DOI: 10.11931/guihaia.gxzw202003006

梁月明,潘复静,马姜明,等.不同林龄和密度马尾松人工林针叶和根系的生态化学计量特征 [J].广西植物,2021,41(9):1497-1508.

LIANG YM, PAN FJ, MA JM, et al. Ecological stoichiometry characteristics of needle leaves and roots in different age and density stands of *Pinus massoniana* plantations [J]. Guihaia, 2021, 41(9): 1497–1508.

不同林龄和密度马尾松人工林针叶 和根系的生态化学计量特征

梁月明1,潘复静2*,马姜明3,杨章旗4,零天旺5,李明金5,陆绍浩5,钟凤跃5

(1. 中国地质科学院岩溶地质研究所,自然资源部、广西壮族自治区岩溶动力学重点实验室,广西 桂林 541004; 2. 桂林理工大学, 环境科学与工程学院,广西环境污染控制理论与技术重点实验室,广西 桂林 541004; 3. 珍稀濒危动植物生态与环境保护教育部重点实验室,广西 桂林 541006; 4. 广西壮族自治区林业科学研究院,南宁 530002; 5. 广西壮族自治区横县镇龙林场,南宁 530307)

摘 要:为了解不同林龄和密度马尾松人工林针叶和根系的养分变化特征,该文在广西南宁市横县镇龙林场选择了四种林龄(幼龄林、中龄林、成熟林和过熟林)和四种密度(低密度林、中低密度林、中高密度林和高密度林)马尾松林共八种林分,分析了马尾松针叶和根系的 C、N、P 含量和比值及其与土壤养分的关系。结果表明:(1)所有龄林与密度林的马尾松针叶 N:P 比值均大于 16,表明该地区马尾松明显受 P 限制,幼龄林更加明显。(2)马尾松针叶 C 含量随着林龄增长逐渐增大后下降,N 与 P 含量呈微弱下降趋势,导致 C:N比值、C:P 比值和 N:P 比值呈微弱上升趋势,但没达到显著水平;根系 C 含量、P 含量和 C:N 比值逐渐增大,N 含量、C:P 比值和 N:P 比值呈 U 字型且都在幼龄林最大;针叶和根系在成熟林阶段均具有较高的 P 含量和最高的 C 含量。(3)中密度林的马尾松针叶的 C 和 N 含量较高且 P 含量最高,C:N 比值较低且C:P比值和 N:P 比值最低;根系的 C、N 和 P 含量较高,而 C:N 比值、C:P 比值和 N:P 比值较低。(4)马尾松的根系养分尤其是 P 含量在不同龄林和不同密度林之间的变化比针叶更加剧烈,且其与土壤养分之间的相关性比针叶更强。综上结果表明,马尾松人工林受 P 限制,在低龄林加强 P 肥管理和选择合适的林分密度(中等密度)则有利于缓解马尾松受 P 限制的状态。

关键词:马尾松,林龄,密度,针叶,根系,养分限制

中图分类号: 0948.1 文献标识码: A 文章编号: 1000-3142(2021)09-1497-12

Ecological stoichiometry characteristics of needle leaves and roots in different age and density stands of *Pinus massoniana* plantations

LIANG Yueming¹, PAN Fujing^{2*}, MA Jiangming³, YANG Zhangqi⁴, LING Tianwang⁵, LI Mingjin⁵, LU Shaohao⁵, ZHONG Fengyue⁵

收稿日期: 2020-04-28

基金项目: 广西创新驱动发展专项课题(桂科 AA17204087-7); 岩溶动力学重点实验室开放基金资助课题(KDL201803); 广西优良用材林资源培育重点实验室自主课题资助项目(YRSF-2020-132)[Supported by Science and Technology Major Project of Guangxi (AA17204087-7); Open Project of Karst Dynamics Laboratory, MNR and GZAR (KDL201803); Independent Project from the Key Laboratory of Guangxi Fine Timber Forest Resources Cultivation (YRSF-2020-132)]。

作者简介: 梁月明(1983-),博士,副研究员,主要从事土壤微生物分子生态学研究, (E-mail)lym@ karst.ac.cn。

^{*}通信作者:潘复静,博士,副研究员,主要研究方向为恢复生态学、植物生态学等,(E-mail)panfujing@glut.edu.cn。

(1. Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China; 2. College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, Guangxi, China; 3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin 541006, Guangxi, China; 4. Guangxi Forestry Research Institute, Nanning 530002, China; 5. Zhenlong Forest Farm of Hengxian County, Nanning 530307, China)

Abstract: Ecological stoichiometries of leaves and roots are important factors responding to nutrient-limited soils, however, the patterns of needle leaves and roots in different age and density stands of Pinus massoniana plantations are unclear. To determinate the trends of needle leaves, roots, and soils and relationships between the three parts in these plantations, we selected total eight stands [including four age stands (young stand, half-mature stand, mature stand, and over-mature stand) and four density stands (low density, medium density, high density, and over-high density)] as the research object and measured C, N and P concentrations of needle leaves, roots, and soils in Zhenlong forest farm of Hengxian county, Nanning, Guangxi Zhuang Autonomous Region. The results were as follows: (1) N: P ratios of needle leaves in all stands were higher than 16. (2) The C concentrations of needle leaves increased and then decreased, and the C: N ratios, C: P ratios, and N: P ratios slightly (insignificantly) increased with the increasing stand ages, but the N and P concentrations were opposite. The C and P concentrations and C: N ratios of roots increased with the increasing stand ages, but the N concentrations, C: P ratios, and N: P ratios were the highest in young stand. Additionally, the C and P concentrations of needle leaves were the highest in mature stand, but the two parameters of roots were and relatively the highest in this stand. (3) Moreover, the highest P and relatively the highest C and N of needle leaves were found in medium density stand, as well as lowest C: P ratios and N: P ratios and relatively lowest C: N ratios. Simultaneously, the C, N, and P concentrations of roots were higher in medium density stand than in other stands, but the C: N ratios, C: P ratios, and N: P ratios of roots were opposite. (4) Root nutrients (especially P) of P. massoniana dramatically changed further than those of needle leaves in different age and density stands, as well as the relationships between root and soil nutrients. Our results suggest that P. massoniana is limited by P, and then, fertilization and management of phosphate in young stand and the appropriate density stand (medium) will be beneficial to relieve the P limitation in southern Guangxi.

Key words: Pinus massoniana, stand age, density, needle leaves, roots, nutrient limitation

马尾松(Pinus massoniana)具有耐干旱、耐贫瘠、适应性强等特点(王韦韦等,2015),种植面积和产量均较大,是广西主要的松树人工林树种。但是,由于马尾松人工林是经济性用材林,其基本以纯林进行抚育和管理。这会导致两种结果:(1)纯林使得养分循环速率变低、养分容易失衡、水土流失等发生(郝中明等,2018),降低树木生产力和生态系统服务功能价值等(何友均等,2013;吴强等,2019);(2)林木进行经营砍伐后,大量的生物量和养分被移出,使得养分无法归还到土壤,加剧土壤肥力降低的状况。马尾松人工林容易受到养分贫瘠的限制。因此,揭示马尾松人工林不同营林措施下植物与土壤养分之间的关系对生产经营具有重要的指导作用。

生态化学计量学理论广泛用于植物与土壤养分关系的研究,在判断植物的养分限制特征方面具有较强实用性(潘复静等,2011; Pan et al.,

2015; Zhang et al., 2015)。 C、N、P 是生物生命活动不可缺少的物质, 分别是组成生物干物质、蛋白质和遗传物质的主要元素(杨惠敏和王冬梅, 2011)。生态化学计量学是研究生物与生态系统能量平衡和多重化学元素(主要是 C、N、P 等生源要素)平衡的科学, 是分析多重化学元素的质量平衡对生态交互作用影响的一种重要工具(Elser et al., 1996)。当植物的叶片 N:P 比值小于 14, 植物受 N 限制; 叶片 N:P 比值介于 14 和 16 之间, 植物则受到 N 和 P 双重限制(Koerselman & Meuleman, 1996)。因此, 可借鉴上述理论用于判断马尾松人工林的养分限制状态。

林龄和密度因子与马尾松的养分限制具有密切的关系。首先,随着林龄的增加,马尾松受到的养分限制情况会发生变化,但不同地区的马尾松林所受的养分限制可能有异。有研究表明,在贵

州西北部地区的马尾松主要是受到 N 限制,且在 接近成熟林阶段受到 N 限制更严重(何斌等, 2019)。而刘政等(2019)研究结果则显示,福建地 区的马尾松随着林龄的增加,其针叶 N 和 P 含量 有增加趋势,但实际受到 P 限制的影响。从以上 研究发现,贵州西北地区比福建地区的马尾松林 具有较高的土壤养分含量。因此,不同地区的土 壤养分差异状况是影响不同林龄马尾松养分受限 差异的一大原因。其次,密度不仅影响马尾松人 工林的碳储量,而且也影响林木的资源竞争状况。 丁波等(2016)研究发现,在中林龄阶段,马尾松人 工林生态系统的碳储量以中等密度(1566株・ hm-2)最高。由于植物体的养分具有耦合关系,更 高的碳储量有可能伴随着较高的N和P养分含 量。那么,植物要从土壤吸收较多的 N 和 P 养分 或者具有较高的养分重吸收效率。高祥等(2014) 研究发现,在较高密度的马尾松人工林中具有较 高的细根和小根生物量,这是因为较多的细根和 小根利于养分吸收效率的提高,加强了对资源的 竞争能力。

由于土壤养分状况、不同林龄和密度对植物 吸收养分效率和数量的差异,不同林龄和密度马 尾松人工林的养分限制会出现差异。覃其云等 (2017)研究指出,广西马尾松人工林的土壤 N、P 等养分含量普遍较低。通常认为,土壤养分较低 的地方,植物的叶片养分含量也较低。此时,植物 根系的养分吸收效率就显得非常重要。马尾松是 一种浅根系植物,其大部分的根系生物量在0~30 cm 土层范围内,且主要以中根、细根为主。因此, 在土壤养分较贫瘠时,马尾松细根发挥强大的养 分吸收能力,提供植物生长所需的养分。然而,我 们目前还不清楚不同林龄和不同密度马尾松人工 林根系养分的变化趋势。在经营马尾松人工林 时,树干被收获而移出生长地,而针叶、小枝条和 树桩、根系保留下来,这些部位的回归对养分循环 具有重要意义。在土壤养分较贫瘠时,植物对养 分的响应和吸收也会体现在植物地上和地下系统 的协作关系上,在不同的生长阶段,植物有时可能 把更多的养分分配在地上部分,有时则更多分配 在地下部分。目前,我们还没能很好地了解广西 地区马尾松人工林的针叶和根系在不同林龄和不 同密度条件下如何响应土壤养分的机理。因此, 亟需弄清马尾松人工林的针叶和根系养分在不同 林龄和不同密度的变化、针叶和根系的养分分配以及针叶和根系之间的养分关系。

本研究选择广西南宁市横县镇龙林场内不同林龄和不同密度共八种林分的马尾松人工林作为研究对象,分析土壤、马尾松针叶和根系的 C、N、P 养分含量及其生态化学计量学特征。拟解决以下问题:(1)马尾松人工林针叶和根系的养分含量和比值在不同林龄和不同密度的变化是否有规律?(2)马尾松人工林针叶和根系的养分含量和比值与土壤养分和比值的关系如何?通过以上研究,探讨马尾松人工林针叶与根系的养分含量和比值的协同变化关系,揭示不同林龄和密度马尾松人工林对土壤养分变化的响应特征,总结马尾松人工林的养分限制规律,为该地区土壤养分贫瘠条件下马尾松人工林的抚育和经营管理提供科学依据。

1 研究区概况与研究方法

1.1 研究区概况

研究区位于广西壮族自治区南宁市横县北部的镇龙林场(109°08′—109°19′E、23°02′—23°08′N),海拔在400~700 m之间,以低山丘陵地形为主。该区属南亚热带季风气候,年均降雨量1477.8 mm,年平均气温21.5 $^{\circ}$ C,年均日照时数1758.9 h(范志伟和杨章旗,2012)。土壤类型主要是酸性或微酸性的赤红壤(pH3.72~4.14;表1)。林场经营总面积达到6069.9 ha,主要种植树种为巨尾桉(Eucalyptus grandis)、马尾松和杉木(Cunninghamia lanceolata)等。

1.2 研究方法

1.2.1 样地设置 2018 年,选择四种龄林[(幼龄林(6a)、中龄林(17a)、成熟林(32a)和过熟林(58a)]和四种密度林[低密度林(2500 株·ha-1,株间距 2 m×2 m),中密度林(3300 株·ha-1,株间距 1.5 m×2 m),高密度林(4500 株·ha-1,株间距 1.5 m×1.5 m),超高密度林(6000 株·ha-1,株间距 1 m×1.67 m)]共八种林分作为研究对象(表1)。每个林分中,在立地条件、土层厚度、土壤质地和林木长势较一致的区域选取 3 块 20 m×20 m 的标准样方(样方间隔大于50 m),均为广西林业科学研究院已经建立的长期固定监测样地(范志伟和杨章旗,2012)。本研究选取的样方共有24个。

1.2.2 针叶、根系和土壤样品采集 2018年7月 (生长季),在每个样方的东南西北中5个位置各 选取一棵健康的马尾松,每棵树叶冠的东西南北4 个方向各采集成熟的针叶进行混合,5棵树的成熟 针叶进行混合,形成一个样方的针叶混合样品(潘 复静等,2013)。马尾松是一种浅根系植物,其根 系大部分分布在 0~40 cm 的土层范围内,且 0~20 cm 土层中生物量最大(宋尊荣等,2020)。因此, 我们在每棵树东西南北四个方向、距离树干 1 m 的区域采集土壤 0~20 cm 深度的根系样品进行混 合。采集的根系中,80%~90%是直径小于2 mm 的细根,其余的是直径小于 3 mm 的中根。5 棵树 的根系进行混合形成一个样方的根系混合样品 (Pan et al., 2018)。针叶和根系样品的数量均为 24个。每个根系混合样品先剪碎且充分混匀,再 选取原样约 100 g,在 65 ℃下烘干至恒重,然后取 烘干样粉碎过 100 目筛(0.15 mm),保存备用。

同时,每棵树周围约1 m 的区域采集0~20 cm 的表层土壤样品,将5 个采样点的样品充分混匀成一个表层土混合样。采集到的土壤样品装入塑料袋,并放入冰盒中保存,迅速带回实验室进行处理。土壤样品中的细根碎屑被全部挑出,过10 目筛(2 mm),并分成等量的两份:第一份立即放入-20 ℃冰箱保存,用于其他指标的测定;第二份风干,研磨,过20 目筛(0.85 mm)和100 目筛(0.15 mm),用于土壤养分含量的测定。

1.2.3 植物和土壤样品分析 针叶和根系样品称取 0.015 0 g 凋落物样品(精确到 0.000 1 g),用 KCr_2O_7 - H_2SO_4 氧化法测定全碳含量;称取0.400 0 g 针叶和根系样品(精确到 0.000 1 g),用 H_2SO_4 - H_2O_2 氧化法进行消煮,然后用 FIA 流动注射仪测定全氮含量,用钼锑抗比色分光光度法测定全磷含量。

土壤有机碳含量(SOC)采用 $KCr_2O_7 + H_2SO_4$ 氧化法测定;土壤全氮(TN)采用凯氏定氮法并用流 动 注 射 仪(FIAstar 5000, FOSS, Hillerød, Denmark)测定;土壤全磷(TP)加 NaOH 后放入马弗炉高温消煮,用 $H_2SO_4 + HCl$ 清洗后以钼蓝显色液进行显色,用分光光度计进行测定(Pan et al., 2015)(表 2)。

1.2.4 统计与分析 用 Excel 进行数据整理,用 SPSS 11.5 进行数据统计分析。利用描述统计(descriptive statistics)、单因素方差分析(one-way ANOVA)及多重比较分析(LSD)等方法比较不同林龄和密度马尾松人工林针叶、根系和土壤养分含量和比值的差异。用 Person 相关关系方法分析针叶和根系与土壤养分含量和比值之间的相关性。

2 结果与分析

2.1 马尾松人工林土壤养分含量及其比值

结果显示,马尾松人工林的土壤有机碳(SOC)、全氮(TN)和全磷(TP)的含量和比值在不

表 1 马尾松人工林八种林分的样地特征
Table 1 Plot properties in the eight stands of *Pinus massoniana* plantations

林分 Stand	林分类型 Stand type	编号 Serial number	林分年龄 Stand age (a)	造林年份 The year of afforestation	海拔 Altitude (m)	土壤 pH Soil pH	营林措施 Forest management
不同龄林	幼龄林	AF1	6	2012	334	4.11	除草
Different age stands	Young stand						Weed control
	中龄林	AF2	17	2001	351	4.14	已不抚育
	Half-mature stand						No forest management
	成熟林	AF3	32	1986	262	3.98	已不抚育
	Mature stand						No forest management
	过熟林	AF4	58	1960	315	3.72	已不抚育
	Over-mature stand						No forest management
不同密度林	低密度林	DF1	21	1997	438	4.04	已不抚育
Different density	Low density stand						No forest management
stands	中密度林	DF2	21	1997	451	4.06	已不抚育
	Medium density stand						No forest management
	高密度林	DF3	21	1997	450	4.01	已不抚育
	High density stand						No forest management
	超高密度林	DF4	21	1997	442	4.04	已不抚育
	Over-high density stand						No forest management

表 2 马尾松人工林八种林分的土壤 C、N、P 含量及其比值

Table 2 Soil C, N and P concentrations and its ratios in eight stands of *Pinus massoniana* plantations

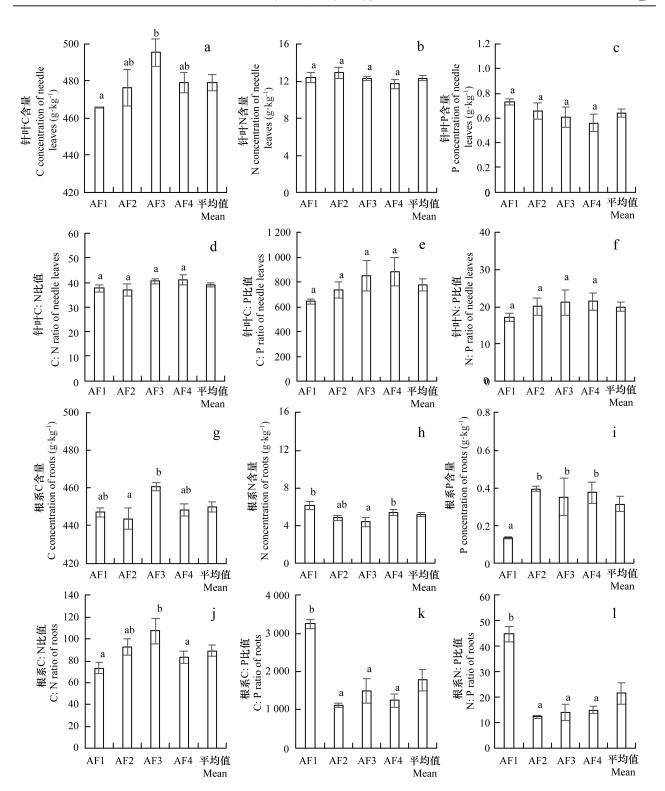
林分 Stand	编号 Serial number	土壤有机碳 SOC (g・kg ⁻¹)	土壤全氮 Soil TN (g·kg ⁻¹)	土壤全磷 Soil TP (g・kg ⁻¹)	C:N 比值 C:N ratio	C:P 比值 C:P ratio	N:P 比值 N:P ratio
不同龄林	AF1	26.02 ± 1.25 ab	1.79 ± 0.11 ab	0.22 ± 0.02 a	14.65 ± 1.31 a	121.04 ± 10.92 b	8.43 ± 1.23 b
Different age stands	AF2	$32.91 \pm 1.98 \text{ b}$	$2.14 \pm 0.09 \text{ b}$	$0.48 \pm 0.01 \; \mathrm{b}$	$15.34 \pm 0.28 \text{ a}$	$69.13 \pm 2.72 \text{ a}$	$4.50 \pm 0.10 \text{ a}$
	AF3	23.82 ± 1.20 a	$1.45 \pm 0.07 \text{ a}$	$0.32 \pm 0.02 \text{ ab}$	$16.37 \pm 0.16 \text{ a}$	$74.29 \pm 3.03 \text{ a}$	$4.53 \pm 0.14 \text{ a}$
	AF4	$34.35 \pm 4.91 \text{ b}$	$1.77~\pm~0.31~\mathrm{ab}$	$0.48 \pm 0.13 \text{ b}$	$19.78 \pm 1.75 \text{ b}$	79.14 ± 14.54 a	$3.95 \pm 0.42 \text{ a}$
	平均值 Mean	29.27 ± 1.79	1.79 ± 0.10	0.37 ± 0.04	16.54 ± 0.76	85.90 ± 7.37	5.36 ± 0.61
不同密度林	DF1	22.50 ± 0.22 a	$1.40~\pm~0.08~a$	$0.38~\pm~0.04~\mathrm{a}$	$16.15 \pm 0.75 \text{ a}$	$60.36 \pm 5.63 \text{ a}$	$3.72 \pm 0.19 \text{ a}$
Different density stands	DF2	$28.32 \pm 1.80 \; \mathrm{b}$	$1.59 \pm 0.11 \text{ a}$	$0.50 \pm 0.12 \text{ a}$	$17.87~\pm~0.15~\mathrm{ab}$	$62.62 \pm 12.05 \text{ a}$	$3.50 \pm 0.67 \text{ a}$
	DF3	$30.18 \pm 2.36 \text{ b}$	1.64 ± 0.16 a	$0.45~\pm~0.01~\mathrm{a}$	$18.49\pm0.45~\mathrm{ab}$	$66.75 \pm 6.85 \text{ a}$	$3.63 \pm 0.45 \text{ a}$
	DF4	$30.31 \pm 1.85 \text{ b}$	1.51 ± 0.15 a	$0.39 \pm 0.05 \text{ a}$	$20.29 \pm 1.50 \text{ b}$	$78.60 \pm 5.71 \text{ a}$	$3.92 \pm 0.43 \text{ a}$
	平均值 Mean	27.83 ± 1.21	1.53 ± 0.06	0.43 ± 0.03	18.20 ± 0.58	67.08 ± 4.02	3.69 ± 0.20

注:数值=平均值±标准误。不同小写字母表示不同林龄或密度林间存在差异显著(P< 0.05)。

Note: Value = $\bar{x} \pm s_{\bar{z}}$. Different lowercase letters indicate significant differences among different age stands or density stands (P < 0.05).

同林龄之间存在差异性(表 2)。在成熟林土壤具有最低的有机碳和全氮含量和次低的全磷含量,幼龄林次之,而在中林龄和过熟林较高;从而导致土壤 C:N比值在过熟林最高,土壤 C:P比值和 N:P比值在幼龄林最高。土壤全氮、全磷、C:P比值和 N:P比值在各个密度林之间没有显著性差异;土壤有机碳含量和 C:N 比值在低密度林最低,在超高密度林最高。所有林龄和密度的马尾松人工林土壤 N和 P含量均偏低。

2.2 不同林龄马尾松人工林针叶和根系的养分含量及其比值


结果显示,马尾松针叶的 C 含量先随着林龄的增加而升高,其在成熟林达到最高,然后降低(图 1:a);针叶 N 含量、P 含量、C:N 比值、C:P 比值和 N:P 比值在不同林龄间没有显著差异(图 1:b-f)。针叶 C 含量在幼龄林、中林龄、成熟林和过熟林的均值为 465.75、476.45、495.40 和 479.12 g·kg⁻¹,N含量为 12.44、12.93、12.26 和 11.71 g·kg⁻¹,P含量为 0.72、0.65、0.60 和 0.56 g·kg⁻¹,C:N比值为 37.57、37.08、40.43 和 41.09,C:P 比值为 641.90、737.89、849.15 和 883.68,N:P 比值为 17.18、20.08、21.15 和 21.44。

马尾松根系的 C 含量、N 含量、P 含量、C:N

比值、C:P比值和N:P比值在不同林龄间存在 差异(图1)。根系 C 含量随着林龄的增加表现为 降低-升高-降低的趋势,其在成熟林达到最高(图 1:g);N含量在幼龄林最高,之后下降,再升高(图 1:h);P含量在幼龄林最低,随着林龄的增加表现 为升高-降低-升高的趋势(图1:i);C:N比值随 着林龄的增加表现为逐渐升高然后降低的趋势, 其在成熟林达到最高(图1:i);C:P比值和N:P 比值在幼龄林最高,其余三个林龄与幼龄林有显 著差异,而彼此之间没有显著差异(图1:k;l)。根 系C含量在幼龄林、中林龄、成熟林和过熟林的均 值为 447.02、443.74、460.63 和 448.39 g·kg⁻¹, N 含量为 6.16、4.82、4.39 和 5.41 g · kg-1, P 含量为 0.13、0.39、0.35 和 0.37 g·kg⁻¹, C:N比值为 73.40、92.81、107.42 和 83.62, C:P比值为 3 254.60、1 123.70、1 484.10 和 1 244.80, N:P比 值为 44.72、12.18、13.96 和 14.81。

2.3 不同密度马尾松人工林针叶和根系的养分含量及其比值

马尾松针叶的 C 含量、N 含量和 C: N 比值在不同密度林间没有显著差异(图 2:a,b,d); P 含量随着密度的增加逐渐升高后降低,低密度林和超高密度林较低(图 2: c); C: P 比值和 N: P 比

柱状图上的不同小写字母表示不同林龄或密度林间存在差异显著(P<0.05)。下同。

Different lowercase letters from the bar chart indicate significant differences among different age or density stands (P<0.05). The same below.

图 1 不同龄林马尾松针叶和根系的 C、N、P 含量及其比值

Fig. 1 C, N and P concentrations and its ratios of needle leaves and roots in different age stands of *Pinus massoniana* plantations

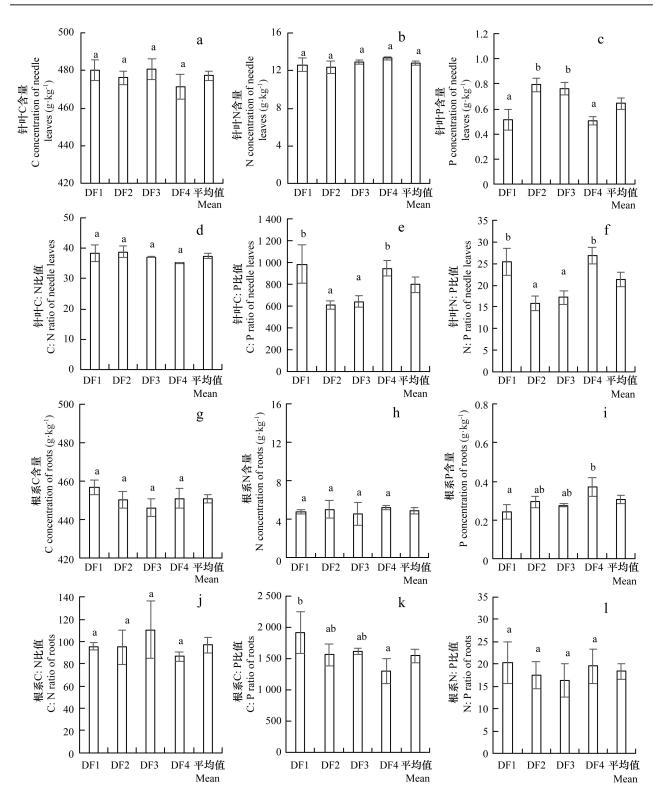


图 2 不同密度林马尾松针叶和根系的 C、N、P 含量及其比值 Fig. 2 C, N and P concentrations and its ratios of needle leaves and roots in different density stands of *Pinus massoniana* plantations

值随着密度的增加逐渐降低后升高,低密度林和超高密度林较高(图 2; e, f)。针叶 C 含量在低密度林、中密度林、高密度林和超高密度林的均值为480.19、476.32、480.91 和 471.28 g · kg⁻¹, N 含量为12.62、12.33、12.96 和 13.33 g · kg⁻¹, P 含量为0.51、0.79、0.76 和 0.50 g · kg⁻¹, C: N 比值为38.36、38.85、37.13 和 35.35,C: P 比值为985.47、607.26、639.23 和 947.48,N: P 比值为25.42、15.80、17.23 和 26.80。

马尾松根系的 P 含量和 C: P 比值在不同密度林间存在差异,但 C含量、N含量、C: N 比值和 N: P 比值不存在差异(图 2)。根系 P含量随着密度的增加呈逐渐升高的趋势,而 C: P 比值则呈逐渐降低的趋势。根系 C含量在低密度林、中密度林、高密度林和超高密度林的均值为 456.62、450.23、445.94 和 450.85 g·kg¹, N含量为 4.80、5.05、4.54 和 5.23 g·kg¹, P含量为 0.24、0.29、0.27 和 0.37 g·kg¹, C: N 比值为 95.48、94.97、110.79 和 86.52、C: P 比值为 1 925.8、1 566.3、1 616.4和 1 303.6,N: P 比值为 20.23、17.41、16.29 和 19.45。

2.4 马尾松针叶、根系和土壤的养分含量及其比值 之间的相关性

马尾松的针叶和根系的养分含量、比值与土壤的养分含量、比值存在较强的关系(表3)。在不同林龄中,针叶N含量与土壤C:N比值具有显著的负相关关系,针叶C:N比值与土壤C:N比值具有显著的正相关关系(表4)。根系P含量与土壤P含量具有显著的正相关关系,与土壤C:P比值和N:P比值具有显著的负相关关系;根系C:P比值和N:P比值与土壤P含量具有显著的负相关关系,与土壤C:P比值和N:P比值具有显著的负相关关系,与土壤C:P比值和N:P比值具有显著的页相关关系,与土壤C:P比值和N:P比值具有显著的正相关关系。

在不同密度林中,针叶 C 含量与土壤 N 含量 具有显著的正相关关系,与土壤 C:N 比值具有显 著的负相关关系(表 5)。根系 P 含量与土壤 N 含 量和 P 含量具有显著的负相关关系,与土壤 C:N 比值和 C:P 比值具有显著的正相关关系;根系 C:P比值与土壤 N 和 P 含量具有显著的正相关 关系,与土壤 C:N 比值和 C:P 比值具有显著的 负相关关系;根系 N:P 比值与土壤 C:P 比值具 有显著的负相关关系。

3 讨论与结论

在判断植物的养分限制特征时,一般会采用 N:P 比值作为参考:叶片 N:P 比值小于 14,植 物受 N 限制;叶片 N:P 比值大于 16,植物受 P 限 制;叶片 N: P 比值介于 14 和 16 之间,植物则受 到 N 和 P 双重限制 (Koerselman & Meuleman, 1996)。在实际工作中,判断植物的养分限制特征 除了叶片的 N:P 比值指标,土壤养分或者植物生 理变化的指标也非常重要。土壤养分的供给能力 对于植物的生长和生态系统维持显得非常重要。 比如,一个200年未受到人类强烈干扰的喀斯特 自然生态系统,其植物群落的 N:P 比值远远大于 16,其表现为 P 限制,但其土壤养分供给能力较低 龄林更好,能较好地维持系统内部的养分循环和 自足(Pan et al., 2015)。Wu et al.(2019)研究表 明,随着杉木生长年龄越来越大,该人工林系统的 P 素调动变小而 P 重吸收加强,说明倾向于养分 自足的方向发展。在之前的研究中,同一地区的 马尾松人工林在幼龄林、中龄林、成熟林和过熟林 的凋落物初始 P 含量表现为略微降低之后升高, 说明低林龄马尾松更缺P并导致较高的P重吸收 效率(潘复静等,2020)。本研究结果显示,不同龄 林和不同密度林的马尾松针叶 N:P 比值都大于 16。广西很多地区马尾松人工林的土壤全 P 和有 效 P 含量极度贫瘠,而土壤 N 含量亦很低(覃其云 等,2017),本研究区的土壤 N和P含量水平与其 较为一致。结合生态化学计量学理论与土壤 N 和 P 的含量状况,表明桂南地区马尾松人工林可能也 受到土壤 N 贫瘠的限制,但主要受到土壤 P 贫瘠 的限制,在幼龄林和高密度林更加明显。

林龄是影响植物养分含量和比值变化的重要因素。本研究中,在不同林龄马尾松人工林中,针叶 N 含量的变化不大,而 P 含量随着林龄增加而稍微降低,最终针叶 N:P 比值随林龄增加而稍微升高。土壤养分一般与植物组织的养分含量具有一定的耦合关系。本研究结果显示,不同林龄马尾松人工林的针叶 N和 P 含量和 N:P 比值与土壤 N和 P 养分没有显著的相关关系;相反,根系 N和 P 含量和 N:P 比值与土壤 N和 P 养分有较显著的关系。根系 P 含量与土壤 P 含量和 N:P 比值的关系分别为显著正相关和显著负相关,根系

表 3 马尾松针叶与根系的养分及其比值的相关性

Table 3 Correlations of nutrients and ratios between needle leaves and roots in different age and density stands of *Pinus massoniana* plantations

林分 Stand	指标 Parameters	根碳 Roots C	根氮 Roots N	根磷 Roots P	根 C:N Roots C:N	根 C:P Roots C:P	根 N:P Roots N:P
不同龄林	针叶 C Needle leaves C	0.232	-0.569	0.243	0.587 *	-0.378	-0.49
Different age stands	针叶 N Needle leaves N	0.229	-0.291	0.063	0.252	-0.006	-0.071
	针叶 P Needle leaves P	-0.36	0.258	-0.464	-0.2	0.508	0.476
	针叶 C: N Needle leaves C: N	-0.125	0.02	0.04	0.011	-0.141	-0.131
	针叶 C: P Needle leaves C: P	0.348	-0.308	0.491	0.256	-0.523	-0.502
	针叶 N: P Needle leaves N: P	0.45	-0.367	0.498	0.304	-0.49	-0.481
不同密度	针叶 C Needle leaves C	0.234	-0.251	-0.723	0.355	0.637 *	0.25
Different density stands	针叶 N Needle leaves N	0.494	-0.243	0.076	0.219	0.051	-0.172
	针叶 P Needle leaves P	-0.361	0.231	-0.211	-0.093	0.117	0.272
	针叶 C: N Needle leaves C: N	-0.393	0.177	-0.234	-0.131	0.095	0.219
	针叶 C: P Needle leaves C: P	0.217	-0.147	0.116	0.025	-0.076	-0.173
	针叶 N: P Needle leaves N: P	0.321	-0.155	0.209	0.024	-0.127	-0.219

注: ** 表示相关性显著水平为 0.01; *表示相关性显著水平为 0.05(双尾检测)。下同。

Note: ** means correlation is significant at the 0.01 level; * means correlation is significant at the 0.05 level (2-tailed). The same below.

表 4 不同林龄马尾松针叶和根系与土壤的养分及其比值的相关性

Table 4 Correlations of nutrients and ratios between needle leaves and roots and soils in different ages of stands of *Pinus massoniana* plantations

指标 Parameter	土壤有机碳 SOC	土壤全氮 Soil TN	土壤全磷 Soil TP	土壤 C:N Soil C:N	土壤 C:P Soil C:P	土壤 N:P Soil N:P
针叶 C Needle leaves C	-0.344	-0.514	-0.071	0.242	-0.329	-0.399
针叶 N Needle leaves N	-0.06	0.445	0.037	-0.724 **	-0.059	0.281
针叶 P Needle leaves P	0.083	0.363	-0.005	-0.451	0.197	0.347
针叶 C: N Needle leaves C: N	-0.066	-0.543	-0.066	0.696 *	-0.047	-0.36
针叶 C: P Needle leaves C: P	-0.183	-0.501	-0.064	0.507	-0.192	-0.375
针叶 $N:P$ Needle leaves $N:P$	-0.145	-0.264	-0.017	0.212	-0.204	-0.252
根 C Roots C	-0.259	-0.261	-0.06	-0.103	-0.189	-0.094
根 N Roots N	0.048	0.062	-0.173	-0.006	0.437	0.384
根 P Roots P	0.388	0.141	0.664 *	0.302	-0.748 **	-0.738 **
根 C: N Roots C: N	-0.129	-0.129	0.086	-0.033	-0.381	-0.322
根 C: P Roots C: P	-0.396	-0.115	-0.692 *	-0.378	0.831 **	0.845 **
根 N: P Roots N: P	-0.337	-0.085	-0.633 *	-0.337	0.795 **	0.798 **

N: P比值与两者的关系则正好相反。本研究结果 表明,随着林龄的增加,马尾松根系的养分变化比 针叶更加强烈。马尾松根系对土壤养分底下的响应是维持马尾松人工林生态系统运转的基础,根

表 5 不同密度马尾松针叶和根系与土壤的养分及其比值的相关性

Table 5	Correlations of nutrients and its ratios between needle leaves and roots and soils
	in different density stands of <i>Pinus massoniana</i> plantations

指标 Parameter	土壤有机碳 SOC	土壤全氮 Soil TN	土壤全磷 Soil TP	土壤 C:N Soil C:N	土壤 C:P Soil C:P	土壤 N:P Soil N:P
针叶 C Needle leaves C	0.233	0.674 *	0.393	-0.585 *	-0.356	-0.075
针叶 N Needle leaves N	0.395	0.307	0.086	0.182	0.257	0.179
针叶 P Needle leaves P	0.177	0.179	0.397	0.025	-0.329	-0.369
针叶 C: N Needle leaves C: N	-0.320	-0.127	0.010	-0.319	-0.328	-0.183
针叶 C: P Needle leaves C: P	-0.232	-0.184	-0.350	-0.112	0.211	0.286
针叶 N: P Needle leaves N: P	-0.128	-0.147	-0.368	-0.005	0.330	0.357
根 C Roots C	0.025	0.261	0.070	-0.287	-0.054	0.111
根 N Roots N	-0.130	-0.261	0.054	0.143	-0.200	-0.303
根 P Roots P	-0.142	-0.642 *	-0.597 *	0.658 *	0.641 *	0.354
根 C:N Roots C:N	0.260	0.404	-0.026	-0.146	0.231	0.341
根 C:P Roots C:P	0.099	0.601 *	0.576 *	-0.652 *	-0.640 *	-0.354
根 N: P Roots N: P	-0.042	0.206	0.439	-0.345	-0.610 *	-0.490

系吸收养分后可供给其他组织使用,使得针叶具有较高的养分含量(韦明宝等,2019)。但是,根系吸收后的养分并不会大部分供给针叶使用,这可能是导致本研究中马尾松针叶的 N 和 P 含量和 N: P比值与土壤 N 和 P 养分没有显著相关关系的原因。

本研究得到不同林龄马尾松人工林的针叶-根 系-土壤养分之间的关系仅有根系与土壤养分之间 关系较为密切,其原因可能归根于马尾松对养分 的分配和重吸收。针叶作为马尾松的光合作用器 官,其对 C 固定起着重要的作用,而根系则作为水 分和养分吸收的重要器官,为了保证针叶具有较 高的光合作用能力,其会转运较多的 N 和 P 养分 到针叶当中(韦明宝等,2019)。虽然马尾松的茎 干养分含量相对较低,但是纯林状态下其茎秆生 物量占比可达到 71.3%(李燕燕等,2004),且马尾 松的茎与其他器官的比例随着林龄增加而增加 (杜虎等,2013)。本研究表明马尾松针叶 P 含量 随着林龄增加而呈现稍微降低的趋势,这可能导 致马尾松针叶的光合作用速率和 C 积累速率的降 低,并促使针叶的 P 含量会分配到其他器官。而 较低林龄的情况下,较高的生长速率和生物量积 累速率,必须有较多的 P 作为光合作用速率支撑, 根系会把 P 较多输送到针叶上,导致幼龄林的马 尾松根系P含量显著低于其他龄林。我们之前的 研究指出本地区马尾松人工林的凋落物初始 P 含 量随着林龄增加表现为略微降低之后升高,表现为马尾松针叶在幼龄林、中龄林和成熟林比过熟林具有较高的 P 重吸收效率(潘复静等,2020)。马尾松在面对土壤养分贫瘠时,为了能保证较高的光合作用效率,根系的 P 含量会转运到针叶或者针叶的 P 重吸收效率较高。由于生物量积累、生理特征的变化,不同林龄马尾松人工林的针叶根系-土壤养分之间的关系较为复杂。该地区成熟林阶段马尾松针叶和根系具有较高的 P 含量和最高的 C 含量,利于 C 和 P 养分的积累,较高的针叶和根系养分含量可利于木材收获后较多养分归还土壤。

密度是影响植物养分含量和比值变化的另一重要因素。在不同密度林中,马尾松针叶 N 含量的变化不大,而 P 含量在中密度林和高密度林较高,导致 N: P 比值在低密度林和超高密度林显著高于中密度林和高密度林。本研究中,不同密度马尾松人工林属于中龄林阶段,养分积累、分配和循环慢慢向较优状态发展,而密度效应是影响这个状态的重要因素。要了解哪种密度对于马尾松养分积累、分配和循环更有利,必须要综合土壤、根系、针叶以及凋落物的养分状况进行判断。本研究结果显示土壤 N 和 P 含量与不同林龄的状况比较一致,说明土壤 N 和 P 含量比较贫瘠。土壤 N 和 P 含量在不同密度林之间没有显著性差异,而在中密度林和高密度林略微高于其他两种密度

林。我们看到,针叶 P 含量在中密度林和高密度 林较高,而根系 P 含量则处于中间值,导致中密度 林和高密度林的针叶和根系具有较低的 N:P 比 值。在之前的研究中, 凋落物初始 P 含量在低密 度林显著高于其他三种密度林,而中密度林最低 (潘复静等,2020)。以上结果表明,中密度马尾松 林的针叶对于P的重吸收效率较高。从以上结论 可以得出,低密度林马尾松针叶和根系的 P 含量 较低,而P重吸收效率低,达不到最理想状态;超 高密度林马尾松针叶的 P 含量较低,而密度效应 影响太大,导致针叶和根系 N:P 比值较高,养分 限制较为严重。有研究表明,越低或者越高的种 植密度不利于马尾松人工林的碳储量积累,认为 中间密度比较适宜(高祥等,2014)。通过以上研 究得出,该地区中密度林马尾松针叶的 C 和 N 含 量较高且 P 含量最高, C: N 比值较低且C: P 比 值和 N:P 比值最低;根系的 $C\setminus N$ 和 P 含量较高, 而 C:N 比值、C:P 比值和 N:P 比值较低。因 此,中密度马尾松人工林可能具有较优的养分循 环和积累状态。

马尾松人工林在幼龄林处于快速生长的阶 段,倾向于把较多 P 分配到针叶中,中龄林阶段到 成熟林阶段其养分积累、分配和循环达到较优状 态,到了过熟林阶段反而会降低。因此,马尾松根 系的养分特别是 P 含量在不同龄林和不同密度林 之间的变化比针叶更加明显,且根系养分与土壤 养分之间的相关性比针叶的更强,表明在 P 限制 下,根系对马尾松的 P 素吸收和分配起到重要作 用。那么,在马尾松人工林幼龄林阶段实施 P 素 添加和调控很重要。杂草的生长对于土壤 N 素积 累没有好处,而土壤 N 素随着林龄的增加并没有 表现出改善的趋势,在森林抚育上,于幼龄林便引 种豆科灌木且保持其在各龄林具有一定的数量 (林红强, 2005),则对于提高土壤 N 含量和马尾 松生物量上具有积极作用。而在不同密度林中, 该地区中密度种植(3 300 株·ha⁻¹,株间距 1.5 m× 2 m)对于马尾松养分积累、分配和循环以及碳储 量积累可能比较有利。

参考文献:

DING B, DING GJ, ZHANG YR, 2016. Effects of density regulation on carbon storage of Pinus massoniana plantation

- ecosystem [J]. J NW For Univ, 31(3): 197-203. [丁波, 丁 贵杰, 张耀荣, 2016. 密度调控对马尾松人工林生态系统碳 储量的影响 [J]. 西北林学院学报, 31(3): 197-203.]
- DU H, SONG TQ, ZENG FP, et al., 2013. Biomass and its allocation in Pinus massoniana plantation at different stand ages in east Guangxi [J]. Acta Bot Boreal-Occident Sin, 33(2): 394-400. 「杜虎, 宋同清, 曾馥平, 等, 2013. 桂东 不同林龄马尾松人工林的生物量及其分配特征 [J]. 西北 植物学报,33(2):394-400.]
- ELSER JJ, DOBBEFFUH D, MAEKAY NA, et al., 1996. Organism size, life history, and N: P stoichiometry: towards a unified view of cellular and ecosystem processes [J]. Bioscience, 46: 674-684.
- FAN ZW, YANG ZQ, 2012. Comparison onwater-holding capability of Pinus massoniana plantations with different densities [J]. Guangxi For Sci, 41(1): 19-22. 「范志伟, 杨章旗, 2012. 不同密度马尾松人工林水源涵养能力的比 较[J]. 广西林业科学, 41(1): 19-22.]
- GAO X, DING GJ, ZHAI SS, et al., 2014. Spatial distribution of root biomass of Pinus massoniana plantations under different planting densities [J]. J Cent S Univ For Technol, 34(6): 71-75. 「高祥, 丁贵杰, 翟帅帅, 等, 2014. 不同林 分密度马尾松人工林根系生物量及空间分布研究 [J]. 中 南林业科技大学学报,34(6):71-75.]
- HAO ZM, WU SR, QIN L, et al., 2018. Soil physical and chemical properties of pure Pinus massoniana and mixedspecies tree plantation with different age in south Guangxi area [J]. Guangdong Agric Sci, 45(1): 39-43. [郝中明, 吴水荣, 覃林, 等, 2018. 广西南部地区不同林龄马尾松 及其混交林理化性质研究 [J]. 广东农业科学, 45(1): 39-43.
- HE B, LI Q, FENG T, et al., 2019. Stoichiometry characteristics of C, N, and P in needle leaves, litter, and soil during stand development in a Pinus massoniana plantation in Northwest Guizhou Province [J]. Ecol Environ Sci, 28 (11): 2149 -2157. 「何斌, 李青, 冯图, 等, 2019. 黔西北不同林龄马尾松 人工林针叶-凋落物-土壤 C、N、P 化学计量特征 [J]. 生态环 境学报,28(11):2149-2157.]
- HE YJ, LIANG XY, QIN L, et al., 2013. Community structure, species diversity of Pinus massoniana and Castanopsis hystrix plantation and the nature-based forest management in the southern suptropical China [J]. Sci Silv Sin, 49(4): 24-33. 「何友均, 梁星云, 覃林, 等, 2013. 南 亚热带马尾松红椎人工林群落结构、物种多样性及基于自 然的森林经营[J]. 林业科学, 49(4): 24-33.]
- KOERSELMAN W, MEULEMAN AFM, 1996. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 33: 1441-1450.
- LI YY, FAN HB, LIN DX, et al., 2004. Biomass and distribution of stands mixed Pinus massoniana with broad leaved species [J]. J Zhejiang For Coll, (4): 30-34. [李燕 燕, 樊后保, 林德喜, 等, 2004. 马尾松林混交阔叶树的生

- 物量及其分布格局「J]. 浙江林学院学报,(4):30-34.]
- LIN HQ, 2005. Contrast analysis on the measures of masson pine reclaim fertilization & mixed nitrogen fixation vegetation [J]. Subtrop Soil Water Conserv, (3): 59-60. [林红强, 2005. 水土流失区马尾松垦复施肥与混交固氮植物措施对比分析 [J]. 亚热带水土保持, (3): 59-60.]
- LIU Z, TIAN D, HUANG ZJ, et al., 2019. Characteristics of soil and foliar N and P concentrations and stoichiometric ratio along restoration ages of *Pinus massoniana* plantations in red soils erosion regions of southern China [J]. Chin J Appl Environ Biol, 25(4): 768-775. [刘政, 田地, 黄梓敬, 等, 2019. 南方红壤侵蚀区不同恢复年限马尾松人工林土壤和叶片氮磷养分含量及生态化学计量特征 [J]. 应用与环境生物学报, 25(4): 768-775.]
- PAN FJ, ZHANG W, WANG KL, et al., 2011. Litter C:N:P ecological stoichiometry character of plant communities in typical karst peak-cluster depression [J]. Acta Ecol Sin, 31(2):335-343. [潘复静,张伟,王克林,等,2011. 典型喀斯特峰丛洼地植被群落凋落物 C:N:P生态化学计量特征[J].生态学报,31(2):335-343.]
- PAN FJ, SUN YJ, ZHANG DN, et al., 2013. Plant specific leaf areas of *Cyclobalanopsis glauca-Pteroceltis tatarinowii* community in karst region, northern Guangxi [J]. Guihaia, 33(3): 295-299. [潘复静, 孙英杰, 张德楠, 等, 2013. 桂北岩溶区青冈栎-青檀群落植物叶片比叶面积研究 [J]. 广西植物, 33(3): 295-299.]
- PAN FJ, ZHANG W, LIU SJ, et al., 2015. Leaf N: P stoichiometry across plant functional groups in the karst region of southwestern China [J]. Trees-Struct Funct, 29: 883–892.
- PAN FJ, LIANG YM, WANG KL, et al., 2018. Responses of fine root functional traits to soil nutrient limitations in a karst ecosystem of southwest China [J]. Forests, 9(12): 743
- PAN FJ, LIANG YM, MA JM, et al., 2020. Stand age and density affected litter nutrients changes in planted *Pinus massoniana* forests [J]. Guihaia, 40(2): 237-246. [潘复静,梁月明,马姜明,等,2020. 不同林龄和密度对马尾松人工林凋落叶养分变化的影响 [J]. 广西植物,40(2): 237-246.]
- QIN QY, TANG J, DENG XJ, et al., 2017. Evaluation on soil fertility of *Pinus massoniana* plantations in Guangxi Province [J]. For Inven Plan, 42(6): 16-21. [覃其云, 唐健, 邓小军, 等, 2017. 广西马尾松人工林土壤肥力评价研究

- [J]. 林业调查规划, 42(6): 16-21.]
- SONG ZR, QIN JS, LI MJ, et al., 2020. Study on root biomass of *Pinus massoniana* plantations in subtropical china [J]. J Guangxi Norm Univ (Nat Sci Ed), 38(1): 149–156. [宋尊荣,秦佳双,李明金,等,2020. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版),38(1): 149–156.]
- WANG WW, XIONG DC, HUANG JX, et al., 2015. Comparison of fine-root traits between two subtropical tree species *Pinus massoniana* and *Castanopsis carlesii* differing in successional stages [J]. Acta Ecol Sin, 35 (17): 5813 5821. [王韦韦,熊德成,黄锦学,等,2015.亚热带不同演替树种米槠和马尾松细根性状对比研究[J].生态学报,35(17):5813-5821.]
- WEI MB, YANG ZW, WANG HG, et al., 2019. Nutrient accumulation and its distribution characteristics of the *Pinus massoniana* plantation in northwest Guangxi [J]. Subtrop Agric Res, 15(2): 80-84. [韦明宝, 杨正文, 王汉敢, 等, 2019. 桂西北马尾松人工林养分积累及其分配特征[J]. 亚热带农业研究, 15(2): 80-84.]
- WU HL, XIANG WH, CHEN L, et al., 2019. Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations [J]. Ecosystems, 23: 973–988.
- WU Q, PENG YY, MA HY, et al., 2019. Research on the value of forest ecosystem services and compensation in a *Pinus massoniana* forest [J]. Acta Ecol Sin, 39(1): 117-130. [吴强, PENG Yuanying, 马恒运,等, 2019. 森林生态系统服务价值及其补偿校准——以马尾松林为例 [J]. 生态学报, 39(1): 117-130.]
- YANG HM, WANG DM, 2011. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors [J]. Acta Prat Sin, 20(2): 244-252. [杨惠敏, 王冬梅, 2011. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 20(2): 244-252.]
- ZHANG W, ZHAO J, PAN FJ, et al., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 391 (1-2): 77-91.

(责任编辑 何永艳)