DOI: 10.11931/guihaia.gxzw201803007

引文格式:高桂青,吕顺华,吕念泽,等.鄱阳湖苦草及马来眼子菜 PSⅡ荧光参数对水深变化的光响应 [J]. 广西植物,2018, 38(12):1626-1634

GAO GQ, LÜ SH, LÜ NZ, et al. Light-response of PS II fluorescence parameters on Vallisneria natans and Potamogeton malaianus to various water depths in Poyang Lake [J]. Guihaia, 2018, 38(12): 1626-1634

鄱阳湖苦草及马来眼子菜 PSⅡ 荧光参数 对水深变化的光响应

高桂青^{1,2},吕顺华²,吕念泽²,卢 龙^{1*},李 威²,计 勇²,游济康²,万 鹏²

(1. 南昌大学 资源环境与化工学院, 南昌 330031; 2. 南昌工程学院 土木与建筑工程学院, 南昌 330099)

摘 要: 以典型沉水植物苦草和马来眼子菜为材料,利用水下饱和脉冲调制叶绿素荧光仪研究不同水深(0.5、1.0、1.5、2.0、2.5 m)对两种植物叶片最小荧光(*F_o*)、最大荧光(*F_m*)、PSII最大光化光效率(*F_e/F_m*)、 有效量子产量[*Y*(II)]、光化学淬灭系数(*qP*)、非光化学淬灭系数(*qN*)、非调节性能量耗散的量子产量 [*Y*(*NO*)]等荧光参数的影响。结果表明:水深 1.5~2.0 m处苦草生物量最大,而 1.0~1.5 m处马来眼子菜 的最大;两种植物的*F_o*均先降低后升高,而荧光参数[(*F_m、F_e/F_m、F_e/F_o、Y*(II)、*qP*]均先升高后降低;2.0 m处苦草的*F_e/F_m、F_e/F_o*最大,1.5 m处马来眼子菜的最大;相同水深下,马来眼子菜的*qN* 比苦草低,与*qP* 变化趋势相反;苦草的 *Y*(II)最大值出现在水深 1.5~2.0 m内,马来眼子菜的 *Y*(II)最大值出现在 1.5 m 处;两者的 *Y*(*NO*)随水深变化均表现出显著差异,过高或过低水深均抑制植物生长;相对光合电子传递速 率(*ETR*)在不同水深处理间均差异显著,苦草的最大 *ETR* 比马来眼子菜小,说明其有较强的耐弱光能力。 综上所述,在水深 1.5~2.0 m 苦草光合能力最强,最适宜生长;水深 1.0~1.5 m 最适宜马来眼子菜生长。 关键词:苦草,马来眼子菜,水深,叶绿素荧光,光响应曲线 **中图分类号:** 0948.1, X824 **文献标识码:**A **文章编号:** 1000-3142(2018)12-1626-09

Light-response of PS II fluorescence parameters on Vallisneria natans and Potamogeton malaianus to various water depths in Poyang Lake

GAO Guiqing^{1,2}, LÜ Shunhua², LÜ Nianze², LU Long^{1*}, LI Wei², JI Yong², YOU Jikang², WAN Peng²

(1. School of Resource Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China;

2. School of Civil and Architecture Engineering, Nanchang Institute of Technology, Nanchang 330099, China)

收稿日期: 2018-05-29

基金项目:国家自然科学基金(51579127);水利部公益项目(201401039);江西省科技厅青年基金(20161BAB216109);江西省教 育厅项目(GJJ170978); 2016年国家大学生创新创业训练计划项目(201611319011) [Supported by the National Natural Science Foundation of China (51579127); Ministry of Water Resources of China(201401039); Foundation for Young Scholars from Jiangxi Provincial Technology Department (20161BAB216109); Program of Jiangxi Provincial Education Department (GJJ170978); University Students Innovation and Entrepreneurship Training Program of China (201611319011)]。

作者简介:高桂青(1979-),女,山东德州人,博士研究生,副教授,主要研究方向为水环境生态修复,(E-mail)342823307@qq.com。 通信作者:卢龙,博士,教授,主要研究方向为污染控制及资源化技术,(E-mail)lulong@ncu.edu.cn。

Abstract: In order to study the effects of water depth on the chlorophyll fluorescence characteristics of typical submerged macrophyte, Vallisneria natans and Potamogeton malaianus were selected as test materials in Poyang Lake wetland. Water levels (0.5, 1.0, 1.5, 2.0, 2.5 m) were controlled by buckets, minimum fluorescence (F_a) , maximum fluorescence (F_m) , the maximum actinic light efficiency of PS II (F_v/F_m), effective quantum yield [Y(II)], photochemical quenching coefficient (qP), non-photochemical quenching coefficient (qN), unregulated energy dissipation quantum yield [Y(NO)]were measured by a submerged, modulated fluorescence spectrometer (Diving-pam). The variation of each parameter with depths was explored. The results showed that the maximum biomass of Vallisneria natans appeared in 1.5-2.0 m water depth, and that of Potamogeton malaianus appeared in 1.0-1.5 m water depth. F_a of each macrophyte decreased first and then increased, while the fluorescence parameters $[F_m, F_v/F_m, F_v/F_o, Y(\mathbf{I}), qP]$ all increased first and then decreased. F_{i}/F_{m} and F_{i}/F_{a} of Vallisneria natans reached the maximum under the condition of 2.0 m, but the maximum of Potamogeton malaianus appeared at 1.5 m. At the same depth, qN of Vallisneria natans was lower than that of Potamogeton malaianus. The change trend of qP was reversed. The maximum Y(II) of Vallisneria natans appeared in the range of 1.5–2.0 m water depth, but for *Potamogeton malaianus*, it appeared at 1.0-1.5 m. Y(NO) showed significant differences with changes of water depths, too high or too low water depth all inhibited plant growth. The relative photosynthetic electron transport rate (ETR) was significantly different between different water depth treatments. The maximum ETR of Vallisneria natans was smaller than that of *Potamogeton malaianus* which indicates that it has strong resistance to weak light. In summary, under the condition of 1.5-2.0 m water depth, Vallisneria natans has the strongest photosynthetic capacity and can grow the best, and Potamogeton malaianus is the most suitable for growth in 1.0-1.5 m.

Key words: Vallisneria natans, Potamogeton malaianus, water depth, chlorophyll fluorescence, light-response curve

沉水植物是湖泊生态系统的重要初级生产 者,对维护湖泊生态系统功能起关键作用(胡振鹏 和葛刚,2010)。随着水体污染的日益严重,沉水 植物的恢复和重建已成为水域生态学研究的重点 内容之一(Ewel,1987)。基质、水深、光照强度、透 明度、营养盐等是影响沉水植物生长的重要因素。 水深是影响沉水植物在浅水湖泊中能否成功定居 并存活的一个重要因子(Valley & Ddrake, 2007; 王 华等,2008)。不同植物在不同水位环境下,生物 量和生存能力具有显著差异(Fraser & Karnezis, 2005; Luo & Xie, 2009)。研究表明不同水深下苦 草的株数、叶片长度、叶片厚度等随水深变化显 著,透明度为1.0~1.5 m的条件下,适宜种植水深 为0.5~1.0 m(顾燕飞等,2017)。植物生长的好坏 可以通过生物量的变化直接表现出来(杨鑫等, 2014b),其研究结果显示 1.3 m 较适宜苦草生长; 在透明度较好的水域中 1.0~1.4 m 的水深范围恢 复苦草种群(曹昀等,2014)。认为太湖马来眼子 菜的最佳生长水深为 0.6~1.2 m,水深较大或较小 都会因为光照不足或光损伤等因素抑制其生长和 繁殖(翟水晶等,2008)。以上研究表明沉水植物 能通过形态和生理响应来适应不同的水深,而目 前对于鄱阳湖沉水植物的研究较薄弱,从叶绿素 荧光特性方面的差异研究还不够深入。

Kautsky 发现叶绿素荧光诱导现象并将其与光 合作用联系起来,叶绿素荧光技术能够反映光合 系统"内在性"特点(Schreiber et al,1995),已越来 越多地应用于植物生理生态研究(胡丰姣等, 2017)。调制荧光仪允许测量所有生理状态下的 荧光(包括背景光很强时),使得叶绿素荧光由传 统的"黑匣子"(避免环境光)测量走向了野外环 境光下测量,水下调制荧光仪(Diving-pam)的出现 使得原位测定沉水植物的光合作用成为可能(Yu et al,2010;Hussner et al,2011)。

都阳湖作为中国最大的淡水湖,占长江流域 9%的面积,具有调节水量,调节气侯,美化环境等 多重功能(闵骞等,2009)。鄱阳湖生态系统健康 对长江中下游的水环境和水生态具有重要意义 (简敏菲等,2015)。2013年第二次鄱阳湖科学考 察发现沉水植物分布面积明显下降,20世纪80年 代马来眼子菜几乎遍布全湖,现在仅部分蝶形湖 和浅水区域小面积分布,鄱阳湖水位低枯是湿地 植被退化的主要原因(胡振鹏等,2015)。目前鄱 阳湖分布最广的沉水植物为苦草,马来眼子菜为 伴生种(简敏菲等,2015)。本研究以苦草和马来 眼子菜为研究对象,通过原位测定不同水深下植 物叶片的荧光特性,结合生物量探讨两种植物生 长的最适宜水深,以期为鄱阳湖水位调控及沉水 植物种群的恢复提供科学依据。

1 材料与方法

1.1 材料

2016年6月初,苦草和马来眼子菜取自鄱阳 湖自然保护区的大湖池。先将长势一致的植物放 在塑料桶内(120 cm×80 cm×110 cm)驯养2周,再 从驯化植株中选取健康,长势一致的植株,移植到 装有鄱阳湖底泥的小桶内。每桶6株苦草,平均 每株湿重为(0.86±0.03)g,平均每株有6片叶片, 高(11.25±0.34) cm;马来眼子菜采用扦插培养, 每桶6株,每株平均湿重为(0.52±0.02)g,平均每 株有3片叶片,高(30.12±0.46) cm。

1.2 试验设计

采用室外模拟控制试验,将装有驯化培养苦草 和马来眼子菜的小桶悬挂于混凝土浇筑的水池 (12.0 m×6.0 m×2.8 m)内,每个梯度做3个重复。 水池内的水引自鄱阳湖,水质指标为 pH 值 6.9~ 7.0、总氮 0.52~0.59 mg · L⁻¹、氨氮 0.38~0.42 mg · L⁻¹、总磷 0.048~0.05 mg · L⁻¹、化学需氧量 14.2~ 14.9 mg · L⁻¹、透明度 1.6~1.8 m(每周测 1 次)。通 过吊桶的方式控制水位,整个试验在中国科学院鄱 阳湖湿地观测站(星子站)完成。水位变化梯度为 0.5、1.0、1.5、2.0、2.5 m,每个梯度设3个重复(图 1)。光照强度是影响沉水植物进行光合作用的主 要限制因子(吴明丽和李叙勇,2012)。采用水下光 照强度的变化规律(比尔定律): $I_h = I_e^{-kh}$,式中 I_e 为 水面下 1 cm 处的光照强度(lx):h 为水面下深度 (cm); k 为光衰减系数(王华等, 2008)。光在试验 水体中的分布可拟合为 y=2.8716e^{-1E-04x}。随着水 深增加,水下光强衰减显著(图2)。

1.3 生物量测定

用直尺测量活体植物的高;每种水深,取3个

图 1 实验系统草图 Fig. 1 A sketchy drawing of the experimental design

吊桶中的全部植株,用滤纸擦掉表面附着物后称 其湿重。

1.4 叶绿素荧光参数的测定

培养 30 d 后,采用德国 WALZ 公司产的水下 调制荧光仪(Diving-pam)测定叶片叶绿素荧光特 性。测量前,将暗叶夹夹于叶片,经暗适应 20 min 后,打开叶夹,开启检测光,首先测定诱导曲线,得 到最小荧光(F_o),最大荧光(F_m),时间约 5 min。 PS II 的最大光化光效率(F_v/F_m)、有效量子产量 [Y(II)]、光化学淬灭系数(qP)、非光化学淬灭系 数(qN)、非调节性能量耗散量子产额[Y(NO)]等 参数值由系统选定模式自动计算生成。再测定快 速光曲线,有效辐射强度 PAR 梯度分别为 0、100、 12 期

200、300、500、700、900、1 100 和 1 250 μmol · m⁻² · s⁻¹,时间约 2 min。为避免太阳光直射到测量的叶片,测定在上午 9:00 前结束。

1.5 数据分析

用 Excel 2016 进行数据处理和图表制作,用 SPSS19.0 软件对不同水深下苦草和马来眼子菜的 叶绿素荧光参数进行单因素方差分析,并用 Duncan 法进行多重比较分析,显著水平为 P<0.05。

2 结果与分析

2.1 水深对株高及生物量的影响

苦草在 0.5~1.5 m 水深范围内,植株高度随水 深的增加显著增加,在 1.5 m 达到最大值 24.73 cm,水深 1.5 m 和 2.0 m 变化差异不显著(P> 0.05);在 2.5 m 处,株高仅为 17.57 cm,达到最小 (图 3)。生物量的变化趋势与株高相似,所不同 的是水深 0.5 m 和 1.0 m 处生物量差异不显著,原 因是浅水位苦草新叶生成多,是苦草对水深变化 的形态可塑性响应(Yang et al,2004)。

马来眼子菜株高和生物量在 0.5~1.5 m 水深 范围内,随着水深的增加显著增加,在 1.5 m 达到 最大值 83.37 cm;1.0 m 和 1.5 m 变化差异不显著。 水深 1.5 m 以后,株高和生物量显著下降,深水位 对生物量的积累有抑制作用。

2.2 苦草和马来眼子菜 F_o 、 F_m 、 F_v/F_m 与 F_v/F_o 对水深的响应

根据实验所设置的5个不同水位,测定苦草和 马来眼子菜的 F_o 、 F_m 、 F_v/F_m 及 F_v/F_o ,分别统计其 变化特征及相关显著性,结果如图5所示。

苦草的 F。随水深的增加先降低后增加,水深 1.5 m 处最低,而在水深 2.0~2.5 m 之间苦草的 F。 差异不显著(P>0.05)。马来眼子菜也出现相似的 趋势(图5),不同之处是在 2.0~2.5 m 水深之间, F。差异显著。在 0.5~1.5 m 范围内,苦草 F。大于 马来眼子菜;当水深大于 2.0 m 时,正好相反,表明 不同水深下苦草和马来眼子菜 PS II 反应中心原初 开放状态不一。

苦草的 F_m 在 1.0~2.0 m 之间差异不显著。 随着水深的增加,马来眼子菜的 F_m 先增加后降低 (1.5 m 水深除外),最大值出现在 2.0 m 处。苦草的 F_m 值均大于马来眼子菜,说明苦草的电子通过 PS II 时的最大传递潜力较大。随着水深的增加,两种植物的 F_v/F_m 、 F_v/F_o 均呈现先增加后降低的趋势,其中苦草最大值出现在 2.0 m 水深处,而马来眼子菜最大值出现在 1.5 m 水深处。

综上所述,苦草的 F_m、F_v/F_m和 F_v/F_o在试验 水深范围内均显著高于马来眼子菜,说明苦草 PS II 原初光能转化效率高于马来眼子菜。

2.3 苦草和马来眼子菜 qP、qN 对水深的响应

根据实验所设置的5个不同水位,测定苦草和 马来眼子菜的 qP 和 qN,分别统计其变化特征及相 关显著性,结果如图6所示。

光化学淬灭系数 qP 是指 PS II 天线色素吸收 的光能用于光化学电子传递的比例,是将捕获的 光子能量用于光化学反应的能力指标。苦草的 qP 在 1.0~2.0 m 范围内差异不显著(P>0.05),2.5 m 处出现大幅下降,马来眼子菜 qP 最小值也出现在 2.5 m,说明植物叶片光化学淬灭受到抑制,这与高 氮水抑制挺水植物,qP 下降相似(宫兆宁等, 2016)。整个水深范围内,苦草的 qP 均小于马来 眼子菜,说明苦草吸收的光能参与电子传递的份 额比马来眼子菜低。qN 反映植物耗散过剩光能为 热的能力(吴吴等,2016),已被证明为检测植物早 期胁迫最敏感的参数,与 qP 呈现相反趋势。相同 水深下,马来眼子菜的 qN 比苦草低,说明其光保 护能力比苦草弱。

2.4 苦草和马来眼子菜 Y(Ⅱ)、Y(NO)、Y(NPQ) 对水深的响应

分别测定上述 5 个不同水深下苦草和马来眼 子菜 $Y(\Pi)$ 、Y(NO)和 Y(NPQ),两种植物的 $Y(\Pi)$ 随着水深的增加均呈现先增加后降低的趋势,其中苦草最大值出现在 1.5~2.0 m 范围内,马 来眼子菜的最大值出现在 1.0~1.5 m 水深处。而 苦草的 $Y(\Pi)$ 小于马来眼子菜,说明苦草的实际 光合效率较低。

苦草的 Y(NO)均表现出显著性差异(P<</p>
0.05),最大值出现在<1.0 m和>2.0 m处,说明过
高或过低水深植物均已受到损伤。马来眼子菜的
Y(NO)未表现出显著性差异。两种植物的 Y(NPQ)

图 3 不同水深下苦草株高及生物量变化

Fig. 3 Changes in plant height and biomass of Vallisneria natans under different water depths

图 4 不同水深下马来眼子菜株高及生物量变化 Fig. 4 Changes in plant height and biomass of *Potamogeton malaianus* under different water depths

均表现出显著性差异(P<0.05),其中苦草的 Y (NPQ)大于马来眼子菜,说明相同水深下苦草接 受的光强过剩。

2.5 快速光曲线对水深的响应

通过设定有效辐射强度 PAR 测定 5 个不同水 深下植物叶片的相对光合电子传递速率 ETR, 拟合 出快速光曲线, 结果如图 8 所示。随着 PAR 增大, 相对光合电子传递速率 ETR 总体上呈现先增大后 降低趋势。PAR 在小于 300 μmol · m⁻² · s⁻¹范围, 表 现出快速增长的趋势, 而大于此值时, 降低较为缓 慢。苦草和马来眼子菜的 ETR 最大值均出现在 300 μmol · m⁻² · s⁻¹, 达到最大饱和。苦草 ETR 峰值是 32.6 μmol · m⁻² · s⁻¹, 出现在 2.0 m 处; 而马来眼子 菜峰值是 35.9 μmol · m⁻² · s⁻¹, 出现在 1.5 m 水深 处, 随着有效辐射强度的不断增强, 两者都出现光 抑制现象。有研究对不同水深下黑藻与苦草光合作用进行比较,苦草的 ETR 峰值比黑藻低,说明黑藻的光合作用比苦草强(经博翰和袁龙义,2014)。 在对玉溪大河五种沉水植物叶绿素荧光特征的比较研究中,ETR 最小者说明其耐弱光能力强,适合 在底层生长(卢国理等,2017)。在本研究中,苦草 的 ETR 比马来眼子菜低,说明苦草比马来眼子菜耐 弱光能力更强,适宜的水深更深。

3 讨论

水深是影响水生植物生长和分布的一个重要 性限制因子,水深处不仅光强弱(陈正勇等, 2011),而且植物与水体间气体交换和营养物质交 换改变,植物光合作用也会发生改变(Sculthorpe,

1631

注: V. 苦草; P. 马来眼子菜。下同。 Note: V. Vallisneria natans; P. Potamogeton malaianus. The same below.

图 5 水深对 $F_o \ F_m \ F_v / F_m = F_v / F_o$ 的影响 Fig. 5 Effects of different water depths on F_o , F_m , F_v / F_m and F_v / F_o

1972)。本研究表明,水深显著影响鄱阳湖苦草和 马来眼子菜叶绿素荧光特性。

F。的大小与 PS II 原始激发色素密度以及反应 所处类囊体结构状态及叶绿素含量有关,而与光化 学反应无关(陈正勇等,2011)。本研究表明,苦草和马来眼子菜的 *F*。先降低后略有增加,原因可能是较高水深(>2.0 m)或较低水深(<1.0 m)均会激发色素密度升高和内囊体膜的改变,以适应水深变

化。1.5~2.0 m 可能促进植物叶片叶绿体类囊体膜 上的蛋白复合体活性增强使电子传递和光合磷酸 化增强。苦草和马来眼子菜 F_v/F_m,F_v/F_o值均出现 先增加后降低趋势,本研究结果和杨鑫等(2014a) 的一致,其中苦草高于马来眼子菜。说明浅水和深 水均会降低苦草和马来眼子菜的原初光能转化效 率和 PS II 反应中心潜在活性,原因可能是深水区(> 2.0 m)光照强度减弱,植物叶片接受光强过小,不能 满足 PS II 反应中心捕获激发能而造成 F_e/F_m低,其 次,可能是深水区 CO₂含量少,光合作用过程中暗反 应阶段 CO₂供给不足,造成转化效率和反应中心活 性低,此还有待进一步研究。浅水区(<1.0 m)可能 是强光对苦草和马来眼子菜光合机制造成损害,抑 制了 PS II 反应中心活性,降低光化光效率。另外, 在相同水深处苦草光化光效率强于马来眼子菜,原 因可能是苦草的光补偿点和饱和点均低于马来眼 子菜(苏文华等,2004;陈开宁等,2002),在较小光 照下,苦草已进行了光合作用,而马来眼子菜却 没有。

本研究苦草和马来眼子菜 qP 随着水深的增加呈现先增加后降低,浅水区(<1.0 m) qN 显著高于 1.0~2.0 m 水深处,原因可能是浅水区过剩的光能对苦草和马来眼子菜产生了光抑制,而用于光化光电子传递的份额 qP 不变的情况下,超出了 PS II 反应中心自我保护机制的自我调节最大限,最终导致实际光合速率的降低;而对于深水区(>2.0 m),苦草和马来眼子菜 qP 低、qN 较高,原因可能是光照弱,水压大,叶片气孔受压迫;CO₂含量不足,导致 CO₂固定的电子少以及光能活性低,天线 色素吸收的光能更多的以热能的形式耗散掉,实现光化自我保护。另外,相同水深条件下马来眼子菜 Y(II)和 qP 均高于苦草,而 qN 低于苦草,说明马来眼子菜的光合活性强于苦草,而光保护能力弱于苦草。

PSII反应中心吸收光能后,产生的光量子主要用于三部分转化与耗散,即Y(II)、Y(NPQ)和 Y(NO),所有的光量子产额始终接近1,即Y(II)+ Y(NPQ)+Y(NO)=1(钱永强等,2011)。本研究 表明,苦草和马来眼子菜Y(II)均随着水深的增 加呈现先增加后降低,不同水深之间Y(NPQ)和Y (NO)差异显著。原因可能是为适应不同水深下 叶片接受的光照强度,致使苦草和马来眼子菜在 完成自身对光能的需求外,光合机制还需将不能 利用的量子能量以热能耗散的方式分解掉过多光 能而使反应中心受伤害程度降至最低,实现植物 自我保护。

相对光合电子传递速率 ETR 是反映实际光强

下的表观电子传递和光化光反应导致碳固定的电 子传递情况。本研究中,随着 PAR 的增大,两种植 物的 ETR 均呈现快速上升而后缓慢下降趋势,PAR 达到 300 µmol·m⁻²·s⁻¹时,ETR 达到最大饱和,这 表明 PAR 超过 300 µmol·m⁻²·s⁻¹时,苦草和马来 眼子菜电子传递速率显著受到光抑制,天线色素吸 收的过剩光能只能以增加热耗散来减轻过剩能量 对植物光系统伤害,使伤害降至最低。无论是马来 眼子菜还是苦草,水深在 1.0~2.0 m 之间时,ETR 均 是高于其他水深的,苦草 2.0 m 处最高,马来眼子菜 1.5 m 处最高,这与生物量测定结果相吻合。这说 明不同植物之间对充分利用光能实现自我生存生 长不一,是两种植物对环境的适应方式以及光合机 构利用光能效率存在的显著性差异。

4 结论

本研究结果表明,浅水和深水均会降低苦草和 马来眼子菜的原初光能转化效率和 PS II 反应中心 潜在活性。浅水区(<1.0 m)可能是强光对苦草和 马来眼子菜光合机制造成损害,抑制了 PS II 反应中 心活性,降低光化光效率。深水区(>2.0 m)光照强 度减弱,植物叶片接受光强过小,不能满足 PS II 反 应中心捕获激发能,生物量最小。苦草的最大 *ETR* 比马来眼子菜小,说明其耐弱光能力强,适宜在较 深水体生长。通过荧光特性分析,水深 1.5~2.0 m 最适宜苦草生长,水深 1.0~1.5 m 最适宜马来眼子 菜生长。

参考文献:

- CAO Y, ZHANG SJ, LIU YY, et al, 2014. Effects of water gradient on seedling growth and biomass of *Vallisneria natans* [J]. Ecol Environ, 23(8): 1332-1337. [曹昀, 张素娟, 刘燕燕,等, 2014. 水深梯度对苦莱生长和生物量的影响 [J]. 生态环境学报, 23(8): 1332-1337.]
- CHEN ZY, WANG GX, WU XD, et al, 2011. Ecological adaptability of *Potamogeton crispus* under different water depths [J]. J Lake Sci, 23(6): 942-948. [陈正勇, 王国祥, 吴晓东,等, 2011.不同水深条件下菹草(*Potamogeton crispus*)的适应对策 [J].湖泊科学, 23(6):942-948.]
- CHEN KN, QIANG S, LI WC, et al, 2002. Photosynthetic rate in *Potamogeton pectinatus* L. and factors of influence [J]. J Lake Sci, 4(14):357-361. [陈开宁,强胜,李文朝,等, 2002. 蓖齿眼子菜的光合速率及影响因素 [J]. 湖泊科 学, 4(14):357-361.]
- EWEL JJ, 1987. Restoration is the ultimate test of ecological theory [J]. Restor Ecol: 31–33.
- FRASER LH, KARNEZIS JP, 2005. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences [J]. Wetlands, 25(3):520–530.
- GONG ZN, FAN YB, LIU H, et al, 2016. Chlorophyll fluorescence response characteristics of typical emergent plants under different total nitrogen gradient [J]. Chin Bull Bot, 51 (5):631-638. [宫兆宁, 范云豹, 刘辉, 等, 2016. 不同水 氮梯度下典型挺水植物叶绿素荧光的响应特性 [J].植物 学报, 51(5):631-638.]
- GU YF, WANG J, WANG J, et al, 2017. Morphological response and growth strategy of the submerged macrophyte Vallisneria natans under different water depths [J]. J Lake Sci, 29(3):654-661. [顾燕飞, 王俊, 王洁, 等, 2017. 不同水 深条件下沉水植物苦草(Vallisneria natans)的形态响应和

- HU FJ, HUANG XH, ZHU F, et al, 2017. Application of chlorophyll fluorescence analysis in environmental stress [J]. Guangxi For Sci, 24(3):381-386. [胡丰姣, 黄鑫浩, 朱凡, 等, 2017. 叶绿素荧光动力学技术在胁迫环境下的 研究进展 [J]. 广西林业科学, 46(1):102-106.]
- HU ZP, GE G, 2010. Structure poyang lake wetland plants ecosystem and influence of lake water level for the structure [J]. Res Eviron Yang Bas, 19(6): 597-605. [胡振鹏, 葛 刚, 2010. 鄱阳湖湿地植物生态系统结构及湖水位对其影 响研究 [J]. 长江流域资源与环境, 19(6): 597-605.]
- HU ZP, GE G, LIU CL, 2015. Cause analysis and early warning of the poyang lake wetland vegetation degradation [J]. Res Environ Yang Bas, 24(3):381-386. [胡振鹏, 葛 刚, 刘成林, 2015. 鄱阳湖湿地植被退化原因分析及其预 警 [J]. 长江流域资源与环境, 24(3):381-386.]
- HUSSNER A, HOFSTRA D, JAHNS P, 2011. Diurnal courses of net photosynthesis and photosystem II quantum efficiency of submerged *Lagarosiphon* major under natural light conditions [J]. Flora, 206(10):904–909.
- JIAN MF, JIAN MF, LI LY, et al, 2015. Distribution pattern of submerged plants in typical wetlands of poyang lake and its influencing factors of water environment [J]. Res Environ Yang Bas, 24(5):765-771. [简敏菲, 简美锋, 李玲玉, 等, 2015. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影 响因子 [J]. 长江流域资源与环境, 24(5):765-771.]
- JING BH, YUAN LY, 2014. The comparative study on photosynthesis of *Hydrilla verticillata* in the different depth [J]. J Jiangxi Norm Univ (Nat Sci Ed), 38(6):645-649. [经博 翰, 袁龙义, 2014. 黑藻与苦草在不同水深下光合作用的 比较研究 [J]. 江西师范大学学报(自然科学版), 38(6):645-649.]
- SCHREIBER U, BILGER W, NEUBAUER C, 1995. Chlorophyll fluorescence as nonintrusive indicator for rapid assessment of in vivo photosynthesis [J]. Ecol Stud: 49-70.
- LUO W, XIE Y, 2009. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species [J]. Hydrobiologia, 624(1):151-160.
- LU GL, ZHOU YQ, LI SY, et al, 2017. Comparative of chlorophyll fluorescence characteristics of five submerged macrophytes in Yuxi River [J]. Environ Sci Surv, 36(2):46-50. [卢国理,周元清,李淑英,等, 2017. 玉溪大河 5 种 沉水植物的叶绿素荧光特征比较研究 [J]. 环境科学导 刊, 36(2):46-50.]
- MIN Q, TAN GL, JIN YW, 2009. Main issues and regulation measures of Poyang Lake ecosystem [J]. Chin Wat Res, (11):44-47. [闵骞, 谭国良, 金叶文, 2009. 鄱阳湖生态系 统主要问题与调控对策 [J]. 中国水利,(11):44-47.]
- QIAN YQ, ZHOU XX, HAN L, et al, 2011. Rapid lightresponse curves of PS II chlorophyll fluorescence parameters in leaves of *Salix leucopithecia* subjected to cadmium-ion stress [J]. J Lake Sci, 4(14):357-361. [钱永强,周晓 星,韩蕾,等, 2011. Cd²⁺胁迫对银牙柳 PSII叶绿素荧光 光响应曲线的影响 [J]. 湖泊科学, 4(14):357-361.]
- QU SJ, HU WP, DENG JC, et al, 2008. Effects of different

water depths and sediments on *Potamogeton malaianus* in lake taihu [J]. Acta Ecol Sin, 28(7):3035-3041. [翟水 晶,胡维平,邓建才,等,2008. 不同水深和底质对太湖 马来 眼 子 菜 (*Potamogeton malaianus*) 生长的影响 [J]. 生态学报,28(7):3035-3041.]

- SCHREIBER U, BILGER W, NEUBAUER C, 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis [M]//Ecophysiology of photosynthesis. Berlin, Heidelberg: Springer: 49-70.
- SCULTHORPE CD, 1972. The biology of aquatic vascular plants [J]. J Ecol, 56 (3):915.
- SU WH, ZHANG GF, ZHANG YS, et al, 2004. The photosynthetic characteristics of five submerged aquatic plants [J]. Acta Hydrobiol Sin, 28(4):391-396. [苏文华, 张光飞, 张云孙, 等, 2004. 5 种沉水植物的光合特征 [J]. 水 生生物学报, 28(4):391-396.]
- VALLEY RD, DRAKE MT, 2007. What does resilience of a clear-water state in lakes mean for the spatial heterogeneity of submersed macrophyte biovolume? [J]. Aquat Bot, 87(4):307-319.
- WANG H, PANG Y, LIU SB, et al, 2008. Research progression influencing of environmental factors on the growth of submersed macrophytes [J]. Acta Ecol Sin, 28(8):3958-3968. [王华, 逢勇, 刘申宝, 等, 2008. 沉水植物生长影响因子研究进展 [J]. 生态学报, 28(8):3958-3968.]
- WU ML, LI XY, 2012. Research progress on influencing of light attenuation and the associated environmental factors on the growth of submersed aquatic vegetation [J]. Acta Ecol Sin, 32(22):7202-7212. [吴明丽,李叙勇, 2012. 光衰减 及其相关环境因子对沉水植物生长影响研究进展 [J]. 生态学报, 32(22):7202-7212]
- WU H, GAO Y, DU ME, et al, 2016. Characteristics of chlorophyll fluorescence parameters in *Forsythia suspensa* (Thunb.) vahl under Nacl stress [J]. N Gard, (7):55-60. [吴昊, 高永, 杜美娥, 等, 2016. 盐胁迫对连翘叶绿素荧光参数的影响 [J]. 北方园艺, (7):55-60.]
- YU H, YE C, SONG X, et al, 2010. Comparative analysis of growth and physio-biochemical responses of *Hydrilla verticillata* to different sediments in freshwater microcosms [J]. Ecol Eng, 36(10):1285-1289.
- YANG X, SUN SY, BAI X, et al, 2014a. Influences of water depth gradient on photosynthetic fluorescence characteristics of *Vallisneria natans* [J]. J Lake Sci, 26(6):879-886. [杨 鑫,孙淑雲,柏祥,等, 2014a. 水深梯度对苦草 (*Vallisneria natans*)光合荧光特性的影响 [J]. 湖泊科学, 26(6):879-886.]
- YANG X, ZHANG QC, SUN SY, et al, 2014b. Effects of water depth on the growth of *Vallisneria natans* and photosynthetic system II photochemical characteristics of the leaves [J]. Chin J Appl Ecol, 25(6):1623-1631. [杨鑫,张启超,孙淑雲,等, 2014b. 水深对苦草生长及叶片 PSII 光化学特性的影响 [J]. 应用生态学报, 25(6):1623-1631.]
- YANG Y, YU D, XIE YH, et al, 2004. Phenotypic plasticity of two submerged plants in response to flooding [J]. J Freshw Ecol, 19: 69–76.