DOI: 10.11931/guihaia.gxzw202203021

焦贝贝, 王希胤. 基于 Ks 分布的被子植物演化的时间尺度研究 [J]. 广西植物, 2022, 42(10): 1684-1693. JIAO BB, WANG XY. Timescale of angiosperm evolution based on Ks distribution [J]. Guihaia, 2022, 42(10): 1684-1693.

基于 Ks 分布的被子植物演化的时间尺度研究

焦贝贝, 王希胤*

(华北理工大学生命科学学院,河北唐山 063210)

摘 要:物种演化时间估算是生命演化研究的重要部分。近年来,许多研究发现由于不同基因和不同物种的 进化速率差异显著,因此需要新的方法对进化事件发生时间进行重新估计。为了对被子植物演化时间的重新 估计,该研究基于共享多倍化事件或共享分歧事件应该有共同同义突变率(Ks)峰值的理念,建立了基于基因 组数据的进化速率矫正模型。结果表明:(1)对获取 Ks 分布三种常见方式进行比较分析,明确了通过提取共 线性区块上 Ks 值的中位数的方式最优。(2)模拟了 Ks 值随时间累积系数(v)变化过程下的 Ks 分布,当假设 v 服从正态分布时,Ks 分布出现了长尾现象。(3)将矫正方法应用到被子植物中,发现不同谱系的被子植物具 有同步的辐射进化和适应性进化现象。并且,被子植物的进化速率虽然差异显著,但不同分支间的进化速率 仍具有部分一致性,如木兰类植物进化速率最慢,真双子叶植物次之,单子叶植物进化速率最快。最终得到了 相对可靠的物种同义突变率演化时间轴,为植物研究提供了系统发育和演化的支撑。 关键词: 同义突变率(Ks)分布,被子植物,时间矫正,系统发育树,进化速率 **中图分类号:**0941 **文献标识码:**A **文章编号:**1000-3142(2022)10-1684-10

Timescale of angiosperm evolution based on Ks distribution

JIAO Beibei, WANG Xiyin*

(College of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China)

Abstract: Estimating the time scale of species evolution is an important part of life evolution study. It is found that there are significant differences in the evolution rates of different genes and species in recent years, which challenges the molecular clock hypothesis to a great extent. Therefore, new methods are needed to re-estimate the evolutionary event time. The whole genome sequence of angiosperms makes it possible to estimate the evolution rate correction model based on genomic data is established according to the idea that shared polyploidy events or shared divergence events should have the same Ks peak. The results were as follows: (1) Three common ways to obtain Ks distribution were compared and analyzed, which showed that the best way was to extract the median of Ks values on collinear blocks. (2) The change process of Ks distribution was simulated with time accumulation coefficient (v) of Ks values. When v was

收稿日期: 2022-04-17

基金项目:国家自然科学基金(32070669) [Supported by National Natural Science Foundation of China(32070669)]。

第一作者: 焦贝贝(1992-),硕士研究生,主要从事比较基因组学研究,(E-mail)jiaobeibei0126@gmail.com。

通信作者: 王希胤,博士,教授,主要从事比较基因组学研究,(E-mail)wangxiyin@vip.sina.com。

assumed to obey the normal distribution, the Ks distribution had a long tail phenomenon. (3) The correction process was described in detail, which was conducive to the understanding and wide spread of this method. From the application of correction method in angiosperms, it was found that the Ks peak before correction was not linear with time, while the Ks peak after correction was directly proportional to time, indicating that it is very necessary to estimate the time of species evolution events after correcting the Ks peak. It was also found that although the evolution rate of angiosperms was significantly different, the evolution rate between different branches was still partially consistent. For example, Magnoliids had the slowest evolutionary rate, followed by Eudicots and Monocots. When the environment changed greatly, most species of different lineages of angiosperms had synchronous radial evolution and adaptive evolution. Finally, a relatively reliable angiosperm evolution time axis was establish, which helps to understand the evolution process and model, especially to understand the phylogenetic relationship and the causes of diversity and provides phylogenetic and evolutionary support for plant research.

Key words: Ks distribution, angiosperms, time correction, phylogenetic tree, evolutionary rate

被子植物的起源和早期快速演化及其发生时 间一直是生物学的研究热点。当前估算物种演化 时间的方法主要是基于分子钟假设,即以某几个 特定类群的化石时间作为校正点,然后通过部分 基因序列间的相似性,假设不同的物种拥有相同 或相近的进化速率,来估算系统发育树上某一节 点的时间,从而推断出该类群的起源时间(唐先华 等, 2002; Donoghue & Yang, 2016; Luo et al., 2020)。然而,近年的研究表明,不同物种的分子 钟通常具有显著差异,即不同物种的进化速率有 显著不同(Wang et al., 2017; 2019), 不同年代具有 不同的进化速度(罗静和张亚平,2000;Smith & Donoghue, 2008),且在不同研究中,对分子进化速 率的估算有很大的差异(Lanfear et al., 2010)。此 外,引入的化石时间对估算的时间影响很大,随着 更多化石且更准确的年份测定,被子植物演化的 时间尺度会随之变动(Hug & Roger, 2007; Wang et al., 2015; Silvestro et al., 2021)

基因组测序揭示了历史上反复的多倍化事件 (Ren et al., 2018),多倍化事件使基因组内所有 基因发生重复,且基因组中的古老同源区域通常 有相当数目的重复基因保留下来,从而形成目前 基因组内或者基因组间的共线性同源基因(Jiao et al., 2011)。对共线性同源基因的分析,是揭示古 代的多倍化或物种分歧事件并推定其发生时间和 规模的重要途径。多倍化发生后植物基因组通常 会变得很不稳定,进化速率也变得显著不同。由 于减少了选择性约束,因此这些重复基因通常以 更快的速度进化(Wang et al., 2016)。例如,在葫 芦科植物基因组的研究中发现,甜瓜的进化速度 最慢,西瓜和黄瓜的进化速度分别快 23.6% 和 27.4%(Wang et al., 2018)。

一般认为,同义突变率(synonymous substitution rate,Ks)往往不会改变氨基酸的组成,不受自然选 择的影响。因此,Ks分布常常作为判定物种历史上 发生的多倍化或物种分歧事件的依据(Vanneste et al., 2013)。依据共享的演化事件应该有相同的 Ks 峰值, Wang 等(2015)首次提出了基于 Ks 峰值的矫 正方法用以估算物种演化的时间尺度,得到了其他 研究工作者的认可,还被广泛应用于他们的研究中 (Zhuang et al., 2019; Song et al., 2020; Song et al., 2021; Wang et al., 2021)。例如, 两个团队分别对睡 莲(Zhang et al., 2020a)和芡实(Yang et al., 2020) 基因组分析, Yang 等(2020) 通过 Ks 峰值矫正的方 式估算的芡实古老多倍化(被证实为睡莲目共享) 与另外的团队基于睡莲目的转录组数据估算的时 间尺度基本一致。基于 Ks 峰值的矫正方法中,获得 准确的 Ks 峰是准确估算时间尺度的关键。然而,当 前获取 Ks 分布的方式不统一旦通常带有长尾现象 (Tang et al., 2008)。为何 Ks 分布会有长尾现象? 长尾现象对 Ks 峰是否有重要影响等问题,也尚未有 清晰的表述。

目前,已有 400 余种被子植物的基因组得到 不同水平的测定,便于在全基因组的尺度上理解 这些被子植物的演化历程(Kress et al., 2022)。 全基因组数据能有效消除横向基因转移和类群间 基因进化速率差异等因素对系统发育树的影响。 因此,急需在全基因组数据层面上,利用新方法对 被子植物的演化时间进行重新估计。本文拟对三种获取 Ks 分布的方式进行比较,明确哪种方式获得的 Ks 峰值更接近真实情况;对于 Ks 分布中常见的长尾现象,采用模拟仿真的方式,探究出现长尾现象的原因;区分共享多倍化和共享早期分化两种情况,创建基于全基因组数据的 Ks 分布矫正模型,对44 个代表性被子植物基因组演化事件的时间尺度进行重新估计,得到相对可靠的被子植物演化时间轴。这有助于更深层地了解被子植物多样性和系统发育以及被子植物基因组的进化模式。

1 材料与方法

1.1 基因组数据材料

收集 44 个高质量染色体水平的被子植物基因 组(主要来自 NCBI 和 PHYTOZOME),共包含 43 科 39 目(表 1)。

1.2 方法

1.2.1 共线性分析 使用 WGDI v0.5.3(Sun et al., 2021)软件进行共线性分析。首先,使用 BLASTP 来识别基因组内或基因组间的基因相似性。随后,用 WGDI 软件的'-d'子程序绘制同源点阵图, 并运行'-icl'子程序获得共线性基因。

1.2.2 Ks 分布 Ks 分布主要是通过 WGDI 软件完成的。首先,使用 WGDI 软件的'-ks'子程序调用 PAML(Yang, 2007) 软件计算共线性基因对的 Ks 值。通过'-bi'子程序整合共线性和 Ks 值的结果,并使用 WGDI 软件的'-bk'子程序查看共线基因的 Ks 值的分布,结果以点图的形式展示(图1:A)。根据物种内或种间已知的多倍化或分歧事件,通过 WGDI 的'-c'子程序对共线性片段进行过滤,只保留多倍化事件或分歧事件产生的共线性片段。然后,通过 WGDI 的'-kp'子程序获取 Ks 分布(图1:B)。最后,使用 WGDI 中的"-pf"子程序对不同事件分别进行拟合并获取 Ks 分布(图1:C)。

2 结果与分析

2.1 Ks 分布和长尾现象解析

Ks分布常常用来判定物种历史上发生的多倍 化或物种分歧事件的依据。目前获取 Ks分布主 要有三种方式。方式一:先通过 OrthoMCL(Li et al., 2003)等聚类软件获取旁系同源基因对,再计 算这些同源基因对的 Ks 值并绘制 Ks 分布图。方 式二:先进行基因组共线性分析,再计算共线性基 因对 Ks 值并绘制 Ks 分布。方式三:在方式二的 基础上,提取共线性区块上 Ks 值的中位数并绘制 Ks分布。三种方式中,方式一由于没有共线性分 析,因此所获取的旁系同源基因对通常会有大量 串联重复基因从而影响 Ks 分布。方式二和三都 经过了共线性分析,当把共线性区块(长度大于 5) 上同源基因对的 Ks 值以点图的形式展示出来 时(图1:A),这里以水稻为例,可以看到大部分由 绿色的点组成的片段,如8号与9号染色体,这与 水稻近期的一次多倍化事件相符。Ks点图中大部 分点的颜色相近,说明 Ks 值波动很小。对共线性 区域的 Ks 值的中位数(方式三)、平均值和所有的 基因对(方式二)进行正态分布拟合(带宽为0.01, homo 范围 0.3~1)(图 2:B),可以看到方式二并没 有产生明显的峰,而且 Ks 分布整体带有长长的尾 巴。方式三和区块的平均值的 Ks 分布有明显峰 值,数据更为集中。由于中位数是对总体中心很 好的估计,且稳健性更强,中位数的峰值颜色和 Ks 点图的颜色更为接近,因此区块的 Ks 值的中位数 更接近 Ks 真正的峰值,对方式三的 Ks 分布按照 正态分布拟合来提取 Ks 峰值(图1:C)。

为了进一步解析长尾现象,模拟了 Ks 分布随 进化速率的演变过程。假设最初的 Ks 分布服从 正态分布 $X \sim N(\mu, \sigma^2)$,其中期望 μ (峰值)和标准 差 σ 为常数。分子钟理论认为由于基因的进化速 率是相对恒定的,因此定义v(v>1),代表 Ks 值的 时间累积系数,表示初始 Ks 值随时间演化不断累 积,模拟真实情况下的恒定进化速率。然而,其他 研究表明分子钟并非等速进行,同时假设v 服从正 态分布 $X_v \sim N(\mu_v, \sigma_v^2)$,对这两种假设分别进行了 数据仿真模拟。Ks 值随着时间的推移进行迭代, 为 X',迭代次数为 n_o

当v为常数值时, $X'=X\times v^n$;

当 v 服从正态分布时, $X' = X \times X_v^n$ 。

当假设 Ks 值的时间累积系数 v 为一个常数值 时,设置假设的 Ks 分布为 $X \sim N(\mu, \sigma^2)$,依据 Ks 分 布数据特征,设定 $\mu = 0.2, \sigma = 0.01, v = 1.02, n = 100$ 。 每迭代 10 次,绘制 Ks 分布结果(图 2:A)。随着进 化事件的推移,Ks 峰值也逐渐变大,Ks 分布依旧完

表 1 研究所用的 44 个被子植物及基因组数据来源

Table 1 List of the 44 angiosperms involved and the genome data sources

物种	目	科	数据来源
Species	Order	Family	Data source
无油樟	无油樟目	无油樟科	https://ftp. ncbi. nlm. nih. gov/genomes/all/GCF/000/471/905/
Amborella trichopoda	Amborellales	Amborellaceae	GCF_000471905.2_AMTR1.0/
蓝星睡莲	睡莲目	睡莲科	https://phytozome-next.jgi.doe.gov/info/Ncolorata_v1_2
Nymphaea colorata	Nymphaeales	Nymphaeaceae	
鹅掌楸	木兰目	木兰科	https://www.ncbi.nlm.nih.gov/genome/45466
Liriodendron chinense	Magnoliales	Magnoliaceae	
牛樟	樟目	樟科	https://www.ncbi.nlm.nih.gov/genome/57158
Cinnamomum kanehirae	Laurales	Lauraceae	
卷毛马兜铃	胡椒目	马兜铃科	https://ngdc.cncb.ac.cn/search/? dbId=gwh&q=
Aristolochia fimbriata	Piperales	Aristolochiaceae	Aristolochia&page=1
柳叶蜡梅	樟目	蜡梅科	https://www.ncbi.nlm.nih.gov/genome/82066? genome_
Chimonanthus salicifolius	Laurales	Calycanthaceae	assembly_id = 1651656
紫萍	泽泻目	天南星科	https://data.jgi.doe.gov/refine-download/phytozome? organism = Spolyrhiza&expanded = 290
Spirodela polyrhiza	Alismatales	Araceae	
水稻	禾本目	禾本科	https://phytozome-next.jgi.doe.gov/info/Osativa_v7_0
Oryza sativa	Poales	Poaceae	
菠萝	禾本目	凤梨科	https://phytozome-next.jgi.doe.gov/info/Acomosus_v3
Ananas comosus	Poales	Bromeliaceae	
椰子	棕榈目	棕榈科	The genome draft of coconut (Cocos nucifera)
Cocos nucifera	Arecales	Arecaceae	
油棕	棕榈目	棕榈科	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/442/705/
Elaeis guineensis	Arecales	Arecaceae	
小果野蕉	姜目	芭蕉科	https://www.ncbi.nlm.nih.gov/genome/? term=HE813975%E2%
Musa acuminata	Zingiberales	Musaceae	80%93HE813985
鼓槌石斛	天门冬目	兰科	https://www.ncbi.nlm.nih.gov/genome/41833
Dendrobium chrysotoxum	Asparagales	Orchidaceae	
文竹	天门冬目	天门冬科	https://datadryad.org/stash/dataset/doi:10.5061/dryad.
Asparagus setaceus	Asparagales	Asparagaceae	1c59zw3rm
金鱼藻	金鱼藻目	金鱼藻科	https://genomevolution.org/CoGe/GenomeInfo.pl? gid=56569
Ceratophyllum demersum	Ceratophyllales	Ceratophyllaceae	
莲	山龙眼目	莲科	https://ftp. ncbi. nlm. nih. gov/genomes/all/GCF/000/365/185/
Nelumbo nucifera	Proteales	Nelumbonaceae	GCF_000365185.1_Chinese_Lotus_1.1/
昆栏树	昆栏树目	昆栏树科	http://gigadb.org/dataset/view/id/100657/File_page/5
Trochodendron aralioides	Trochodendrales	Trochodendraceae	
洛杉矶耧斗菜	毛莨目	毛茛科	https://data.jgi.doe.gov/refine-download/phytozome? organism = Acoerulea&expanded = 322
Aquilegia coerulea	Ranunculales	Ranunculaceae	
油蜡树	石竹目	油蜡树科	https://ngdc.cncb.ac.cn/search/? dbId=gwh&q=
Simmondsia chinensis	Caryophyllales	Simmondsiaceae	GWHAASQ00000000
中华猕猴桃	杜鹃花目	猕猴桃科	ftp://www.whiteflygenomics.org/pub/kiwifruit/A_chinensis/
Actinidia chinensis	Ericales	Actinidiaceae	Red5/v1.0/Red5_genome_v1.0.fa.gz
杜鹃	杜鹃花目	杜鹃花科	https://www.ncbi.nlm.nih.gov/genome? LinkName=bioproject_
Rhododendron simsii	Ericales	Ericaceae	genome&from_uid=588298
油橄榄	唇形目	木樨科	https://www.ncbi.nlm.nih.gov/genome/? term=Olea+europaea
Olea europaea	Lamiales	Oleaceae	
大星牵牛	茄目	旋花科	https://datadryad.org/stash/dataset/doi:10.5061/dryad.b9m61cg
Ipomoea trifida	Solanales	Convolvulaceae	
中粒咖啡	龙胆目	茜草科	https://www.ncbi.nlm.nih.gov/genome/? term=Coffea+canephora
Coffea canephora	Gentianales	Rubiaceae	

1688

续表1

·- 🖸

物种	目	科	数据来源				
Species	Order	Family	Data source				
红花	菊目	菊科	https://safflower.scuec.edu.cn/download.html				
Carthamus tinctorius	Asterales	Asteraceae					
芹菜	傘形目	伞形科	http://celerydb.bio2db.com				
Apium graveolens	Apiales	Apiaceae					
葡萄	葡萄目	葡萄科	http://www.grapegenomics.com/pages/VvCabSauv/download.php				
Vitis vinifera	Vitales	Vitaceae					
野黄瓜	葫芦目	葫芦科	https://figshare.com/articles/dataset/Genome_assembly_of_				
Cucumis hystrix	Cucurbitales	Cucurbitaceae	Cucumis_hystrix/13377671				
菜豆	豆目	豆科	https://www.ncbi.nlm.nih.gov/genome/? term=Phaseolus+				
Phaseolus vulgaris	Fabales	Fabaceae	vulgaris				
雷公藤	卫矛目	卫矛科	https://www.ncbi.nlm.nih.gov/genome/12874				
Tripterygium wilfordii	Celastrales	Celastraceae					
苹果	蔷薇目	蔷薇科	https://www.ncbi.nlm.nih.gov/genome/? term=Malus+domestica				
Malus domestica	Rosales	Rosaceae					
欧洲大叶杨	金虎尾目	杨柳科	https://www.ncbi.nlm.nih.gov/genome/? term=Populus+				
Populus trichocarpa	Malpighiales	Salicaceae	trichocarpa				
垂枝桦	壳斗目	桦木科	https://genomevolution.org/CoGe/GenomeInfo.pl?~gid=35080				
Betula pendula	Fagales	Betulaceae					
杨桃	酢浆草目	酢浆草科	https://ngdc.cncb.ac.cn/search/? dbId=gwh&q=				
Averrhoa carambola	Oxalidales	Oxalidaceae	GWHABKE00000000				
可可树	锦葵目	锦葵科	https://www.ncbi.nlm.nih.gov/genome/? term=Theobroma+ cacao				
Theobroma cacao	Malvales	Malvaceae					
大桉	桃金娘目	桃金娘科	https://www.ncbi.nlm.nih.gov/genome/? term=Eucalyptus+				
Eucalyptus grandis	Myrtales	Myrtaceae	grandis				
漾濞槭	无患子目	无患子科	http://gigadb.org/dataset/100610				
Acer yangbiense	Sapindales	Sapindaceae					
珙桐	山茱萸目	蓝果树科	https://ngdc.cncb.ac.cn/search/? dbId=gwh&q=				
Davidia involucrata	Cornales	Nyssaceae	%20PRJCA001721&page=1				
伯乐树	十字花目	叠珠树科	https://www.ncbi.nlm.nih.gov/genome/? term=GCA_018105755.1				
Bretschneidera sinensis	Brassicales	Akaniaceae					
连香树	虎耳草目	连香树科	https://doi.org/10.1111/nph.16798				
Cercidiphyllum japonicum	Saxifragales	Cercidiphyllaceae					
四川金粟兰	金粟兰目	金粟兰科	https://github.com/yongzhiyang2012/Chloranthus-sessilifolius-genome/tree/main/Annotation				
Chloranthus sessilifolius	Chloranthales	Chloranthaceae					
参薯	薯蓣目	薯蓣科	https://phytozome-next.jgi.doe.gov/info/Dalata_v2_1				
Dioscorea alata	Dioscoreales	Dioscoreaceae					
芒苞草	露兜树目	翡若翠科	https://www.ncbi.nlm.nih.gov/genome/? term=PRJNA703828				
Acanthochlamys bracteata	Pandanales	Velloziaceae					
滇南黄杨	黄杨目	黄杨科	https://datadryad.org/stash/dataset/doi:10.5061/dryad.cjsxksn6d				
Buxus austroyunnanensis	Buxales	Buxaceae					

美符合正态分布且没有明显的长尾分布现象。

当假设 Ks 值的时间累积系数(v)服从正态分 布时,最初设置假设的 Ks 分布为 $X_v \sim N(\mu_v, \sigma_v^2)$, 其中 μ =0.2, σ =0.01, μ_v =1.02, σ_v =0.01,n=100。 每迭代 10 次,绘制 Ks 分布结果(图 2:B)。随着 进化事件的推移,Ks 峰值逐渐变大,Ks 分布不再 是正态分布,并带有明显的长尾现象。由于这种 假设所得到的结果更接近于真实情况,因此基因的进化速率不是相对恒定的,它可能并非等速进行,而是在不同年代具有不同的进化速度,这可能符合正态分布。对模拟的 Ks 分布通过高斯拟合获取峰值时,发现 Ks 峰值与进化速率匀速时的没有明显差异(表 2)。因此,Ks 分布中长尾现象对提取到的 Ks 峰值的影响较小。

A. 水稻基因组的共线性区块; B. 共线性区块上 Ks 值的拟合分布; C. 共线性区块 Ks 值的核密度估计。

A. Synteny blocks of the Oryza sativa genome; B. Fitted distribution of Ks values for synteny blocks; C. Kernel density of Ks values for synteny blocks.

图 1 Ks 分布 Fig. 1 Ks distribution

A. Ks 分布在恒定进化速率下的模拟; **B**. Ks 分布在进化速 率服从正态分布的模拟。

A. Simulation of Ks distribution at a constant evolution rate; **B.** Simulation of Ks distribution under a normal distribution of evolution rates.

图 2 Ks 分布在不同进化速率下的模拟结果

Fig. 2 Simulation results of Ks distribution at different evolution rates

表 2 不同进化速率模拟下的 Ks 峰值

 Table 2
 Ks peaks under simulations at different evolution rates

迭代次数 Number of iterations	匀速分布 Uniform distribution	正态分布 Normal distribution	差异 Difference
0	0.200	0.200	0.000
10	0.244	0.243	-0.001
20	0.297	0.297	0.000
30	0.362	0.355	-0.007
40	0.442	0.431	0.010
50	0.538	0.531	0.008
60	0.656	0.650	-0.006
70	0.800	0.792	-0.008
80	0.975	0.961	-0.014
90	1.189	1.180	-0.009
100	1.449	1.442	-0.007

2.2 Ks 分布矫正方法

被子植物基因组常常经历不止一次多倍化事件,不同物种的进化速率显著不同,从而导致共享的多倍化事件的 Ks 峰值也大不相同。而 Ks 分布矫 正方法的核心理念就是将这些共享事件的 Ks 峰矫 正到一起。根据共享事件的不同,Ks 分布矫正方法 可分为共享多倍化和共享分化两种情况。 如果物种 A、B 存在共享的多倍化事件,那么 这次多倍化事件在不同物种中发生的时间应该是 相同的,Ks 峰值也应该是相等的(图 3:A)。黄色 方块代表两个物种共享的多倍化,即 Ks_{AA} = Ks_{BB}, 对应的时间范围为物种 A、B 从多倍化事件到当前 的时间点(绿色的大括号)。由于物种不同的进化 速率,因此现实情况下的 Ks_{AA}和 Ks_{BB}并不相等。假 设多倍化事件之后物种 A 和 B 有各自的进化速率 分别为 v_A 和 v_B ,O 是物种 A、B 的分化节点,从多倍 化事件到分歧点 O,物种 A、B 的祖先拥有的进化速 率为 v_o 那么,物种 A 的进化速率 v_A 要想恢复到 v就要乘以它的矫正系数为 $\lambda_A = \frac{v}{v_A}$ 。同理,物种 B 的 矫正系数为 $\lambda_B = \frac{v}{v_A}$ 。因而,物种 A、B 间分化的 Ks as

矫正系数为 $\lambda_{B} = \frac{v}{v_{B}}$ 。因而,物种 A、B 间分化的 Ks_{AB} 矫正后为 Ks_{AB-correction} = Ks_{AB} $\lambda_{A}\lambda_{B}$ (Yang et al., 2020)。

如果两个物种 A、B 虽不存在共享的多倍化事件但存在共享的早期分化事件,就通过寻找外类群来辅助矫正(图 3:B)。物种 C、D、E 是外类群,物种 C 和 D 的祖先在 P 点与物种 A、B 的祖先分化,所以物种 C 与 A、B 间的 Ks 峰值应该相等,物种 D 与 A、B 间的 Ks 峰值也应该相等,即 Ks_{CA} = $Ks_{CB}, Ks_{DA} = Ks_{DB}$ 。同样,由于物种间不同的进化速率,因此现实情况下它们大多不相等。按照前面的假设,

 $\frac{Ks_{\text{CA-correction}}}{Ks_{\text{CB-correction}}} = \frac{Ks_{\text{CA}}\lambda_{\text{C}}\lambda_{\text{A}}}{Ks_{\text{CB}}\lambda_{\text{C}}\lambda_{\text{B}}} = \frac{Ks_{\text{CA}}\lambda_{\text{A}}}{Ks_{\text{CB}}\lambda_{\text{B}}} = 1, \text{ } \square \frac{\lambda_{\text{A}}}{\lambda_{\text{B}}} = \frac{Ks_{\text{CB}}}{Ks_{\text{CA}}} \circ$ $\square \square \square,$

$$\frac{K_{S_{DA-correction}}}{K_{S_{DB-correction}}} = \frac{K_{S_{DA}}\lambda_{D}\lambda_{A}}{K_{S_{DB}}\lambda_{D}\lambda_{B}} = \frac{K_{S_{DA}}\lambda_{A}}{K_{S_{DB}}\lambda_{B}} = 1, 即 \frac{\lambda_{A}}{\lambda_{B}} = \frac{K_{S_{DB}}}{K_{S_{DA}}},$$

当选取的外类群越多,获取的 λ_{A} 和 λ_{B} 的关
系越准确。取平均值表示它们之间的关系 $\frac{\lambda_{A}}{\lambda_{B}} = K_{S_{CD}}K_{S_{DB}}$

$$\operatorname{mean}(\frac{Ks_{CB}}{Ks_{CA}},\frac{Ks_{DB}}{Ks_{DA}},\dots)$$

2.3 被子植物系统发育树时间矫正

目前,很多用系统发育树的方法推测被子植物的演化时间,认为被子植物的起源为三叠纪225百万年至240百万年前(Magallón, 2010),这与起传粉作用的核心植食性鳞翅目昆虫的起源时间(约230百万年前)一致(Li et al., 2019)。由于无油樟目和睡莲目、核心被子植物五大分支之间的关系仍然没有完全解析,且已有多个证据暗示核

心被子植物祖先可能发生了快速辐射分化(Yang et al., 2020)。因此,在矫正过程中,以无油樟目 为作为参考,不讨论它和睡莲目的关系,认为五大 分支的分化时间尺度在同一个时间范围内。基于 核心真双子叶植物共享的γ事件,时间范围为 115~130 百万年(Million years ago, Mya),对44个 被子植物基因组(表1)进行了时间尺度矫正(图 4)。从矫正后的时间尺度来看,被子植物在130 百万年前附近,单子叶植物、真双子叶植物、木兰 类植物祖先都发生了快速辐射进化,与 Zhang 等 (2020b)的结论一致。此外,在早白垩世(130百 万年)时期,白垩纪-古新世(K-Pg)边界时期(66 百万年)和中新世(20百万年,靠近冰川期)很多 被子植物发生的多倍化事件,研究发现 WGD 的时 间在被子植物的系统发育中并不是随机分布与 Wu 等(2020)的结论一致。

尽管不同物种的进化速率数值显著不同,但 是同一类群中的进化速率往往具有部分一致性。 由矫正方法可知,矫正后的 Ks 峰值应该相等。因 此,Ks 峰值越大,表明进化速率越快。对木兰类植 物、真双子叶植物和单子叶植物与无油樟的 Ks 峰 值的比较发现,木兰类植物(大多数为木本)进化 速率最慢,真双子叶植物(大多数为木本)进化 速率最慢,真双子叶植物(大多数为灌木)次之,单 子叶植物(大多数为草本)进化速率最快(表3), 这与多年生木本植物比草本植物的分子进化速率 慢的结论相符(Lanfear et al., 2013)。此外,对多 倍化事件发生的时间与矫正前后的 Ks 峰值比较 (图5)发现,矫正前的 Ks 峰值与时间并不是线性 关系。随着 Ks 峰值的增大,多倍化事件发生的时 间并没有更古老;由于矫正后的 Ks 峰值与时间成

正比,因此对 Ks 峰值进行矫正之后估算物种演化 事件的时间是十分必要的。

3 讨论与结论

长期以来,估算被子植物演化的时间尺度主要是基于分子钟假设,然而分子进化异速现象的 广泛存在严重影响其准确性,Wang等(2015)提出 的基于 Ks 分布的矫正方法,获得了令人信服的时 间尺度。本文对获取 Ks 分布三种常见的方式进 行了比较分析,明确了通过提取共线性区块上 Ks

表 3 部分核心被子植物与无油樟之间的 Ks 峰值

 Table 3
 Ks peaks between some species of mesangiospermae and Amborella trichopoda

核心被子植物 Mesangiospermae	物种 Species	Ks 峰值 Ks peak	平均值 Average value
真双子叶植物 Eudicots	昆栏树 Trochodendron aralioides	1.671	
	连香树 Cercidiphyllum japonicum	1.700	
	滇南黄杨 Buxus austroyunnanensis	1.750	
	葡萄 Vitis vinifera	1.804	
	洛杉矶耧斗菜 Aquilegia coerulea	1.789	1.743
木兰类植物 Magnoliids	鹅掌楸 Liriodendron chinense	1.628	
	牛樟 Cinnamomum kanehirae	1.642	
	柳叶蜡梅 Chimonanthus salicifolius	1.684	1.651
单子叶植物 Monocots	水稻 Oryza sativa	2.273	
	紫萍 Spirodela polyrhiza	2.210	
	椰子 Cocos nucifera	1.834	
	菠萝 Ananas comosus	2.106	
	芒苞草 Acanthochlamys bracteata	2.117	
	参薯 Dioscorea alata	1.950	2.082

值的中位数更能代表真实的 Ks 峰值。此外,还进 一步解析了 Ks 分布中常见的长尾现象,本研究模 拟结果表明基因的进化速率并非相对恒定和等速 进行。当假设进化速率并非相对恒定,而是符合 正态分布的时候,Ks 分布出现了有明显的长尾现 象,但这并不影响提取到的 Ks 峰值的准确性。 Vanneste 等(2013)研究表明,当 Ks 值大于 1 时, 容易受到饱和效应的影响,并且随着 Ks 值增大, 这种效应越明显。模拟的 Ks 峰值范围接近于 1, 随着 Ks 峰值增大,估计的 Ks 峰值可能会受到饱 和效应的影响。

本研究还详细描述了基于 Ks 峰值的矫正方法 的矫正过程。先前的研究只对共享多倍化和共享 早期分化两种情况分开进行了描述,这是首次全面 的描述,有助于深入理解和传播。基于该方法,还 对 44 个高质量的被子植物基因组演化事件的时间 尺度进行了重新估计,估计结果与近期发表的时间 尺度基本一致(Li et al., 2019; Wu et al., 2020)。 本研究结果还表明,被子植物基因组的进化速率虽 然差异显著,但不同分支间的进化速率仍具有一致 性。并且,不同谱系的被子植物具有同步的辐射进 化和适应性进化现象。随着更多高质量的被子植 物基因组的公布和有效化石年份的准确测定,被子 植物演化的时间尺度会越来越清晰,更有利于植物 系统发育的构建和更深层次的理解物种的演化 历程。

参考文献:

- DONOGHUE PC, YANG ZH, 2016. The evolution of methods for establishing evolutionary timescales [J]. Phil Trans Roy Soc B: Biol Sci, 371(1699): 1–11.
- HUG LA, ROGER AJ, 2007. The impact of fossils and taxon sampling on ancient molecular dating analyses [J]. Mol Biol Evol, 24(8): 1889–1897.
- JIAO YN, WICKETT NJ, AYYAMPALAYAM S, et al., 2011. Ancestral polyploidy in seed plants and angiosperms [J]. Nature, 473(7345): 97-100.
- KRESS WJ, SOLTIS DE, KERSEY PJ, et al., 2022. Green plant genomes: What we know in an era of rapidly expanding opportunities [J]. Proc Natl Acad Sci, 119(4): 1–9.
- LANFEAR R, HO SYW, JONATHAN DAVIES T, et al., 2013. Taller plants have lower rates of molecular evolution [J]. Nat Comm, 4(1): 1879.
- LANFEAR R, WELCH JJ, BROMHAM L, 2010. Watching the clock: studying variation in rates of molecular evolution between species [J]. Trend Ecol Evol, 25(9): 495–503.
- LI HT, YI TS, GAO LM, et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap [J]. Nat Plant, 5(5): 461-470.
- LI L, STOECKERT CJ, ROOS DS, 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes [J]. Genome Res, 13(9): 2178–2189.
- LUO A, DUCHÊNE DA, ZHANG C, et al., 2020. A simulation-based evaluation of tip-dating under the fossilized birth-death process [J]. Syst Biol, 69(2): 325-344.
- LUO J, ZHANG YP, 2000. Molecular clock and its existing problems [J]. Acta Anthropol Sin, 19(2): 151-159. [罗 静,张亚平, 2000. 分子钟及其存在的问题 [J]. 人类学 学报, 19(2): 151-159.]
- MAGALLÓN S, 2010. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms [J]. Syst Biol, 59(4): 384–399.
- REN R, WANG HF, GUO CC, et al., 2018. Widespread whole

genome duplications contribute to genome complexity and species diversity in angiosperms [J]. Mol Plant, 11(3): 414-428.

- SHANG JZ, TIAN JP, CHENG HH, et al., 2020. The chromosome-level wintersweet (*Chimonanthus praecox*) genome provides insights into floral scent biosynthesis and flowering in winter [J]. Genome Biol, 21(1); 1–28.
- SILVESTRO D, BACON CD, DING WN, et al., 2021. Fossil data support a pre-Cretaceous origin of flowering plants [J]. Nat Ecol Evol, 5(4): 449-457.
- SMITH SA, DONOGHUE MJ, 2008. Rates of molecular evolution are linked to life history in flowering plants [J]. Science, 322(5898): 86-89.
- SONG XM, SUN PC, YUAN JQ, et al., 2021. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales [J]. Plant Biotechnol J, 19(4): 731-744.
- SONG XM, WANG JP, LI N, et al., 2020. Deciphering the high-quality genome sequence of coriander that causes controversial feelings [J]. Plant Biotechnol J, 18(6): 1444-1456.
- SUN PC, JIAO BB, YANG YZ, et al., 2021. WGDI: a userfriendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes [J]. BioRxiv. https:// doi.org/10.1101/2021.04.29.441969.
- TANG HB, WANG XY, BOWERS JE, et al., 2008. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps [J]. Genome Res, 18(12): 1944–1954.
- TANG XH, LAI XL, ZHONG Y, 2002. Molecular clock hypothesis and fossil record [J]. Earth Sci Front, 9(2): 465-474. [唐先华, 赖旭龙, 钟扬, 等, 2002. 分子钟假说 与化石记录 [J]. 地学前缘, 9(2): 465-474.]
- VANNESTE K, VAN DE PEER Y, MAERE S, 2013. Inference of genome duplications from age distributions revisited [J]. Mol Biol Evol, 30(1): 177-190.
- WANG JP, SUN PC, LI YX, et al., 2018. An overlooked paleotetraploidization in Cucurbitaceae [J]. Mol Biol Evol, 35(1): 16-26.
- WANG JP, SUN PC, LI YX, et al., 2017. Hierarchically

aligning 10 legume genomes establishes a family-level genomics platform $[\,J\,].$ Plant Physiol, $174(1):284{-}300.$

- WANG JP, YUAN JQ, YU JG, et al., 2019. Recursive paleohexaploidization shaped the durian genome [J]. Plant physiol, 179(1): 209–219.
- WANG SC, XIAO Y, ZHOU ZW, et al., 2021. High-quality reference genomesequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height [J]. Genome Biol, 22(1): 1-25.
- WANG XY, GUO H, WANG JP, et al., 2016. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation [J]. New Phytol, 209(3): 1252-1263.
- WANG XY, WANG JP, JIN DC, et al., 2015. Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events [J]. Mol Plant, 8(6): 885–898.
- WU SD, HAN BC, JIAO YN, 2020. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms [J]. Mol Plant, 13(1): 59–71.
- YANG YZ, SUN PC, LV L, et al., 2020. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution [J]. Nat Plant, 6(3): 215-222.
- YANG Z, 2007. PAML 4: phylogenetic analysis by maximum likelihood [J]. Mol Biol Evol, 24(8): 1586-1591.
- ZHANG LS, CHEN F, ZHANG XT, et al., 2020a. The water lily genome and the early evolution of flowering plants [J]. Nat, 577(7788): 79-84.
- ZHANG LS, WU S, CHANG XJ, et al., 2020b. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress [J]. Plant Cell Environ, 43(12): 2847–2856.
- ZHUANG WJ, CHEN H, YANG M, et al., 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication [J]. Nat Genet, 51(5): 865-876.

(责任编辑 李 莉)