
DOI: 10.11931/guihaia.gxzw202112042

赵飘, 刘振亚, 王娜, 等. 云南高原湖泊水葱克隆生长与有性繁殖特征及影响因子 [J]. 广西植物、2022、42(7): 1126-1135.

云南高原湖泊水葱克隆生长与有性繁殖特征及影响因子

飘^{1,2}, 刘振亚^{1,2}, 王 娜^{1,2}, 牛孟莹³, 艾 静⁴, 肖德荣^{5,6}, 王 赵

(1. 西南林业大学 云南省高原湿地保护修复与生态服务重点实验室, 昆明 650224; 2. 西南林业大学 国家高原湿地研究中心/湿地 学院, 昆明 650224; 3. 西南林业大学 生命科学学院, 昆明 650224; 4. 云南省农业科学院甘蔗研究所, 云南 开远 661600; 5. 温州大学 生命与环境科学学院, 浙江 温州 325035; 6. 温州大学 城镇水污染生态治理技术 国家地方联合工程研究中心, 浙江 温州 325035)

摘 要:为掌握挺水植物克隆生长与有性繁殖参数的空间分布格局特征及环境因子对植物繁殖的影响路径, 该文利用云南高原的立体地形、通过空间替代时间的方法、探讨 6个湖泊共有挺水植物水葱(Schoenoplectus tabernaemontani)的克隆生长、有性繁殖的地理差异和变化规律以及对环境变化的响应。结果表明:(1)密度、 株高、基径等克隆生长参数,以及结实率、穗生物量及其投资比、种子产量、活性种子数等繁殖参数在不同地理 空间上存在显著差异(P<0.05),而地上生物量无显著差异。(2)密度、株高、结实率、穗生物量及其投资比等 参数具有显著的经纬度、海拔地带性分布特征,其中密度随纬度和海拔的增加而增加、随经度的增加而减小, 而株高、结实率、穗生物量及其投资比随纬度和海拔的增加而减小、随经度的增加逐渐增大。(3)暖月和冷月 均温,土壤全氮、全磷是影响水葱克隆生长(密度、株高)的关键因子,其中暖月均温影响最大,年均降水、土壤 有机碳是影响水葱有性繁殖的关键因子,其中年均降水影响最大。综上认为,气候因子(暖月均温、冷月均温 和年均降水)是影响云南高原湖泊湖滨带植物水葱生长和繁殖的主要因子。

关键词: 挺水植物, 湖滨带, 繁殖策略, 气候变化, 高原湖泊

文献标识码: A 文章编号: 1000-3142(2022)07-1126-10 中图分类号: 0945.79

Clonal growth and sexual reproduction characteristics and influencing factors of Schoenoplectus tabernaemontani in Yunnan Plateau lakes

ZHAO Piao^{1,2}, LIU Zhenya^{1,2}, WANG Na^{1,2}, NIU Mengying³, AI Jing⁴, XIAO Derong^{5,6}, WANG Hang^{1,2*}

(1. Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; 2. National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming 650224, China; 3. College of Life Sciences, Southwest Forestry University, Kunming 650224, China; 4. Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, Yunnan, China; 5. College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang,

China; 6. National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban

Water Pollution, Wenzhou University, Wenzhou 325035, Zhejiang, China)

收稿日期: 2022-04-25

基金项目: 国家自然科学基金(41867059, 41877346);云南省基础研究计划项目(202201AT070057)「Supported by National Nature Science Foundation of China (41867059, 41877346); Yunnan Fundamental Research Project (202201AT070057)

第一作者: 赵飘(1996-),硕士研究生,主要从事湿地生态学研究,(E-mail)zhaop714825@163.com。

通信作者: 王行,博士,副研究员,硕士生导师,主要从事全球变化与湿地环境演变研究,(E-mail)hwang17@163.com。

Abstract: The response of plant growth and reproduction to future climate change has attracted widespread attention. In order to investigate the spatial distribution patterns of clonal growth and sexual reproduction parameters of emergent plants and the pathways of their environmental factors on plant reproduction. Based on the 3D topography of the Yunnan Plateau, we investigated the geographical differences and changes in the clonal growth and sexual reproduction of Schoenoplectus tabernaemontani, and the response to environmental changes was further investigated through the method of space alternative time. The results were as follows: (1) There were significant differences in clonal growth parameters such as density, plant height, and diameter, as well as reproductive parameters such as seed setting ratio, spike biomass, spike investment ratio, seed production, and the number of active seed in different geospates (P<0.05), but there was no significant differences in above-ground biomass. (2) The density, plant height, seed setting ratio, spike biomass, and spike investment ratio of S. tabernaemontani showed significant zonal distribution patterns of latitude, longitude, and altitude. Among them, The density increased with the increase in latitude and altitude, and it was decreased with the increase of longitude. Meanwhile, the plant height, seed setting ratio, spike biomass, and spike investment ratio decreased with the increase of latitude and altitude, and gradually increased with increasing longitude. (3) Mean temperature of the warmest month, mean temperature of the coldest month, soil total nitrogen and soil total phosphorus were the key factors affecting the growth (density and height) of S. tabernaemontani, where the warmest month mean temperature was the greatest influence. In addition, mean annual precipitation and soil organic carbon mostly explained the reproductive characteristics of S. tabernaemontani compared with other influencing factors, among which the mean annual precipitation had the greatest effect. The investigation further showed that the climatic factors (the warmest month mean temperature, the coldest month mean temperature, and mean annual precipitation) were the main factors affecting the growth and reproduction of S. tabernaemontani in the lakeside zone of Yunnan Plateau lakes.

Key words: emergent plant, lakeside, reproductive strategy, climate change, plateau lakes

生长与繁殖是植物实现种群维持与扩散的重要途径(王志保等,2018a),易受环境的变化而发生改变,进而对生态系统的结构和功能产生影响(Sherry et al.,2007)。植物生长与繁殖对未来气候变化的响应受到广泛关注(Roa-Fuentes et al.,2012;王志保等,2018b)。高原湖泊湖滨带植物对气候变化高度敏感(刘振亚等,2017),因此研究湖滨带植物生长与繁殖对外界环境因子的响应规律,是科学评估未来气候变化对高原湖泊有何影响和如何影响的基础。

地形(经纬度、海拔)、气候(降水、温度)和土壤养分等环境因子均对植物的生长和繁殖产生影响(Gong et al., 2019; Zhang et al., 2019)。海拔是影响植物生长和繁殖的主导因子(Körner, 2007),其中植物物候(Walker et al., 2014)、叶片功能性状(Jiang & Ma, 2015)与海拔密切相关。随着海拔的升高,植物的生物量增加(李亚芳, 2015)、高度降低(Liu et al., 2016)、个体变小(Méndez & Traveset, 2003),而对繁殖的投入增加(Fabbro & Körner, 2004)。除海拔因素外,植物株高与纬度呈驼峰关系,中纬度最高(Liu et al., 2016),而随

着纬度的增加,植物的株高降低(Moles et al., 2009)。地理空间的变化,使植物生境有所差异, 有研究表明,温度增加对植物克隆生长或促进(Li et al., 2014)、或抑制(Kreyling et al., 2008)、或无 显著影响(Bloor et al., 2010),对其有性繁殖具有 明显的促进作用(王志保等,2018a; Xiao et al., 2019)。降水增加导致植物叶片气孔关闭、光合速 率降低,植物克隆生长受到抑制(Körner, 2007), 降水增加也能促进植物克隆生长(Roa-Fuentes et al., 2012)。增加土壤养分可促进植物个体的生 长(Nasto et al., 2019),增加植物种子产量(王亚 等,2021)。一般情况下,植物生长及繁殖在大尺 度上受气候因子的影响(Svenning & Sandel. 2013),而在山地等区域尺度上则受海拔梯度的影 响(唐志尧和方精云,2004)。在低海拔地区,土壤 养分对植物生长与繁殖的影响更为显著,而在高 海拔地区则是温度更为显著(Sang, 2009)。可见, 研究植物生长和繁殖策略对环境变化的响应是生 态学研究的热点,然而当前研究结果尚存在较多 的不确定性。

云南省地形极为复杂多样,其西北部为横断

山脉、东部为云贵高原,最大垂直高差达6 663.6 m. 地形、气候及土壤等环境因子的空间差异明显, 具有独特的地质和植被及立体气候特征(杨岚和 李恒,2010)。湖泊作为云南高原生态屏障的重要 组成,具有典型的"面山-湖滨-湖盆"的生态特 征,在生物多样性和特有性保育等方面发挥着不 可替代的作用,且对环境变化高度敏感(Xiao et al., 2019)。挺水植物是云南高原湖泊湖滨带的 重要组成,是高原湖泊生态结构和功能的基础。 水葱(Schoenoplectus tabernaemontani)是纳帕海、泸 沽湖、拉市海、滇池、杞麓湖及异龙湖等6个高原 湖泊湖滨带的共有种(杨岚和李恒,2010),其克隆 生长和有性繁殖是其维持种群空间分布和扩散的 重要途径。因此,研究水葱对不同地理空间环境 因子的响应,能很好地诠释湖滨带挺水植物生长 与繁殖对未来气候变化的适应策略。

本研究利用云南的立体地形及其独特气候, 选择6个不同区域的高原湖泊,以其湖滨带共有 分布的挺水植物水葱为研究切入点,研究水葱克 隆生长(密度、株高、基径、地上生物量)以及有性 繁殖(结实率、穗生物量、穗生物量投资比、单位面 积种子产量、单位面积活性种子数)等在不同区域 的差异特征,分析环境因子(地理位置、气候、土壤 和水等环境因子)与水葱生长和繁殖指标的相关 关系,拟解决以下科学问题:(1)高原湖泊挺水植 物水葱生长和繁殖特征在地理空间分布是否存在 地理分布差异:(2)其生长和繁殖特征是否存在经 纬度、海拔地带性分布规律:(3)由于地理空间的 差异而发生的环境变化对植物克隆生长与有性繁 殖造成什么样的影响,其影响程度如何。以期为 掌握高原湖泊对未来气候变化的响应机制奠定 基础。

1 材料与方法

1.1 研究区概况

选择纳帕海、泸沽湖、拉市海、滇池、杞麓湖、异龙湖等6个湖泊为研究地。纳帕海、泸沽湖、拉市海位于滇西北高原,是滇西北高原生物多样性和特有性保护的热点区域,其中纳帕海和拉市海为国际重要湿地。滇池、杞麓湖、异龙湖位于滇中高原,既是滇中城市群经济社会可持续发展的生态屏障,也是关注水生态安全和生物多样性保护

的重点区域。6个湖泊所处地形差异大,地理位置为99.66°—102.77° E、23.67°—27.85° N,海拔在1412~3260 m之间,跨经度、纬度分别为3.11°和4.18°,海拔高差达1848 m。所处地理位置的差异,使6个湖泊的气候、水、土壤等环境因子存在一定差异(表1)。

1.2 样品采集

2020年8-10月,分别在纳帕海、泸沽湖、拉 市海、滇池、杞麓湖、异龙湖湖滨带水葱典型分布 区域,设置3~6个1m×1m样方,其中纳帕海6 个、泸沽湖4个、拉市海3个、滇池3个、杞麓湖3 个、异龙湖 4 个,共计 23 个。野外测定样方内水 葱总株数、结穗数等指标,并在样方内选取 10 株 成熟结穗植株,测定植株高度,用精度为 0.01 mm 的游标卡尺测量基径。将结穗植株剪下带回实验 室,测定穗的形态、生物量和种子活性参数。采用 收割法,将样方内 25 cm × 25 cm 地上植株带回实 验室,测定水葱地上生物量等参数。用 GPS 分别 记录植物样方的经纬度和海拔。用定深泥炭钻 (荷兰 Eijkelkamp)采集每个样方内表层(0~10 cm)土壤样品,装入自封袋带回实验室,以测定土 壤理化指标。用 500 mL 塑料瓶采集水样带回实 验室,测定有关理化指标。

1.3 室内分析

1.3.1 地上生物量及有性繁殖指标的测定 烘干称重法,将刈割带回的植株样品放置 65 ℃的 烘箱中烘至恒重,测定地上生物量。首先,在室内 用精度为 0.1 cm 的直尺测定每个样方带回的 10 株水葱的穗长,记录每穗小穗数、种子数等指标, 计算水葱的结实率(结实株数/总株数×100%)、种 子产量(每平方米种子数=单株平均种子数×每平 方米结实株数)。然后,将分株装袋植株自然风干 后,分别测定穗生物量和植株生物量,计算有性繁 殖生物量投资比,即穗生物量投资比=穗生物量/ 植株生物量×100%。最后,将每个样方种子混匀, 每个样方分别选取水葱种子 200 粒,3 个重复,通 过物理方法剥去种壳,用解剖刀沿种子侧面将胚 纵切开,放置在1%四唑磷酸缓冲液中,在(30± 1) ℃条件下染色 24 h,在 10 倍放大镜下分别观察 其着色情况及种子活性。胚主要构造呈鲜红色, 或胚根尖端 2/3 不染色而其他部分正常染色的种 子为有生活力种子。在此基础上,计算单位面积 活性种子数量,即活性种子数=种子产量×(着色 种子数/染色种子数×100%)。

1.3.2 土壤和水体环境指标的测定 土壤有机碳含量(soil organic carbon, SOC)采用酸洗法测定(唐伟祥等,2018),土壤全氮(soil total phosphorus, STN)、全磷(soil total phosphorus, STP)采用 H₂SO₄-H₂O₂消煮法测定。水样全氮(water total nitrogen, WTN)、全磷(water total nitrogen, WTP)采用连续流动分析仪(德国 SEAL Analytical AA3)测定。通过

全球网格数据(precision: 0.16°×0.16°; http://www.paleo.bris.ac.uk/),分别获取各采样点的年均温(mean annual temperature, MAT)、最暖月均温(mean temperature of the warmest month, WMT)、最冷月均温(mean temperature of the coldest month, CMT)、年均降水(mean annual precipitation, MAP)等气候参数。各湖泊湖滨带土壤、水体采样点环境参数见表 1。

表 1 各采样点的地理、气候、土壤和水因子的特征

Table 1 Characteristics of geographical, climatic, soil and water factors in each sampling site

	地理位置 Geographic location			气候因子 Climatic factor			土壤因子 Soil factor			水因子 Water factor		
采样点 Sampling site	经度 Longitude (°)	纬度 Latitude (°)	海拔 Altitude (m)	年均温 MAT (℃)	最暖 月均温 WMT (℃)	最冷 月均温 CMT (℃)	年均 降水 MAP (mm)	有机碳 SOC (g·kg ⁻¹)	全氮 STN (g·kg ⁻¹)	全磷 STP (g·kg ⁻¹)	全氮 WTN (mg·L ⁻¹)	全磷 WTP (mg·L ⁻¹)
纳帕海 Napahai	99.66	27.85	3 260	7.8f	14.4f	-0.1f	620e	72.4±42.8a	8.9±2.9a	1.2±0.3b	6.9±9.1a	0.04±0.04a
泸沽湖 Luguhu	100.79	27.73	2 690	11.6e	17.6e	3.9e	908d	49.3±29.6a	$8.1{\pm}2.7{\rm ab}$	1.6±0.2a	1.4±0.2a	0.02±0.01a
拉市海 Lashihai	100.14	26.88	2 445	13.0d	18.5d	5.9d	969c	39.3±0.0a	$4.9{\pm}0.0\mathrm{b}$	$0.7\!\pm\!0.0\mathrm{c}$	2.8±0.0a	$0.54 \pm 0.00 a$
滇池 Dianchi	102.74	24.86	1 887	15.3c	20.3c	8.3c	$993 \mathrm{bc}$	$4.7{\pm}3.0\mathrm{b}$	$0.5\pm0.3\mathrm{c}$	0.6±0.1c	2.5±0.3a	$0.03\pm0.02a$
杞麓湖 Qiluhu	102.77	24.17	1 794	16.1b	20.8b	9.3b	1 008b	52.6±17.6a	$4.3 \pm 0.6 b$	1.7±0.1a	8.0±9.5a	0.68±1.11a
异龙湖 Yilonghu	102.57	23.67	1 412	18.5a	23.0a	12.0a	1 088a	54.9±30.1a	$3.4\!\pm\!1.9\mathrm{b}$	0.6±0.4c	1.9±1.0a	0.04±0.03a

注:同一列不同小写字母表示差异显著 (P<0.05)。

Note: Different lowercase letters in the same column indicate significant differences (P < 0.05).

1.4 数据处理

利用 SPSS 19.0 软件,对不同区域水葱密度、株高、基径、地上生物量、结实率、穗生物量及其投资比、单位面积种子产量、单位面积活性种子数量等生长繁殖指标进行单因素方差分析(One-Way ANVOA),差异显著性水平设定为α=0.05。通过Pearson 相关性分析法,研究水葱生长和繁殖指标与气候、土壤、水文因子的相关性。在此基础上,通过 Stepwise 回归分析方法,进一步筛选影响水葱生长与繁殖特征的关键因子。使用 R 4.01 软件中Agricolae 软件包对影响水葱生长与繁殖的关键因子进行路径分析,研究关键影响因子对水葱生长和繁殖的作用路径和贡献率。

2 结果与分析

2.1 生长与繁殖的空间差异

由表 2 可知,除地上生物量外,水葱生长与繁殖参数在不同地理空间上存在显著差异(P<

0.05)。其中,密度在纳帕海最高(853±99 plant · m⁻²),滇池最低(256±43 plant·m⁻²),在不同采样 点间存在显著差异(P<0.05);株高在异龙湖最高 (209±28 cm),纳帕海最低(128±5 cm),在不同采 样点间存在极显著差异(P<0.001);基径在异龙湖 最高(13.3±0.5 mm),拉市海最低(6.4±1.4 mm), 在不同采样点间存在极显著差异(P<0.001);结实 率在异龙湖最高(71%±6%),在纳帕海最低 (35%±6%),在不同采样点间存在极显著差异 (P<0.01); 穗生物量在异龙湖最高(457±390 g・ m⁻²),在拉市海最低(46±17 g·m⁻²),在不同采样 点间存在显著差异(P<0.05); 穗生物量投资比在 异龙湖最高(13.9%±3.9%),在纳帕海最低 (2.2%±1.3%),在不同采样点间存在极显著差异 (P<0.001);单位面积种子产量在泸沽湖最高 (18.0×10⁴±6.6×10⁴ grain·m⁻²),在滇池最低 (3.8×10⁴±0.6×10⁴ grain·m⁻²),在不同采样点间 存在显著差异(P<0.05);单位面积活性种子数量 在泸沽湖最高 (16.0×10⁴±7.1×10⁴ grain·m⁻²),在

表 2 水葱在云南高原湖泊的克隆生长和有性繁殖参数特征

Table 2 Clonal growth and sexual reproduction parameters of *Schoenoplectus* tabernaemontani in different on Yunnan Plateau lakes

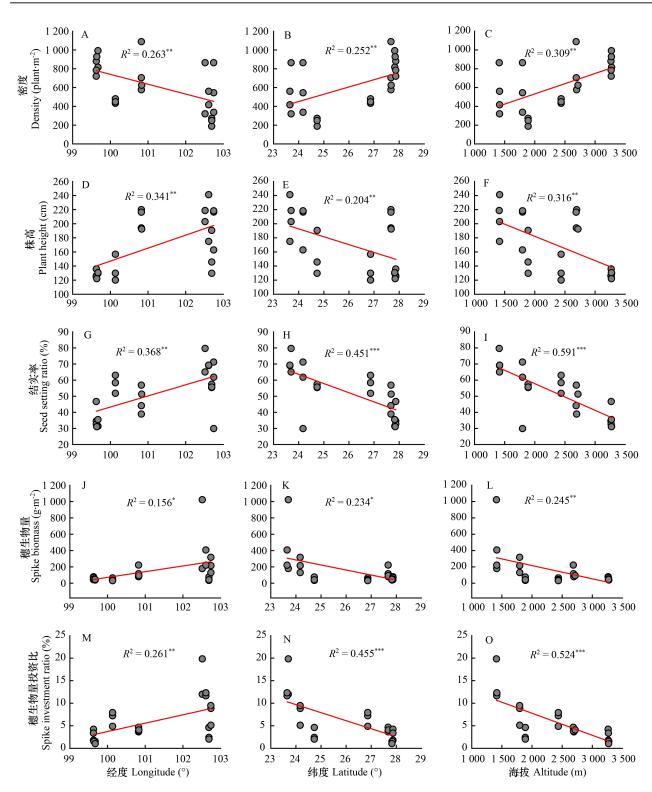
参数 Parameter	纳帕海 Napahai	泸沽湖 Luguhu	拉市海 Lashihai	滇池 Dianchi	杞麓湖 Qiluhu	异龙湖 Yilonghu	F 值 F value
1 arameter	Марапат	Lugunu	Lasiiiiai	Dianem	Quana	1 Honghu	r value
密度 Density (plant·m ⁻²)	853±99a	$748\!\pm\!233\mathrm{ab}$	$453\!\pm\!24\mathrm{bc}$	$256{\pm}43\mathrm{e}$	$581 \!\pm\! 266 \mathrm{b}$	$540{\pm}237\mathrm{b}$	6.101**
株高 Height (cm)	$128\!\pm\!5\mathrm{b}$	206±15a	$135\pm19\mathrm{b}$	$155\!\pm\!32\mathrm{b}$	199±32a	209±28a	12.488***
基径 Diameter (mm)	11.7±1.0a	11.4±1.4a	$6.4\!\pm\!1.4\mathrm{c}$	9.4±1.6b	13.2±0.9a	13.3±0.5a	17.470***
地上生物量 Above-ground biomass (g·m²)	2 786±972a	3 069±1195a	690±175b	1 976±1204a	2 769±502a	2 960±1657a	2.217
结实率 Seed setting ratio (%)	$35\pm6c$	$48\!\pm\!8\mathrm{bc}$	58±6ab	$56\pm1\mathrm{ab}$	$54\pm22b$	71±6a	7.631**
穗生物量 Spike biomass (g・m ⁻²)	$54 \pm 16 \mathrm{b}$	$127\!\pm\!64\mathrm{b}$	$46\pm17\mathrm{b}$	$50\pm22\mathrm{b}$	220±94ab	457±390a	3.544*
穗生物量投资比 Spike investment ratio (%)	2.2±1.3c	$4.0 \pm 0.4 c$	$6.7{\pm}1.6{\rm bc}$	$3.0\pm1.4\mathrm{c}$	$7.8\pm2.4\mathrm{b}$	13.9±3.9a	17.686***
种子产量 Seed production (10 ⁴ grain·m ²)	$7.0 \pm 1.7 \mathrm{b}$	18.0±6.6a	10.0±0.9b	3.8±0.6b	11.0±8.7ab	13.0±6.0ab	4.086*
活性种子 Active seed (10 ⁴ grain·m ⁻²)	1.8±09b	16.0±7.1a	9.0±1.0ab	$2.7{\pm}0.3\mathrm{b}$	9.5±7.3ab	11.0±5.3a	6.012**

注:同一行不同小写字母表示差异显著 (P<0.05); *表示 P<0.05; **表示 P<0.01; ***表示 P<0.001。

Note: Different lowercase letters on the same line indicate significant differences (P<0.05); * indicates P<0.05; ** indicates P<0.01; *** indicates P<0.001.

滇池最低($2.7 \times 10^4 \pm 0.3 \times 10^4$ grain · m⁻²),存在极显著差异(P < 0.01)。

2.2 生长与繁殖的空间分布规律


水葱种群生长和繁殖指标在地理空间上存在一定的规律性变化(图1)。水葱密度随经度的增加而减小(图1:A),株高、结实率、穗生物量、穗生物量投资比指标随经度的增加而增大(图1:D,G,J,M);密度随纬度的增加而增加(图1:B),株高、结实率、穗生物量、穗生物量投资比等指标随纬度的增加而减小(图1:E,H,K,N);水葱密度随海拔的增加而增大(图1:C),株高、结实率、穗生物量、穗生物量投资比等指标随着海拔的增加而减小(图1:F,I,L,O)。

2.3 影响水葱生长与繁殖的因子及作用路径

水葱密度与地上生物量、种子产量呈极显著正相关(P<0.01),株高与穗生物量、种子产量、活性种子呈显著正相关(P<0.05),与穗生物量投资比呈极显著正相关(P<0.01),基径与穗生物量呈显著正相关(P<0.05),地上生物量与穗生物量、种子产量呈极显著正相关(P<0.01),地上生物量与种子活性呈显著正相关(P<0.05)(表3)。

水葱生长和繁殖指标与区域气候因子和土壤 因子存在显著相关,而与湖泊水因子无显著相关 (表 4)。其中,水葱密度与年均温、最暖月均温、最冷月均温、年均降水呈极显著负相关(P<0.01),与土壤全氮呈极显著正相关(P<0.01),和全磷呈显著正相关(P<0.05)。植株株高与年均温、最暖月均温、最冷月均温、年均降水呈极显著正相关(P<0.01),水葱基径和地上生物量与本研究环境因子无显著相关性(P>0.05)。水葱结实率与年均温、最暖月均温、最冷月均温、年均降水呈极显著正相关(P<0.01)。穗生物量、穗生物量投资比与年均温、最暖月均温、最冷月均温、年均降水呈显著正相关(P<0.05)。水葱单位面积种子产量、活性种子与本研究环境因子无显著相关性(P>0.05)。

由图 2 可知,最暖月均温、最冷月均温、土壤全氮和全磷是影响水葱克隆生长的关键因子。其中,土壤全氮是影响水葱密度的主要因子,其路径系数为 0.59,贡献度为 35%;最暖月均温、最冷月均温、土壤全磷是影响水葱株高的主要因子,路径系数分别为 0.74、-0.67、0.04,其对株高的贡献度超过 90%(图 2:A)。土壤有机碳、年均降水是影响水葱有性繁殖参数的关键因子,其中,年均降水直接影响水葱结实率、穗生物量、穗生物量投资比,路径系数分别为 0.81、0.56、0.82, 土壤有机碳

^{*} 表示 P<0.05; **表示 P<0.01; ***表示 P<0.001。

图 1 云南高原湖泊水葱生长与繁殖指标随经纬度、海拔的变化规律

Fig. 1 Changes in growth and reproduction of *Schoenoplectus tabernaemontani* in lakes along with longitude, latitude, and altitude on Yunnan Plateau lakes

^{*} indicates P < 0.05; ** indicates P < 0.01; *** indicates P < 0.001.

表 3 水葱生长与繁殖指标的相关性分析

Table 3 Pearson correlations between growth and reproduction indexes of Schoenoplectus tabermamontani

植物参数 Plant parameter	密度 Density (plant·m ⁻²)	株高 Height (cm)	基径 Diameter (mm)	地上生物量 Above- ground biomass (g·m²)	结实率 Seed setting ratio (%)	穗生物量 Spike biomass (g·m²)	穗生物量 投资比 Spike investment ratio (%)	种子产量 Seed production (grain· m²)	活性种子 Active seed (grain· m²)
密度 Density (plant·m ⁻²)	1	-0.159	0.399	0.640**	-0.318	0.212	-0.092	0.546**	0.330
株高 Height (cm)	-0.159	1	0.507*	0.287	0.350	0.518*	0.526**	0.435*	0.545**
基径 Diameter (mm)	0.399	0.507*	1	0.637**	-0.010	0.470*	0.300	0.266	0.175
地上生物量 Above-ground biomass (g·m²)	0.640**	0.287	0.637**	1	-0.011	0.571**	0.151	0.533**	0.427*
结实率 Seed setting ratio (%)	-0.318	0.350	-0.010	-0.011	1	0.602**	0.802**	0.408	0.511*
穗生物量 Spike biomass (g·m²)	0.212	0.518*	0.470*	0.571**	0.602**	1	0.846**	0.563**	0.555**
穗生物量投资比 Spike investment ratio (%)	-0.092	0.526**	0.300	0.151	0.802**	0.846**	1	0.447*	0.508*
种子产量 Seed production (grain·m²)	0.546**	0.435*	0.266	0.533**	0.408	0.563**	0.447*	1	0.961**
活性种子 Active seed (grain·m²)	0.330	0.545**	0.175	0.427*	0.511*	0.555**	0.508*	0.961**	1

注:*表示 P<0.05; **表示 P<0.01。下同。

Note: * indicates P < 0.05; ** indicates P < 0.01. The same below.

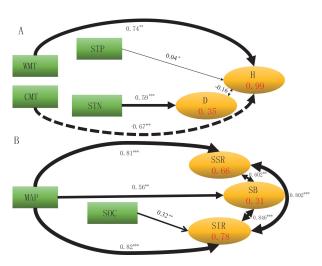

表 4 水葱生长繁殖指标与气候、土壤、水因子的相关性分析

Table 4 Pearson correlations between growth and reproduction indexes of Schoenoplectus tabermamontani and climate, soil and water factors

labelt. As Mr.		气候 Climate				土壤因子 Soil factor	水因子 Water factor		
植物参数 Plant parameter	年均温 MAT (℃)	最暖月均温 WMT (℃)	最冷月均温 CMT (℃)	年均降水 MAP (mm)	全氮 STN (g·kg ⁻¹)	全磷 STP (g·kg ⁻¹)	有机碳 SOC (g·kg ⁻¹)	全氮 WTN (mg·L ⁻¹)	全磷 WTP (mg·L ⁻¹)
密度 Density (plant·m ⁻²)	-0.572**	-0.571**	-0.578**	-0.566**	0.594**	0.484*	0.381	0.376	0.100
株高 Height (cm)	0.613**	0.624**	0.598**	0.587**	-0.234	0.172	-0.107	-0.279	-0.182
基径 Diameter (mm)	0.173	0.166	0.160	0.101	0.097	0.286	0.238	0.150	-0.055
地上生物量 Above-ground biomass (g·m ⁻²)	-0.028	-0.027	-0.041	-0.058	0.036	0.363	-0.025	0.305	-0.099
结实率 Seed setting ratio (%)	0.794**	0.799**	0.795**	0.814**	-0.476*	-0.388	-0.100	-0.083	0.329
穗生物量 Spike biomass (g·m²)	0.536**	0.538**	0.531**	0.557**	-0.245	-0.007	-0.017	-0.067	0.061
穗生物量投资比 Spike investment ratio (%)	0.758**	0.758**	0.758**	0.789**	-0.333	-0.254	0.043	-0.155	0.175
种子产量 Seed production (grain·m ⁻²)	0.170	0.188	0.159	0.198	0.152	0.302	0.101	0.054	0.287
活性种子 Active seed (grain·m ⁻²)	0.355	0.374	0.345	0.386	-0.042	0.230	-0.061	-0.039	0.287

直接影响水葱穗生物量投资比,其路径系数为0.32。年均降水对结实率和穗生物量的贡献度为

66%和31%,年均降水和土壤有机碳对穗生物量投资比的贡献度为78%(图2:B)。

A. 生长特征的影响因子及影响途径; B. 有性繁殖特征的影响因子及影响途径。箭头旁边数字代表标准化的路径系数,红色数字为解释度,实线表示正相关,虚线表示负相关;*表示P<0.05;**表示P<0.01;***表示P<0.001; ***表示P<0.001; ****表示P<0.001; ***表示P<0.001; ***表示P<0.001; ***表示P<0.001; ***表示P<0.001; ***表示P<0.001; ***表示P

A. The influencing factors and influencing ways of growth characteristics. **B**. The influencing factors and influencing ways of sexual reproduction characteristics. The standardized path coefficients are shown beside the arrows. The red numbers are explanatory degrees. The solid lines indicate positive influences, and the dotted lines indicate negative influences; * indicates P < 0.05; ** indicates P < 0.01; *** indicates P < 0.001. **D**. Density; **H**. Height; **SSR**. Seed setting ratio; **SB**. Spike biomass; **SIR**. Spike investment ratio; **STP**. Soil total phosphorus; **STN**. Soil total nitrogen; **WMT**. Mean temperature of the warmest month; **CMT**. Mean temperature of the coldest month; **MAP**. Mean annual precipitation; **SOC**. Soil organic carbon.

图 2 云南高原湖泊关键因子对水葱 生长与繁殖特征的影响路径

Fig. 2 Relational graphs of the path analysis linking growth and reproductive characteristics of Schoenoplectus tabernaemontani and key factors in Yunnan Plateau lakes

3 讨论与结论

植物生长和繁殖性状能够反映其对空间资源的利用和适应策略(陈玉宝等,2014)。本研究发现,水葱克隆生长(除地上生物量)和有性繁殖参数在不同分布空间存在较大差异,既是所在湖泊气候、土壤、水等环境因子协同作用的结果,也是水葱生长和繁殖策略对不同环境因子响应的体

现。与前人对文冠果生长性状和水葱种子繁殖的研究结果一致(王志保等,2018b;张毅等,2019)。但是,不同研究地水葱地上生物量无显著差异,表明湖滨带植物生物量不受地理环境条件的影响,其生物产量适用于最终产量恒定定律。

株高等植物性状的改变是植物长期适应气候 环境的结果(Wright et al., 2005)。本研究发现, 水葱在滇西北地区有着较小的植株个体,其有性 繁殖特征表现出显著的纬度和海拔地带性分布规 律,这与植物生境的水热条件密切相关。通常情 况下,高纬度高海拔地区的低温会抑制根系对水 分及营养物质的吸收,同时高紫外线辐射会降低 植物对资源利用效率,进而限制植物生长(Körner, 2006; Peñuelas et al., 2009)。从滇中地区到滇西 北地区,水葱穗生长指标参数逐渐减小。在高海 拔、高纬度地区,低温环境使得植物生长期缩短, 植物碳积累降低,促使植物降低了各部分的生物 量产量 (Méndez & Traveset, 2003; 王志保等, 2018b)。因此,随着海拔、纬度的增加,植物体供 应种子繁殖的能量也相应降低,使得植物的穗生 长、种子产量等均呈现降低的趋势,这可能是水葱 生长与繁殖特征随经纬度、海拔变化呈地带性分 布的主要原因。

克隆生长和有性繁殖是植物生活史策略中的 两个重要方面,在不同的环境条件下植物不同性 状间的关系反映了这些性状的功能联系。本研究 中,水葱克隆生长与有性繁殖密切相关。水葱有 性繁殖特征大小对植物个体大小表现出较强的依 赖性,植物生长性状株高和基径与植物对光的捕 获能力、抗机械损伤能力以及对有性繁殖器官的 支持能力密切相关。主要表现为株高越高越容易 使植物伸展获得更多的光照,但抗机械损伤能力 就越弱:基径越大植物的抗机械损伤能力越强,同 时能支持更粗的维管结构(Sun et al., 2016),在植 物良好生长的同时有性繁殖性状得到促进。随着 植物个体的增大,单株植物种子总数及种子总重 量会增加(Susko & Lovett-Doust, 1998),这可以解 释为植物个体越大,获得的总资源量越多,投入到 有性繁殖部分的资源量会增加。

本研究中,水葱株高与温度因子密切相关,表明水葱克隆生长主要受温度因子的影响。这是因为温度的升高可以提高植物的光合效率、抑制植物的呼吸作用,使植物生长得到促进,同时,在较

高温度下,植物生长季延长,升温加速了有机质的 分解和土壤矿化,植物提高了对土壤养分的利用 效率,从而促进植物的营养生长和碳积累(杨兵 等,2010)。本研究结果与增温条件下植物根茎长 度变化的研究结果一致(Li et al., 2014),有研究 者采用 OTC 增温技术对极地物种 Catex bigelowii 的研究表明温度升高能使有性植株的株高增加 (Stenström et al., 1997)。然而,在以往的研究中 发现温度增加对植物克隆生长有抑制作用,存在 这种差异的原因可能是非生物应激条件下植物对 资源的强烈竞争产生了负面影响。另外,本研究 结果显示水葱在降水量高的湖泊有更高的有性繁 殖投资,而水体氮磷含量对植物生长和繁殖的影 响不显著,这表明丰富的降水能促进挺水植物的 有性繁殖,这可能与降水对湖泊湖滨带水淹情况 的影响有关。由于挺水植物生境的特殊性,因此 水作为湿地生态系统的三大要素之一,通常包括 水量和水质两个方面。对于云南高原湖泊而言, 其径流主要由降水补给(杨岚和李恒,2010),水葱 花果期为6-9月,而云南雨季集中在5-10月,且 降水量从南到北(纬度增加)呈递减的趋势(晏红 明等,2018),其湖滨带水位情况发生改变。已有 研究发现,地面水位变为零不利于生葱生长(赵湘 江等,2015);香蒲在0~0.5 m 水深范围内,随着 水深的增加,有性繁殖比例增大(Sorrell et al., 2012)。本研究发现,土壤养分含量对植物生长和 繁殖有重要影响,其中土壤氮含量对植物的克隆 生长影响较大,这是因为植物主要从土壤中获取 养分,而氦元素能促进细胞的分裂和增长,植物叶 面积增长快,有更多的叶面积来进行光合作用,进 而促进植物的克隆生长,本研究结果与增加土壤 养分对植物个体生长的研究一致(Nasto et al., 2019)。本研究通过对植物克隆生长和有性繁殖 特征的环境影响因子研究发现,其贡献度表现为 气候因子>土壤因子>水因子。这表明在云南高原 湖泊,相对于土壤、水等环境因子,区域气候因子 (最暖月均温、最冷月均温和年均降水)是影响云 南高原湖泊湖滨带植物水葱生长和繁殖的主要环 境因子。因此,区域气候条件在高原湖泊植物生 长和繁殖过程中影响最大,土壤养分含量对植物 生长和繁殖有着显著影响,在未来环境变化下水 环境因子对高原湖泊植物繁殖特征的影响需要进 一步深入研究。

参考文献:

- BLOOR JMG, PICHON P, FALCIMAGNE R, et al., 2010. Effects of warming, summer drought, and CO₂ enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem [J]. Ecosystems, 13(6): 888–900.
- CHEN YB, WANG CS, GAO WT, et al., 2014. Study on phenology and growth rhythm of *Aconitum kusnezoffii* [J]. J Jilin Agric Sci Technol Univ, 23(2): 4-6. [陈玉宝, 王重舒, 高文韬, 等, 2014. 北乌头物候及生长节律研究 [J]. 吉林农业科技学院学报, 23(2): 4-6.]
- FABBRO T, KÖRNER C, 2004. Altitudinal differences in flower traits and reproductive allocation [J]. Flora, 199(1): 70–81.
- GONG HD, YU T, ZHANG X, et al., 2019. Effects of boundary constraints and climatic factors on plant diversity along an altitudinal gradient [J]. Glob Ecol Conserv, 19: e00671.
- JIANG ZH, MA KM, 2015. Environmental filtering drives herb community composition and functional trait changes across an elevational gradient [J]. Plant Ecol Evol, 148 (3): 301-310.
- KÖRNER C, 2006. Significance of temperature in plant life [J]. Plant Growth Clim Chang, 1: 48-69.
- KÖRNER C, 2007. The use of 'altitude' in ecological research [J]. Trend Ecol Evol, 22(11): 569-574.
- KREYLING J, BEIERKUHNLEIN C, ELMER M, et al., 2008. Soil biotic processes remain remarkably stable after 100-year extreme weather events in experimental grassland and heath [J]. Plant Soil, 308(1): 175–188.
- LI Z, LIN J, ZHANG T, et al., 2014. Effects of summer nocturnal warming on biomass production of *Leymus chinensis* in the Songnen Grassland of China: from bud bank and photosynthetic compensation [J]. J Agron Crop Sci, 200(1): 66–76.
- LI YF, 2015. Effects of water levels on the growth and reproductive characteristics of dominant plants in the Dongting Lake wetlands [D]. Changsha: Central South University of Forestry and Technology: 33-40. [李亚芳, 2015. 洞庭湖湿地克隆植物繁殖分配对水位的响应 [D]. 长沙: 中南林业科技大学: 33-40.]
- LIU WL, YANG J, SUN J, et al., 2016. Species turnover of wetland vegetation in northeastern China: Disentangling the relative effects of geographic distance, climate, and hydrogeomorphology [J]. Flora, 220: 1-7.
- LIU ZY, ZHANG XN, LI LP, et al., 2017. Influence of simulated warming on light and CO₂ utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚,张晓宁,李丽萍,等, 2017. 大气增温对 滇西北高原典型湿地湖滨带优势植物的光和 CO₂利用能力的影响 [J]. 生态学报,37(23): 7821-7832.]
- MÉNDEZ M, TRAVESET A, 2003. Sexual allocation in singleflowered hermaphroditic individuals in relation to plant and

- flower size [J]. Oecologia, 137(1): 69-75.
- MOLES AT, WARTON DI, WARMAN L, et al., 2009. Global patterns in plant height [J]. J Ecol, 97(5): 923-932.
- NASTO MK, WINTER K, TURNER BL, et al., 2019. Nutrient acquisition strategies augment growth in tropical N_2 -fixing trees in nutrient-poor soil and under elevated CO_2 [J]. Ecology, 100(4): e02646.
- PEÑUELAS J, RUTISHAUSER T, FILELLA I, 2009. Phenology feedbacks on climate change [J]. Science, 324(5929): 887–888.
- ROA-FUENTES LL, CAMPO J, PARRA-TABLA V, 2012. Plant biomass allocation across a precipitation gradient: an approach to seasonally dry tropical forest at Yucatán, Mexico [J]. Ecosystems, 15(8): 1234–1244.
- SANG WG, 2009. Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China [J]. Ecol Res, 24(2): 303-314.
- SHERRY RA, ZHOU XH, GU SL, et al., 2007. Divergence of reproductive phenology under climate warming [J]. Proc Natl Acad Sci USA, 104(1): 198–202.
- SORRELL BK, TANNER CC, BRIX H, 2012. Regression analysis of growth responses to water depth in three wetland plant species [J]. AoB Plants, 43: 1-13.
- STENSTRÖM M, GUGERLI F, HENRY GHR, 1997. Response of *Saxifraga oppositifolia* L. to simulated climate change at three contrasting latitudes [J]. Glob Chang Biol, 3(S1): 44–54.
- SUN M, SU T, ZHANG SB, et al., 2016. Variations in leaf morphological traits of *Quercus guyavifolia* (Fagaceae) were mainly influenced by water and ultraviolet irradiation at high elevations on the Qinghai-Tibet Plateau, China [J]. Int J Agric Biol, 18(2): 266–273.
- SUSKO DJ, LOVETT-DOUST L, 1998. Variable patterns of seed maturation and abortion in *Alliaria petiolata* (Brassicaceae) [J]. Can J Bot, 76(10): 1677–1686.
- SVENNING JC, SANDEL B, 2013. Disequilibrium vegetation dynamics under future climatechange [J]. Amer J Bot, 100(7): 1266–1286.
- TANG WX, MENG FQ, ZHANG Y, et al., 2018. Comparison of different soil organic carbon determination methods [J]. Soils, 50(3): 552-557. [唐伟祥, 孟凡乔, 张煜, 等, 2018. 不同土壤有机碳测定方法的比较 [J]. 土壤, 50(3): 552-557.]
- TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28.]
- WALKER JJ, DE BEURS KM, WYNNE RH, 2014. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data [J]. Remote Sens Environ, 144; 85-97.
- WANG Y, WANG WQ, WANG QK, et al., 2012. Effects of soil nutrients on reproductive traits of invasive and native annual Asteraceae plants [J]. Biodivers Sci, 29(1): 1-9. [王亚, 王玮倩, 王钦克, 等, 2021. 土壤养分对菊科—

- 年生人侵种和本地种繁殖性状的影响 [J]. 生物多样性,29(1): 1-9.
- WANG ZB, SUN M, LIU ZY, et al., 2018a. Response of seed reproduction of two dominant lakeside species to experimental warming in a typical plateau wetland in Northwestern Yunnan Plateau [J]. Chin J Appl Ecol, 29(3): 696–704. [王志保, 孙梅, 刘振亚, 等, 2018a. 滇西北高原典型湿地湖滨带优势植物种子繁殖对增温的响应 [J]. 应用生态学报, 29(3): 696–704.]
- WANG ZB, TIAN K, GUAN DX, et al., 2018b. Responses of seed reproduction traits of a wetland dominant plant *Schoenoplectus tabernaemontani* to environmental changes in Hengduan Mountains [J]. J NE For Univ, 46(3): 12-15. [王志保, 田昆, 管东旭, 等, 2018b. 横断山区湿地优势植物水葱种子繁殖性状对环境变化的响应 [J]. 东北林业大学学报, 46(3): 12-15.]
- WRIGHT IJ, REICH PB, CORNELISSEN JHC, et al., 2005. Assessing the generality of global leaf trait relationships [J]. New Phytol, 166(2): 485-496.
- XIAO DR, YAN PF, ZHAN PF, et al., 2019. Temperature variations in simulated warming alter photosynthesis of two emergent plants in plateau wetlands, China [J]. Ecosphere, 10(5): e02729.
- YAN HM, LI QQ, WANG DQ, 2018. Temporal and spatial characteristics of rainy season in Yunnan and its relationship with atmospheric circulation [J]. J Trop Meteorol, 34(1): 12-22. [晏红明,李清泉,王东阡, 2018. 云南雨季的时空特征及与大气环流变化的关系 [J]. 热带气象学报, 34(1): 12-22.]
- YANG B, WANG JC, ZHANG YB, 2010. Effect of long-term warming on growth and biomass allocation of *Abies faxoniana* seedlings [J]. Acta Ecol Sin, 30(21): 5994-6000. [杨兵, 王进闯, 张远彬, 2010. 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响[J]. 生态学报, 30(21): 5994-6000.]
- YANG L, LI H, 2010. Yunnan wetlands [M]. Beijing: China Forestry Press: 14-15. [杨岚,李恒, 2010. 云南湿地 [M]. 北京: 中国林业出版社: 14-15.]
- ZHANG X, HE X, GAO J, et al., 2019. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems [J]. Glob Ecol Conserv, 17: e00527.
- ZHANG Y, AO Y, LIU JF, et al., 2019. Differences in growth characters of *Xanthoceras sorbifolium* from different distribution areas and analysis on its correlation with geographical-climatic factors [J]. J Plant Resour Environ, 28(3): 44-50. [张毅, 敖妍, 刘觉非, 等, 2019. 不同分布区文冠果的生长性状差异及其与地理-气候因子的相关性分析 [J]. 植物资源与环境学报, 28(3): 44-50.]
- ZHAO XJ, TIAN K, YUE HT, 2015. Growth stress of *Scirpus tabernaemontani* of dominant plant in plateau wetland lakeshore to water level fluctuating [J]. Guihaia, 35(3): 303-308. [赵湘江, 田昆, 岳海涛, 2015. 水位变化对高原湿地湖滨带优势植物水葱的生长胁迫[J]. 广西植物, 35(3): 303-308.]