en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋静静(1981-),博士,讲师,主要从事病源微生物研究,(E-mail)31583504@qq.com。

通讯作者:

龚斌,博士,教授,主要从事微生物资源和生态学研究,(E-mail)342965691@aliyun.com。

中图分类号:Q945.8

文献标识码:A

文章编号:1000-3142(2023)01-0148-07

DOI:10.11931/guihaia.gxzw202105037

参考文献
ALURAPPA R, BOJEGOWDA M, KUMAR V, et al. , 2014. Characterization and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. [J]. Nat Prod Res, 28(23): 2217-2220.
参考文献
DEY P, CHAUDHURI D, CHAUDHURI TK, et al. , 2012. Comparative assessment of the antioxidant activity and free radical scavenging potential of different parts of Nerium indicum [J]. Int J Phytomed, 4: 54-69.
参考文献
DONG X, WANG HL, XIE GS, et al. , 2017. An isolate of Vibrio campbellii carrying the pir VP gene causes acute hepatopancreatic necrosis disease [J]. Emerg Microbes Infect, 6(1): e2. ELLIOTT J, 2002. Handbook of medicinal herbs [M]. State of Florida: CRC Press: 122.
参考文献
GONG B, CHEN YP, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.
参考文献
GONG B, CHEN S, LAN W, et al. , 2018. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China [J]. Iran J Pharm Res, 17(4): 1339-1346.
参考文献
GOUDA S, DAS G, SEN SK, et al. , 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance [J]. Front Microbiol, 7: 1538.
参考文献
GUO L, WANG C, ZHU WC, et al. , 2016. Bioassay-guided fractionation and identification of active substances from the fungus Aspergillus tubingensis against Vibrio anguillarum [J]. Biotechnol Biotechnol Equip, 30(3): 602-606.
参考文献
GUO L, ZHANG F, WANG XT, et al. , 2019. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen Vibrio harveyi [J]. 3 Biotech, 9(1): 1-7.
参考文献
GUPTA S, CHATURVEDI P, KULKARNI MG, et al. , 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi [J]. Biotechnol Adv, 39: 107462.
参考文献
HADIZADEH I, PEIVASTEGAN B, KOLAHI M, 2009. Antifungal activity of nettle (Urtica dioica L. ), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L. ) and konar (Ziziphus spina-christi L) extracts on plants pathogenic fungi [J]. Pak J Biol Sci, 12(1): 58-63.
参考文献
HUANG WY, CAI YZ, HYDE KD, et al. , 2007. Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity [J]. World J Microbiol Biotechnol, 23: 1253-1263.
参考文献
HUSSAIN MA, GORSI MS, 2004. Antimicrobial activity of Nerium oleander Linn [J]. Asian J Plant Sci, 3(2): 177-180.
参考文献
MA YM, QIAO K, KONG Y, et al. , 2017. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum [J]. Nat Prod Res, 31(8): 951-958.
参考文献
PHONGPAICHIT S, RUNGJINDAMAI N, RUKACHAISIRIKUL V, et al. , 2006. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species [J]. FEMS Immuno Med Mic, 48(3): 367-372.
参考文献
RADU S, KQUEEN CY, 2002. Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity [J]. Osteoporosis Int, 9(2): 23-33.
参考文献
RAMESHA A, SUNITHA VH, SRINIVAS C, 2013. Antimicrobial activity of secondary metabolites from endophytic fungi isolated from Nerium oleander L. [J]. Int J Pharm Biol Sci, 4(1): (B) 683-693.
参考文献
REN N, LIU JJ, YANG DL, et al. , 2016. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae [J]. Microbiol Res, 192: 114-121.
参考文献
SALVATORE MM, ALVES A, ANDOLFI A, 2021. Secondary metabolites produced by Neofusicoccum species associated with plants: a review [J]. Agriculture, 11(2): 149-167.
参考文献
SHARMA P, MOHAN L, SRIVASTAVA CN, 2005. Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector [J]. J Environ Biol, 26(4): 657-660.
参考文献
SINGH S, SHENOY S, NEHETE PN, et al, 2013. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity [J]. Fitoterapia, 84: 32-39.
参考文献
STIERLE A, STROBEL G, STIERLE D, et al. , 1995. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia [J]. J Nat Prod, 58(9): 1315-1324.
参考文献
VALLABHBHAI KM, 2008. Isolation and biological screening of endophytic fungi from Nerium oleander Linn. (Apocynaceae) [D]. Chennai: Chennai Medical University: 71-80.
参考文献
WEI JC, 1979. Identification manual of fungi [M]. Shanghai: Shanghai Scientific & Technical Publishers: 179. [魏景超, 1979. 真菌鉴定手册 [M]. 上海: 上海科学技术出版社: 179. ]
参考文献
ZHENG H, MEI WL, CAI CH, et al. , 2020. Study on the secondary metabolites and their bioactivities of the endophytic fungus Colletotrichum sp. HK-08 from the leaves of Nerium indicum [J]. Nat Prod Res Dev, 32(1): 78-83. [郑浩, 梅文莉, 蔡彩虹, 等, 2020. 夹竹桃叶内生真菌Colletotrichum sp. HK-08的次生代谢产物及其活性研究 [J]. 天然产物研究与开发, 32(1): 78-83. ]
参考文献
ZHU ML, WANG HT, HUANG XN, et al. , 2020. Isolation and screening of bioactive endophytic fungi from Nerium oleander and study on the secondary metabolites of Aspergillus sp. [J]. J Shanxi Med Univ, 51(9): 982-985. [朱美林, 王皓天, 黄雪南, 等, 2020. 夹竹桃活性内生真菌的分离筛选及菌株Aspergillus sp. 次级代谢产物的研究 [J]. 山西医科大学学报, 51(9): 982-985. ]
参考文献
ZHU A, ZHANG XW, ZHANG M, et al. , 2018. Aspergixanthones I-K, new anti-Vibrio prenylxanthones from the marine-derived fungus Aspergillus sp. ZA-01 [J]. Mar Drugs, 16(9): 312.
目录contents

    摘要

    为研究夹竹桃(Nerium oleander)内生真菌的多样性并评价其次生代谢产物的活性,该研究对广西夹竹桃(Nerium oleander)的内生真菌进行分离纯化,采用形态学和ITS序列分析结合的方法进行鉴定,以5种指示菌(其中有3种弧菌)对内生真菌提取物进行抑菌活性筛选。结果表明:(1)从广西夹竹桃中共得到19株内生真菌,这19株内生真菌都属于子囊菌门,涵盖5个目7个属,包括炭疽菌属(Colletotrichum)、球座菌属(Guignardia)、叶点霉属(Phyllosticta)、新壳梭孢属(Neofusicoccum)、曲霉属(Aspergillus)、隔孢壳科新属(Nothophoma)和间座壳属(Diaporthe),优势属为炭疽菌属(分离率为36.85%)和球座菌属(分离率为21.05%),其中炭疽菌属主要分布于茎,球座菌属全部来源于叶。(2)jing-117(Neofusicoccum sp.)和ye-130(Guignardia sp.)对坎氏弧菌有较为特异的抑菌效果,ye-136(Aspergillus sp.)能同时抑制蜡样芽孢杆菌和坎氏弧菌,ye-135(Aspergillus sp.)和jing-116(Colletotrichum sp.)仅能抑制蜡样芽孢杆菌,ye-134(Guignardia sp.)对溶藻弧菌有抑制作用。该研究首次基于ITS序列揭示了广西夹竹桃内生真菌存在较为丰富的多样性,并筛选到一些有抑菌活性的菌株,其提取物可以抑制水产病原弧菌的生长,具有较好的开发潜力。

    Abstract

    Nerium oleander is an important medicinal plant. In order to study the diversity of endophytic fungi from N. oleander and evaluate the activity of its secondary metabolites, the endophytic fungi of N. oleander in Guangxi were isolated and purified, and identified by a combination of morphology and ITS sequence analysis. Then the antibacterial activities of endophytic fungus extracts were screened with five indicator bacteria (including three Vibrio species). The results were as follows: (1) A total of 19 endophytic fungi were obtained from Guangxi N. oleander. The ITS sequence analysis showed that these 19 endophytic fungi all belonged to the Ascomycota, and covered five orders and seven genera, which including Colletotrichum, Guignardia, Phyllosticta, Neofusicoccum, Aspergillus, Nothophoma and Diaporthe. Among them, the dominant genera were Colletotrichum (the separation rate was 36.85%) and Guignardia (the isolation rate was 21.05%). Colletotrichum was mainly distributed on stems, and Guignardia all originated from leaves. (2) Antibacterial experiments showed that jing-117 (Neofusicoccum sp.) and ye-130 (Guignardia sp.) had specific antibacterial effects on Vibrio campbellii, ye-136 (Aspergillus sp.) could simultaneously inhibit Bacillus cereus and Vibrio campbellii. ye-135 (Aspergillus sp.) and jing-116 (Colletotrichum sp.) could only inhibit B. cereus, and ye-134 (Guignardia sp.) had an inhibitory activity to Vibrio alginolyticus. The study revealed for the first time that endophytic fungi of N. oleander in Guangxi has a relatively rich diversity based on the ITS sequence. Some antibacterial active strains could be screened, and their extracts could inhibit the growth of aquatic pathogen Vibrio, which will has good development value in the future.

  • 夹竹桃(Nerium oleande)是夹竹桃科(Apocynaceae)夹竹桃属(Nerium)中的一种传统药用植物,含有非常丰富的活性化合物,在世界各地(特别是印度和中国)被广泛应用。在传统中医中,被用于治疗心脏疾病、糖尿病、哮喘、癌症和癫痫等疾病( Elliott,2002)。近代药理活性研究表明,夹竹桃含有抗细菌(Hussain &Gorsi,2004)、抗真菌(Hadizadeh et al.,2009)、抗病毒(Singh et al.,2013)、抗氧化(Dey et al.,2012)、抗疟疾(Sharma et al.,2005)等多种活性成分。

  • 内生真菌是植物微生态系统的重要组成部分,广泛存在于植物的健康组织中。内生真菌及其次生代谢产物在药理学和农业中应用广泛(Alurappa et al.,2014)。从在紫杉的内生真菌Taxomycesandreanae中发现了抗癌化合物紫杉醇(Stierle et al.,1995)开始,目前已从植物内生真菌分离出多个抗病毒、抗肿瘤、抗微生物活性化合物,仅就抗微生物活性而言,就已发现了Altersolanol A、Enfumafungin、Colletotric acid、Jesterone、Hydroxy-jesterone、Guignardic acid、Pestacin、Isopestacin等几十种活性化合物(Gupta et al.,2020),并发现内生真菌可能在药用植物活性物质的合成中有重要作用。国内外研究表明,目前有少量从夹竹桃中得到内生菌及其活性物质的报道(Vallabhbhai,2008; Ramesha et al.,2013; Ren et al.,2016; Ma et al.,2017; 郑浩等,2020; 朱美林等,2020),但是,其对真菌的鉴定主要基于形态学特征。植物内生真菌很多不产孢,仅依靠形态学数据不能准确反应夹竹桃内生真菌种类,而采用分子系统的方法对夹竹桃内生真菌多样性进行研究还未有报道。此外,目前研究发现的夹竹桃内生真菌及其活性物质的类型主要包括抗肿瘤、抗氧化、杀虫、抗植物病原真菌、抗人体的病原菌等,而在抗水产病菌方面鲜有报道。

  • 广西地处亚热带地区,良好的环境孕育了很多药用价值高的道地药材,该区域药用植物内生菌多样性的研究可以为将来系统评估和确定药材药效的地域差异提供参考。目前,水产养殖中抗生素的使用受到了严格限制,导致新的水产病原菌及抗生素多耐药菌不断出现。夹竹桃内生真菌作为发掘天然活性化合物的重要资源,有希望从中获得抑制水产病原菌的新型抗菌活性菌株和化合物。本研究拟对广西钦州市夹竹桃中的内生真菌进行分离鉴定和抗菌活性筛选,以确定夹竹桃内生真菌多样性究竟如何,有哪些内生真菌类型及其在不同组织的分布情况,以期能够获得一些具有抗水产病原弧菌活性的菌株,为进一步开发新型的抗菌剂奠定基础。

  • 1 材料与方法

  • 1.1 样品采集和预处理

  • 夹竹桃样品采集于广西钦州市钦北区,经钦州市中医院中药研究所朱开昕高级工程师鉴定为夹竹桃属夹竹桃(Nerium oleander)。选取健康夹竹桃的新鲜茎段和叶组织块,用自来水冲洗表面的泥土和灰尘,在无菌操作台中进行表面消毒:先将样品浸泡在75%酒精中3~5 min,再转入3%~5%的次氯酸钠溶液中浸泡30 s,然后再用无菌水冲洗干净。在超净操作台中放到干燥灭菌的培养皿中晾干,备用。

  • 1.2 内生真菌分离和纯化

  • 将上述处理过的茎段和叶片组织用无菌剪刀剪成5 mm×5 mm小块后,贴于PDA 培养基平板上; 置于28℃恒温培养箱倒置培养2~4 d,并定期观察真菌的生长情况; 得到生长状况良好的菌株; 待组织边缘发现有菌丝长出时,在无菌环境下挑取菌丝尖端转接到纯化培养基平板上; 经多次分离纯化后再接种于 PDA 斜面作为保种,保存在4~8℃冰箱备用。

  • 1.3 形态学鉴定

  • 将分离菌株接种于PDA培养基平板中,放置于28℃培养箱中培养。在各菌株生长的最佳时期,对照《真菌鉴定手册》(魏景超,1979),观察菌落形态(菌落颜色、大小、性状及边缘等)、生长情况、菌丝体、孢子的形态特征和表面特征,拍照记录。

  • 1.4 DNA提取

  • 菌丝体用液氮研磨至匀浆状,再加入600 μL的CTAB提取液,65℃水浴45 min,12 000 r·min-1离心5 min,取上清液; 加入苯酚∶氯仿∶异戊醇混合液(25∶24∶1),混匀后4℃条件下,10 000 r·min-1离心5 min; 取上清液,加入-20℃预冷的异戊醇静置数分钟; 室温12 000 r·min-1离心5 min,去上清液; 取沉淀,用75%乙醇洗沉淀,加50 μL无菌水,-20℃保存备用。

  • 1.5 ITS rDNA 序列分析

  • 提取内生真菌的DNA后,用真菌鉴定通用引物ITS1(5′-TCCGTAGGTGAACCTGCGG-3′)和ITS4(5′-TCCTCCGCTTATTGATATGC-3′)扩增真菌ITS rDNA序列。PCR反应体系:ddH2O 20 μL,2×Taq PCR MasterMix 25 μL(北京索莱宝生物科技有限公司),10 μmol·L-1的引物各2 μL,10 ng·μL-1模板1 μL。反应程序:94℃预变性4 min,94℃变性30 s,57℃退火30 s,72℃延伸30 s,30个循环,72℃延伸10 min。引物合成和测序都由北京六合华大基因科技有限公司完成。将获得的序列用BLAST程序在GenBank数据库中进行同源性检索,比对得出与其相似性最高的核酸序列。通过MEGA7.0软件使用邻接法构建系统发育树。

  • 1.6 内生真菌次生代谢产物的提取和抑菌活性的测定

  • 接种分离真菌于100 mL液体PDA培养基,于26~28℃在200 r·min-1转速下培养10~20 d至菌丝体长满三角瓶; 8 000 r·min-1离心收集菌丝体,20℃下吹干水分; 称取0.3 g干燥后的菌体加入5 mL提取液(乙酸乙酯∶甲醇∶乙酸=80∶15∶5)浸泡,然后将提取液静置挥发,加入500 μL乙酸乙酯溶解提取物。抑菌活性指示菌蜡样芽孢杆菌(Bacillus cereus)、金黄色葡萄球菌(Staphylococcus aureus)、魔鬼弧菌(Vibrio diabolicus)由本实验室购买保藏; 溶藻弧菌(V. alginolyticus)、坎氏弧菌(V. campbellii)分离自患病的鱼虾。分别接种到LB液体培养基中,30~35℃摇床上以200 r·min-1的转速培养过夜。将上述菌液200 μL采用混菌法接种于培养皿中,采用滤纸片法测定抑菌活性,观察抑菌圈的有无及大小,测量并记录抑菌圈直径(Gong et al.,2018)。该实验使用滤纸片蘸取乙酸乙酯作为空白对照,阳性对照为滤纸片蘸取50 μg·mL-1的卡那霉素和氯霉素。

  • 2 结果与分析

  • 2.1 内生真菌的形态学鉴定

  • 如图1所示,根据菌株的菌落、菌丝体和孢子的形态特征,对照《真菌签定手册》进行初步鉴定,分属于7个属。其中,叶部组织获得12株菌,占63.16%,分属于炭疽菌属(Colletotrichum spp.)、球座菌属(Guignardia spp.)、叶点霉属(Phyllosticta spp.)、新壳梭孢属(Neofusicoccumsp.)和曲霉属(Aspergillus spp.); 茎部分离到7株菌,分别属于炭疽菌属、隔孢壳科新属(Nothophoma sp.)和间座壳属(Diaporthe sp.),占分离总量的36.84%(表1),表明夹竹桃的内生真菌在茎段、叶片组织中分布广泛。

  • A. 菌株ye-130; B. 菌株ye-134; C. 菌株ye-135; D. 菌株ye-136; E. 菌株jing-116; F. 菌株jing-117; G. 菌株jing-119; H. 菌株jing-180。

  • A. Strain ye-130; B. Strain ye-134; C. Strain ye-135; D. Strain ye-136; E. Strain jing-116; F. Strain jing-117; G. Strain jing-119; H. Strain jing-180.

  • 图1 夹竹桃部分内生真菌的典型菌落形态

  • Fig.1 Colony morphology of some endophytic fungi isolated from Nerium oleander

  • 2.2 夹竹桃内生真菌的分子生物学鉴定

  • 通过对得到的19株内生真菌的DNA 进行PCR扩增和ITS测序,并进行BLAST分析,结果表明这19株内生真菌都属于子囊菌门,涵盖5个目7个属,且ITS序列和GenBank相似性都在98%以上(表2)。基于ITS 序列用MEGA 7软件构建的系统进化树(图2)显示有6个分支,其中ye-127、ye-129、ye-130、ye-131、ye-132、ye-133和ye-134都属于葡萄座腔菌目(Botryosphaeriales),与Guignardia alliaceaG. musicolaPhyllosticta fallopiae构成一个分支; jing-114、jing-115、jing-116、jing-118、jing-179、ye-126、ye-128都属于小丛壳目(Glomerellales),与Colletotrichum fructicolaC. citri-maximae构成一个分支; jing-117与Neofusicoccum parvum构成一个分支; jing-180属于间座壳目(Diaporthales),和Diaporthe sp.构成一个分支,其亲缘关系比较近。ye-135、ye136和jing-119共同构成一个大的分支,其中jing-119与Nothophoma anigozanthi亲缘关系较近。ye-135、ye136都属于Aspergillus,其中ye-135与Aspergillus neoellipticus亲缘关系较近,而ye136与A. tamarii亲缘关系较近。

  • 表1 夹竹桃不同组织中内生真菌属的组成

  • Table1 Composition of endophytic fungi in different tissues of Nerium oleander

  • 表2 夹竹桃内生菌ITS序列BLAST分析

  • Table2 BLAST analysis of ITS sequence of Nerium oleander

  • 2.3 内生真菌在夹竹桃组织中的分布

  • 分离获得的内生真菌菌株中,优势属为球座菌属和炭疽菌属,其中炭疽菌属为7株,分离率为36.85%,主要分布于茎段中; 球座菌属分离到4株菌,分离率为21.05%,全部来源于叶组织; 叶点霉属分离到3株菌,分离率为15.79%,曲霉属分离到2株菌,分离率为10.53%,全部来源于叶组织。另从叶片中分离到1株新壳梭孢属真菌,从茎段中分离到隔孢壳科新属、间座菌属真菌各1株(表3)。

  • 2.4 内生真菌抑菌活性的分析

  • 挑选分离到的代表菌株进行液体发酵培养。将菌丝体和发酵液在干燥箱中干燥后用浸提液进行浸提。采用浸提物对蜡样芽孢杆菌、金黄色葡萄球菌、溶藻弧菌、坎氏弧菌和魔鬼弧菌进行抑菌活性检测。结果(表4)显示,jing-116、ye-135、ye-136对芽孢杆菌有较强的抑制效果,其中jing-116、ye-135的抑菌圈分别为7.98 mm和9.29 mm,ye-136更是高达15.36 mm; ye-134对溶藻弧菌有抑制效果,抑菌圈为6.65 mm; jing-117、ye-130、ye-136对坎氏弧菌有抑制效果,抑菌圈分别为8.28、8.33、9.74 mm。抑菌实验结果表明,具有抑菌活性的内生真菌在夹竹桃的不同组织中均有分布,其中叶片中内生真菌的抑菌活性略高于茎段。

  • 图2 NJ法构建的夹竹桃内生真菌ITS序列系统进化树图

  • Fig.2 Phylogenetic tree of ITS rDNA sequences of endophytic fungi of Nerium oleander by NJ method

  • 3 讨论与结论

  • 本研究从夹竹桃的叶和茎中分离到19株内生真菌,采用形态学结合ITS序列分析表明其分属于7个属,优势属包括炭疽菌属、球座菌属、叶点霉属,其他还包括新壳梭孢属、曲霉属、隔孢壳科新属、间座壳属。其他学者对夹竹桃内生真菌的研究中也曾分离到炭疽菌属(Ramesha et al.,2013),而其他6个属在以往的夹竹桃内生真菌的研究中较少被提及,这可能是因为球座菌属、叶点霉属、新壳梭孢属、曲霉属、隔孢壳科和间座壳属较少产孢,依靠形态学的鉴定方法较难准确鉴定这些真菌。例如,从夹竹桃中分离到42株内生真菌,分属于14个类群,依靠形态能够确认的仅包括炭疽菌属、毛壳菌属和枝孢霉属(Huang et al.,2007); 而印度学者Ramesha等(2013)从夹竹桃中分离到28株内生真菌,也仅描述出镰刀菌(Fusium semitectum NOF-3)、交链孢菌(Alternaria NOF-7)、球孢炭疽菌(Colletotrichum gloeosporioides NOF-8)和菌丝霉菌(Mycelia sterilia NOS-6)这些比较容易通过形态学进行鉴定的种属。本研究利用形态学结合ITS序列分析相互结合的方法,准确地鉴定出夹竹桃内生真菌的类型及其在不同组织的分布状况等,首次为夹竹桃内生真菌多样性的研究提供了准确的参考数据。

  • 表3 夹竹桃内生真菌在组织中的分布情况

  • Table3 Distribution of the endophytic fungi in Nerium oleander

  • 表4 分离出的内生真菌的抑菌活性

  • Table4 Antibacterial activity of the isolated endophytic fungi

  • 注: ++表示8.0 mm<抑菌圈直径; +表示0 mm<抑菌圈直径<8.0 mm; -表示无抑菌作用; 滤纸片直径为6.0 mm。

  • Note: ++ indicates 8.0 mm < diameter of inhibition zone; + indicates 0 mm< diameter of inhibition zone <8.0 mm; -indicates no antibacterial activity; diameter of filter paper was 6.0 mm.

  • 本研究分离得到6株活性菌株(jing-116、jing-117、ye-130、ye-134、ye-135、ye-136),其中大部分抗菌活性较强的内生真菌(如ye-130、ye-134、ye-135和ye-136)来源于夹竹桃的叶,而夹竹桃的强心甙、三萜皂甙等活性成分也主要分布在叶中,表明内生真菌的活性可能与宿主植物有关(Radu &Kqueen,2002)。因此,从植物的药用部位分离内生真菌获得活性菌株的机会可能更大(Gouda et al.,2016)。另外,本研究分离到的球座菌属和炭疽菌属包含多株真菌,如ye-127、ye-129、ye-130、ye-132的ITS序列相同,均属于球座菌属(Guignardia),仅ye-130有抗菌活性; 同理jing-115和jing-116的ITS序列相同,均属于炭疽菌属(Colletotrichum),仅jing-116有抗菌活性,说明抗菌活性具有菌株特异性,与Phongpaichit等(2006)的研究结果一致。这说明在做夹竹桃内生真菌分离时,通过增加分离的真菌数量,将有利于得到更多抗菌活性菌株。

  • 本研究分离得到的抗细菌活性的内生真菌中,ye-134(球座菌属,Guignardia sp.)对溶藻弧菌有抑制作用,jing-117(新壳梭孢属,Neofusicoccum sp.)、ye-130(Guignardia sp.)和ye-136(曲霉属,Aspergillus sp.)对坎氏弧菌有抑制作用。坎氏弧菌(Dong et al.,2017)是最近几年发现的病原弧菌,因此本研究展现了其良好的应用前景。目前,从曲霉属真菌中有发现鳗弧菌(Guo et al.,2016)、副溶血性弧菌(Zhu et al.,2018)、抗哈维氏弧菌(Guo et al.,2019)的活性物质,但还未从新壳梭孢属和球座菌属真菌中发现抗弧菌的真菌和活性物质。新壳梭孢菌是植物病原菌,目前包含大约50个种,从7个种的新壳梭孢菌中分离鉴定了9类化合物,包括环己烯酮、5,6-二氢-2-吡喃酮、麦托考酮、萘酮、萘醌、酚和醇、倍半萜等(Salvatore et al.,2021)。球座菌属真菌也曾经在其他植物内生真菌中发现有抗菌活性(Gong et al.,2014)。在后续研究中,我们将针对ye-134、ye-130和jing-117开展活性物质的研究,有望获得一些新型的抗水产病菌的抗菌剂。

  • 参考文献

    • ALURAPPA R, BOJEGOWDA M, KUMAR V, et al. , 2014. Characterization and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. [J]. Nat Prod Res, 28(23): 2217-2220.

    • DEY P, CHAUDHURI D, CHAUDHURI TK, et al. , 2012. Comparative assessment of the antioxidant activity and free radical scavenging potential of different parts of Nerium indicum [J]. Int J Phytomed, 4: 54-69.

    • DONG X, WANG HL, XIE GS, et al. , 2017. An isolate of Vibrio campbellii carrying the pir VP gene causes acute hepatopancreatic necrosis disease [J]. Emerg Microbes Infect, 6(1): e2. ELLIOTT J, 2002. Handbook of medicinal herbs [M]. State of Florida: CRC Press: 122.

    • GONG B, CHEN YP, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.

    • GONG B, CHEN S, LAN W, et al. , 2018. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China [J]. Iran J Pharm Res, 17(4): 1339-1346.

    • GOUDA S, DAS G, SEN SK, et al. , 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance [J]. Front Microbiol, 7: 1538.

    • GUO L, WANG C, ZHU WC, et al. , 2016. Bioassay-guided fractionation and identification of active substances from the fungus Aspergillus tubingensis against Vibrio anguillarum [J]. Biotechnol Biotechnol Equip, 30(3): 602-606.

    • GUO L, ZHANG F, WANG XT, et al. , 2019. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen Vibrio harveyi [J]. 3 Biotech, 9(1): 1-7.

    • GUPTA S, CHATURVEDI P, KULKARNI MG, et al. , 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi [J]. Biotechnol Adv, 39: 107462.

    • HADIZADEH I, PEIVASTEGAN B, KOLAHI M, 2009. Antifungal activity of nettle (Urtica dioica L. ), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L. ) and konar (Ziziphus spina-christi L) extracts on plants pathogenic fungi [J]. Pak J Biol Sci, 12(1): 58-63.

    • HUANG WY, CAI YZ, HYDE KD, et al. , 2007. Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity [J]. World J Microbiol Biotechnol, 23: 1253-1263.

    • HUSSAIN MA, GORSI MS, 2004. Antimicrobial activity of Nerium oleander Linn [J]. Asian J Plant Sci, 3(2): 177-180.

    • MA YM, QIAO K, KONG Y, et al. , 2017. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum [J]. Nat Prod Res, 31(8): 951-958.

    • PHONGPAICHIT S, RUNGJINDAMAI N, RUKACHAISIRIKUL V, et al. , 2006. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species [J]. FEMS Immuno Med Mic, 48(3): 367-372.

    • RADU S, KQUEEN CY, 2002. Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity [J]. Osteoporosis Int, 9(2): 23-33.

    • RAMESHA A, SUNITHA VH, SRINIVAS C, 2013. Antimicrobial activity of secondary metabolites from endophytic fungi isolated from Nerium oleander L. [J]. Int J Pharm Biol Sci, 4(1): (B) 683-693.

    • REN N, LIU JJ, YANG DL, et al. , 2016. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae [J]. Microbiol Res, 192: 114-121.

    • SALVATORE MM, ALVES A, ANDOLFI A, 2021. Secondary metabolites produced by Neofusicoccum species associated with plants: a review [J]. Agriculture, 11(2): 149-167.

    • SHARMA P, MOHAN L, SRIVASTAVA CN, 2005. Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector [J]. J Environ Biol, 26(4): 657-660.

    • SINGH S, SHENOY S, NEHETE PN, et al, 2013. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity [J]. Fitoterapia, 84: 32-39.

    • STIERLE A, STROBEL G, STIERLE D, et al. , 1995. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia [J]. J Nat Prod, 58(9): 1315-1324.

    • VALLABHBHAI KM, 2008. Isolation and biological screening of endophytic fungi from Nerium oleander Linn. (Apocynaceae) [D]. Chennai: Chennai Medical University: 71-80.

    • WEI JC, 1979. Identification manual of fungi [M]. Shanghai: Shanghai Scientific & Technical Publishers: 179. [魏景超, 1979. 真菌鉴定手册 [M]. 上海: 上海科学技术出版社: 179. ]

    • ZHENG H, MEI WL, CAI CH, et al. , 2020. Study on the secondary metabolites and their bioactivities of the endophytic fungus Colletotrichum sp. HK-08 from the leaves of Nerium indicum [J]. Nat Prod Res Dev, 32(1): 78-83. [郑浩, 梅文莉, 蔡彩虹, 等, 2020. 夹竹桃叶内生真菌Colletotrichum sp. HK-08的次生代谢产物及其活性研究 [J]. 天然产物研究与开发, 32(1): 78-83. ]

    • ZHU ML, WANG HT, HUANG XN, et al. , 2020. Isolation and screening of bioactive endophytic fungi from Nerium oleander and study on the secondary metabolites of Aspergillus sp. [J]. J Shanxi Med Univ, 51(9): 982-985. [朱美林, 王皓天, 黄雪南, 等, 2020. 夹竹桃活性内生真菌的分离筛选及菌株Aspergillus sp. 次级代谢产物的研究 [J]. 山西医科大学学报, 51(9): 982-985. ]

    • ZHU A, ZHANG XW, ZHANG M, et al. , 2018. Aspergixanthones I-K, new anti-Vibrio prenylxanthones from the marine-derived fungus Aspergillus sp. ZA-01 [J]. Mar Drugs, 16(9): 312.

  • 参考文献

    • ALURAPPA R, BOJEGOWDA M, KUMAR V, et al. , 2014. Characterization and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. [J]. Nat Prod Res, 28(23): 2217-2220.

    • DEY P, CHAUDHURI D, CHAUDHURI TK, et al. , 2012. Comparative assessment of the antioxidant activity and free radical scavenging potential of different parts of Nerium indicum [J]. Int J Phytomed, 4: 54-69.

    • DONG X, WANG HL, XIE GS, et al. , 2017. An isolate of Vibrio campbellii carrying the pir VP gene causes acute hepatopancreatic necrosis disease [J]. Emerg Microbes Infect, 6(1): e2. ELLIOTT J, 2002. Handbook of medicinal herbs [M]. State of Florida: CRC Press: 122.

    • GONG B, CHEN YP, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.

    • GONG B, CHEN S, LAN W, et al. , 2018. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China [J]. Iran J Pharm Res, 17(4): 1339-1346.

    • GOUDA S, DAS G, SEN SK, et al. , 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance [J]. Front Microbiol, 7: 1538.

    • GUO L, WANG C, ZHU WC, et al. , 2016. Bioassay-guided fractionation and identification of active substances from the fungus Aspergillus tubingensis against Vibrio anguillarum [J]. Biotechnol Biotechnol Equip, 30(3): 602-606.

    • GUO L, ZHANG F, WANG XT, et al. , 2019. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen Vibrio harveyi [J]. 3 Biotech, 9(1): 1-7.

    • GUPTA S, CHATURVEDI P, KULKARNI MG, et al. , 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi [J]. Biotechnol Adv, 39: 107462.

    • HADIZADEH I, PEIVASTEGAN B, KOLAHI M, 2009. Antifungal activity of nettle (Urtica dioica L. ), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L. ) and konar (Ziziphus spina-christi L) extracts on plants pathogenic fungi [J]. Pak J Biol Sci, 12(1): 58-63.

    • HUANG WY, CAI YZ, HYDE KD, et al. , 2007. Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity [J]. World J Microbiol Biotechnol, 23: 1253-1263.

    • HUSSAIN MA, GORSI MS, 2004. Antimicrobial activity of Nerium oleander Linn [J]. Asian J Plant Sci, 3(2): 177-180.

    • MA YM, QIAO K, KONG Y, et al. , 2017. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum [J]. Nat Prod Res, 31(8): 951-958.

    • PHONGPAICHIT S, RUNGJINDAMAI N, RUKACHAISIRIKUL V, et al. , 2006. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species [J]. FEMS Immuno Med Mic, 48(3): 367-372.

    • RADU S, KQUEEN CY, 2002. Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity [J]. Osteoporosis Int, 9(2): 23-33.

    • RAMESHA A, SUNITHA VH, SRINIVAS C, 2013. Antimicrobial activity of secondary metabolites from endophytic fungi isolated from Nerium oleander L. [J]. Int J Pharm Biol Sci, 4(1): (B) 683-693.

    • REN N, LIU JJ, YANG DL, et al. , 2016. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae [J]. Microbiol Res, 192: 114-121.

    • SALVATORE MM, ALVES A, ANDOLFI A, 2021. Secondary metabolites produced by Neofusicoccum species associated with plants: a review [J]. Agriculture, 11(2): 149-167.

    • SHARMA P, MOHAN L, SRIVASTAVA CN, 2005. Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector [J]. J Environ Biol, 26(4): 657-660.

    • SINGH S, SHENOY S, NEHETE PN, et al, 2013. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity [J]. Fitoterapia, 84: 32-39.

    • STIERLE A, STROBEL G, STIERLE D, et al. , 1995. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia [J]. J Nat Prod, 58(9): 1315-1324.

    • VALLABHBHAI KM, 2008. Isolation and biological screening of endophytic fungi from Nerium oleander Linn. (Apocynaceae) [D]. Chennai: Chennai Medical University: 71-80.

    • WEI JC, 1979. Identification manual of fungi [M]. Shanghai: Shanghai Scientific & Technical Publishers: 179. [魏景超, 1979. 真菌鉴定手册 [M]. 上海: 上海科学技术出版社: 179. ]

    • ZHENG H, MEI WL, CAI CH, et al. , 2020. Study on the secondary metabolites and their bioactivities of the endophytic fungus Colletotrichum sp. HK-08 from the leaves of Nerium indicum [J]. Nat Prod Res Dev, 32(1): 78-83. [郑浩, 梅文莉, 蔡彩虹, 等, 2020. 夹竹桃叶内生真菌Colletotrichum sp. HK-08的次生代谢产物及其活性研究 [J]. 天然产物研究与开发, 32(1): 78-83. ]

    • ZHU ML, WANG HT, HUANG XN, et al. , 2020. Isolation and screening of bioactive endophytic fungi from Nerium oleander and study on the secondary metabolites of Aspergillus sp. [J]. J Shanxi Med Univ, 51(9): 982-985. [朱美林, 王皓天, 黄雪南, 等, 2020. 夹竹桃活性内生真菌的分离筛选及菌株Aspergillus sp. 次级代谢产物的研究 [J]. 山西医科大学学报, 51(9): 982-985. ]

    • ZHU A, ZHANG XW, ZHANG M, et al. , 2018. Aspergixanthones I-K, new anti-Vibrio prenylxanthones from the marine-derived fungus Aspergillus sp. ZA-01 [J]. Mar Drugs, 16(9): 312.