972.

    • JOKEL M, JOHNSON X, PELTIER G, et al. , 2018. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light [J]. Plant J, 94(5): 822-835.

    • KONO M, TERASHIMA I, 2016. Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition [J]. Plant Cell Physiol, 57(7): 1405-1414.

    • KONO M, NOGUCHI K, TERASHIMA I, 2014. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana [J]. Plant Cell Physiol, 55(5): 990-1004.

    • KIM SH, KIM SW, AHN JW, et al. , 2020. Frequency, spectrum, and stability of leaf mutants induced by diverse γ-ray treatments in two Cymbidium hybrids [J]. Plants, 9(4): 546.

    • LUO J, ZHOU JJ, MASCLAUX-DAUBRESSE C, et al. , 2019. Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/nitrogen partition [J]. Environ Exp Bot, 162: 247-255.

    • LIU ZJ, CHEN SC, RU ZZ, et al. , 2006. The genus Cymbidium in China [M]. Beijing: Science Press: 10-13. [刘仲健, 陈心启, 茹正忠, 等, 2006. 中国兰属植物 [M]. 北京: 科学出版社: 10-13. ]

    • MU XH, CHEN YL, 2021. The physiological response of photosynthesis to nitrogen deficiency [J]. Plant Physiol Biochem, 158: 76-82.

    • MARLER TE, 2018. Bi-directional acclimation of Cycas micronesica leaves to abrupt changes in incident light in understory and open habitats [J]. Photosynthetica, 56(3): 776-785.

    • MUNEKAGE Y, HOJO H, TASAKA M, et al. , 2002. Pgr5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis [J]. Cell, 110(3): 361-371.

    • MUNEKAGE YN, GENTY B, PELTIER G, 2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana [J]. Plant Cell Physiol, 49(11): 1688-1698.

    • MAKINO A, SHIMADAT, TAKUMI S, et al. , 1997. Does decrease in ribulose-1, 5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? [J]. Plant Physiol, 114(2): 483-491.

    • MU XH, CHEN QW, CHEN FJ, et al. , 2016. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage [J]. Front Plant Sci, 24(7): 699.

    • MU XH, CHEN QW, CHEN FJ, et al. , 2017. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf [J]. Int J Mol Sci, 18(12): 2624.

    • MANTOVANI C, PRADO RDM, PIVETTA KFL, 2015. Foliar diagnosis in Phalaenopsis orchid plants subjected to application of nitrogen [J]. Afr J Agric Res, 10(53): 4906-4912.

    • MARTIN RE, ASNER GP, SACK L, 2007. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden [J]. Oecologia, 151(3): 387-400.

    • MA XD, ZHONG XL, SANG Y, 2018. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress [J]. Acta Ecol Sin, 38(20): 7508-7519. [马晓东, 钟小莉, 桑钰, 2018. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用 [J]. 生态学报, 38(20): 7508-7519. ]

    • PAN RC, YE QS, HEW CS, 1997. Physiology of Cymbidium sinense: a review [J]. Sci Hortic (Amsterdam, Neth) , 70(2/3): 123-129.

    • PONS TL, WESTBEEK MHM, 2004. Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species [J]. Physiol Plantarum, 122(1): 68-78.

    • ROBINSON JM, BURKEY KO, 1997. Foliar CO2 photoassimilation and chloroplast linear electron transport rates in nitrogen-sufficient and nitrogen-limited soybean plants [J]. Photosynth Res, 54(3): 209-217.

    • REICH A, EWEL JJ, NADKARNI NM, et al. , 2003. Nitrogen isotope ratios shift with plant size in tropical bromeliads [J]. Oecologia, 137: 587-590.

    • SUN H, YANG YJ, HUANG W, 2020. The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport [J]. BBA Bioenerg, 1861(9): 148-235.

    • SHINYA W, YAMAMOTO H, SUZUKI Y, et al, 2018. Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation [J]. Plant Physiol, 176(2): 1509-1518.

    • STORTI M, ALBORESI A, GEROTTO C, et al. , 2019. Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens [J]. Plant Cell Environ, 42(5): 1590-1602.

    • SHANGGUAN ZP, SHAO MG, DYCKMANS J, 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. J Plant Physiol, 156(1): 46-51.

    • SONOIKE K, 2011. Photoinhibition of photosystem I [J]. Physiol Plant, 142(1): 56-64.

    • SCIBILIA L, GIROLOMONI L, BERTEOTTI S, et al. , 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis [J]. Algal Res, 12: 170-181.

    • TAO WH, WANG D, 2021. Effects of increased CO2 concentration on the photosynthetic physiology and root growth of indica and japonica rice [J]. J Nanjing Agric Univ, 2021, 44(1): 27-35. [陶文辉, 王丹, 2021. CO2浓度升高对籼、粳稻光合生理和根系生长的影响 [J]. 南京农业大学学报, 44(1): 27-35. ]

    • TAKEHIRO S, DAISUKE T, HIROSHI F, et al. , 2014. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves [J]. Plant Cell Physiol, 55(6): 1184-1193.

    • TAKASHIMA T, HIKOSAKA K, HIROSE T, 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species [J]. Plant Cell Environ, 27(8): 1047-1054.

    • WANG XB, WANG LF, SHANGGUAN ZP, et al. , 2016. Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply [J]. PLoS ONE, 11(11): e0165733.

    • WU WM, CHEN HJ, LI JC, et al. , 2013. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage [J]. Acta Agron Sin, 38(6): 1088-1096.

    • WANG XL, LÜ XF, 2020. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance [J]. Guihaia, 40(4): 583-591. [王新磊, 吕新芳, 2020. 氮代谢参与植物逆境抵抗的作用机理研究进展 [J]. 广西植物, 40(4): 583-591. ]

    • YAMORI W, MAKINO A, SHIKANAI T, 2016. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice [J]. Sci Rep-UK, 6: 20147.

    • YAMAMOTO H, TAKAHASHI S, BADGER MR, et al. , 2016. Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis [J]. Nat Plants, 2(3): 16012.

    • YAMAMOTO H, SHIKANAI T, 2019. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides [J]. Plant Physiol, 179(2): 588-600.

    • YANG YJ, DING XX, HUANG W, 2019a. Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata [J]. Plant Sci, 287: 110-166.

    • YANG YJ, ZHANG SB, HUANG W, 2019b. Photosynthetic regulation under fluctuating light in young and mature leaves of the CAM plant Bryophyllum pinnatum [J]. BBA Bioenerg, 1860(6): 469-477.

    • YANG YJ, TAN SL, HUANG JL, et al. , 2020. The water-water cycle facilitates photosynthetic regulation under fluctuating light in the epiphytic orchid Dendrobium officinale [J]. Environ Exp Bot, 180: 104238.

    • YU XH, LUO YB, DONG M, 2008. Pollination biology of Cymbidium goeringii (Orchidaceae) in China [J]. J Syst Evol, 46(2): 163-174.

    • ZHANG WQ, HUANG FF, GAN XH, et al. , 2021. Effects of fertilization on the growth and photosynthetic characteristics of Heritiera littoralis seedlings [J]. Guihaia, 41(6): 862-871. [张卫强, 黄芳芳, 甘先华, 等, 2021. 施肥对银叶树幼苗生长及光合特性的影响 [J]. 广西植物, 41(6): 862-871. ]

    • ZHANG SB, YANG YJ, LI JW, et al. , 2018. Physiological diversity of orchids [J]. Plant Divers, 40: 196-208.

    • ZHONG C, JIAN SF, HUANG J, et al. , 2019. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L. ) [J]. Plant Physiol Biochem, 135: 41-50.

    • ZHAO DL, REDDY KR, KAKANI VG, et al. , 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum [J]. Eur J Agron, 22(4): 391-403.