en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张高荣(1992-),硕士研究生,主要从事天然药物化学研究,(E-mail)zhanggaorong15@163.com。

通讯作者:

李俊,教授,博士研究生导师,主要从事天然产物化学研究,(E-mail)lijun9593@gxnu.edu.cn。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2023)01-0165-09

DOI:10.11931/guihaia.gxzw202112055

参考文献
ABD-ELLAH AE, MOHAMED KM, BACKHEET EY, et al. , 2014. Cinnamyl alcohol, benzyl alcohol, and flavonoid glycosides from Sanchezia nobilis [J]. Chem Nat Comp, 50(5): 823-826.
参考文献
BALÁZS B, TTH G, DUDDECK H, et al. , 2006. Iridoid and lignan glycosides from Citharexylum spinosum L. [J]. Nat Prod Res, 20(2): 201-205.
参考文献
CHANG RJ, WANG CH, ZENG Q, et al. , 2013. Chemical constituents of the stems of Celastrus rugosus [J]. Arch Pharm Res, 36: 1291-1301.
参考文献
CHEN JM, QIN YN, CANG HD, 1983. Analgesic and sedative effects of Pseudostreblus indica Bur. [J]. J Xuzhou Med Univ, 4: 20-22. [陈锦明, 秦延年, 仓汉德, 1983. 假鹊肾树皮的镇痛镇静作用 [J]. 徐州医学院学报, 4: 20-22. ]
参考文献
Editorial Committee of Flora of China Chinese Academy of Sciences 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 38-41. ]
参考文献
FUJIMATU E, ISHIKAWA T, KITAJIMA J, 2003. Aromatic compoundglucosides, alkyl glucoside and glucide from the fruit of anise [J]. Phytochemistry, 63(5): 609-616.
参考文献
HE RJ, ZHANG YJ, WU LD, et al. , 2017. Benzofuran glycosides and coumarins from the bark of Streblus indicus (Bur. ) Corner [J]. Phytochemistry, 138: 170-177.
参考文献
HUANG JG, LI J, WU Q, et al. , 2012. Constituents from heartwood of Streblus asper and their antibacterial activity [J]. Nat Prod Res Dev, 24(6): 780-783. [黄纪国, 李俊, 吴强, 等, 2012. 鹊肾树心材的化学成分及体外抗菌活性研究 [J]. 天然产物研究与开发, 24(6): 780-783. ]
参考文献
ISHIMARU K, SUDO H, SATAKE M, et al. , 1990. Phenyl glucosides from a hairy root culture of Swertia japonzca [J]. Phytochemistry, 29(12): 3823-3825.
参考文献
JIANG H, HUANG CW, LIAO HB, et al. , 2018. Two new lignan glucosides from caulis of Tinospora sinensis [J]. Chin Trad Herb Drugs, 49(10): 2336-2344. [蒋欢, 黄诚伟, 廖海兵, 等, 2018. 中华青牛胆中2个新的木脂素葡萄糖苷 [J]. 中草药, 49(10): 2336-2344. ]
参考文献
KANCHANAPOOM T, KASAIA R, YAMASAKIA K, et al. , 2002. Iridoid and phenolic glycosides from Morinda coreia [J]. Phytochemistry, 59(5): 551-556.
参考文献
KAUMA K, NODA N, SUZUKI M, 2003. Malonylated flavonol glycosides from the petals of Clitoria ternatea [J]. Phytochemistry, 62(2): 229-237.
参考文献
LEE DY, LEE DG, CHO JG, et al. , 2009. Lignans from the fruits of the red pepper (Capsicum annuum L. ) and their antioxidant effects [J]. Arch Pharm Res, 32(10): 1345-1349.
参考文献
LIANG CQ, DAI ZK, WANG Z, et al. , 2010. Anticancer effect petroleum ether extract from leaves of Streblus asper Lour and its conponents [J]. J Anhui Agric Sci, 38(8): 2340-2341. [梁成钦, 戴支凯, 王峥, 等, 2010. 鹊肾树叶石油醚萃取物及其组分抗肿瘤作用研究 [J]. 安徽农业科学, 38(5): 2340-2341. ]
参考文献
LI C, HUANG CP, LU TL, et al. , 2014. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper [J]. Rapid Commun Mass Spectrom, 28(21): 2363.
参考文献
LI LQ, LI J, HUANG Y, et al. , 2012. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus [J]. Fitoterapia, 83(2): 303-309.
参考文献
LI J, MENG AP, GUAN XL, et al. , 2013. Anti-hepatitis B virus lignans from the root of Streblus asper [J]. Bioorg Med Chem Lett, 23(7): 2238-2244.
参考文献
LI J, TANG MT, WU Q, et al. , 2012. Water-soluble constituents of the heartwood of Streblus asper [J]. Nat Prod Commun, 7(5): 599-602.
参考文献
LIU WB, DONG LM, LUO B, et al. , 2018. Chemical constituents from the leaves of Cyclocarya paliurus [J]. J Trop Subtrop Bot, 26(3): 317-322. [刘文斌, 董丽梅, 罗碧, 等, 2018. 青钱柳叶的化学成分研究 [J]. 热带亚热带植物学报, 26(3): 317-322. ]
参考文献
LIU YF, LIANG D, LUO H, et al. , 2014. Chemical constituents from root tubers of Rehmannia glutinosa [J]. Chin Trad Herb Drugs, 45(1): 16-22. [刘彦飞, 梁东, 罗桓, 等, 2014. 地黄的化学成分研究 [J]. 中草药, 45(1): 16-22. ]
参考文献
MA YT, QIAO LR, SHI WQ, et al. , 2010. Metabolites produced by an endophyte Alternaria Alternata isolated from Maytenus hookeri [J]. Chem Nat Comp, 46(3): 504-506.
参考文献
PRAKASH K, DEEPAK D, KHARE A, et al. , 1992. A pregnane glycoside from Streblus asper [J]. Phytochemtstry, 31(3): 1056-1057.
参考文献
REN Y, CHEN WL, LANTVIT DD, et al. , 2017. Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity [J]. J Nat Prod, 80(3): 648-658.
参考文献
SINGH SP, SINGH AP, SINGH R, et al. , 2015. A brief study on Strebulus asper L. [J]. Res J Phytomed, 1(2): 65-71.
参考文献
TAKARA K, MATSUI D, WADA K, et al. , 2002. New antioxidative phenolic glycosides isolated from Kokuto non-centrifuged cane sugar [J]. Biol Biotechnol Biochem, 66(1): 29-35.
参考文献
WANG JS, HE Y, ZHANG WJ, et al. , 2013. Advances in studies on pharmacological effects of luteolin [J]. Chin Bull Life Sci, 25(6): 560-565. [王继双, 何焱, 张文静, 等, 2013. 木犀草素的药理作用研究进展 [J]. 生命科学, 25(6): 560-565. ]
参考文献
WANG LY, CHEN MH, WU J, et al. , 2017. Bioactive glycosides from the twigs of Litsea cubeba [J]. J Nat Prod, 80(6): 1808-1818.
参考文献
XUAN WD, CHEN HS, BIAN J, 2006. A new indole alkaloid glycoside from stem of Nauclea officinalis [J], Acta Pharm Sin, 41(11): 1064-1067. [宣伟东, 陈海生, 卞俊, 2006. 胆木茎中一个新的吲哚生物碱苷 [J]. 药学学报, 41(11): 1064-1067. ]
参考文献
YANG BY, YANG CL, LIU Y, et al. , 2018. Chemical constituents from roots of Datura metel [J]. Chin J Chin Mat Med, 43(8): 1654-1661. [杨炳友, 杨春丽, 刘艳, 等, 2018. 洋金花根化学成分研究 [J]. 中国中药杂志, 43(8): 1654-1661. ]
参考文献
YANG YT, YANG Y, XIAO JM, et al. , 2021. Research advances on the effect of ginsenoside Rg1 on angiogenesis and vascular protection [J]. Acta Pharm Sin, 56(8): 2146-2153. [杨岩涛, 杨岩, 肖佳妹, 等, 2021. 人参皂苷Rg1促血管生成及其血管保护作用研究进展 [J]. 药学学报, 56(8): 2146-2153. ]
参考文献
ZHANG GR, HUANG XS, HUANG Y, et al. , 2021. Research progress on chemical constituents and pharmacological activities of plants from Streblus [J]. Chin Trad Herb Drugs, 52(19): 6066-6075. [张高荣, 黄锡山, 黄艳, 等, 2021. 鹊肾树属植物的化学成分和药理活性研究进展 [J]. 中草药, 52(19): 6066-6075. ]
目录contents

    摘要

    为研究刺桑(Taxotrophis ilicifolia)皮正丁醇部位的化学成分,该研究采用硅胶、ODS、Sephadex LH-20、反相半制备高效液相等色谱法对刺桑皮正丁醇萃取部位进行分离纯化,并综合理化性质及波谱数据鉴定其化合物的结构。结果表明:从刺桑皮正丁醇萃取物中分离得到16个化合物,分别鉴定为icariside E5 (1)、裂环异落叶松脂醇-9-O-β-吡喃葡萄糖苷(2)、2,4,6-三甲氧基苯酚-1-O-β-D-葡萄糖苷(3)、9-O-β-glucopyranosyl trans-cinnamyl alcohol (4)、3,4,5-三甲氧基苯酚-1-O-β-呋喃芹糖基-(1″→6′)-β-吡喃葡萄糖苷(5)、3-羟基-4,5-二甲氧基苯酚-β-D-吡喃葡萄糖苷 (6)、2,6-二甲氧基-4-羟基苯酚-1-O-β-D-吡喃葡萄糖苷(7)、isotachioside (8)、ficuscarpanoside A (9)、uridine (10)、methyl syringate 4-O-β-D-glucopyranoside (11)、3,4,5-三甲氧基苯酚-β-D-吡喃葡萄糖苷 (12)、木犀草素 (13)、人参皂苷Rg1 (14)、(+)-lyonirenisol-3α-O-β-D-glucopyranoside (15)、myricetin 3-neohesperidoside (16)。所有化合物均为首次从该属植物中分离得到。

    Abstract

    To study the chemical constituents from the n-BuOH part of the bark of Taxotrophis ilicifolia, sixteen compounds were isolated and purified from the n-BuOH part of the bark of T. ilicifolia by means of various column chromatographic techniques, including silica gel, ODS, Sephadex LH-20 and semi-preparative RP-HPLC. The structures of the isolates were identified by physiochemical properties and spectral data. The results were as follows: The compounds were identified as icariside E5 (1), secoisolariciresinol 9-O-β-glucopyranoside (2), 2,4,6-trimethoxyphenol-1-O-β-D-glycoside(3),9-O-β-glucopyranosyltrans-cinnamyl alcohol(4),3,4,5-trimethoxyphenyl-1-O-β-apiofuranosyl-(1″→6′)-β-glucopyranoside(5),3-hydroxy-4,5-dimethoxyphenyl-β-D-glucopyranoside(6),2,6-dimethoxy-4- hydroxyphenol-1-O-β-D-glucopyranoside(7),isotachioside(8),ficuscarpanoside A(9),uridine(10),methyl syringate 4-O-β-D-glucopyranoside (11),3,4,5-trimethoxyphenyl-β-D-glucopyranoside(12),luteolin(13),ginsenoside Rg1(14),(+)-lyonirenisol-3α-O-β-D-glucopyranoside (15),myricetin 3-neohesperidoside (16).All compounds were isolated from plants of Taxotrophis for the first time.

  • 植物药或其他天然产物拥有多样的化学成分和药理活性,是研发药物先导化合物的宝库,因此从天然植物,特别是从民间药用植物发现先导化合物成为药物研发的热点。鹊肾树属(StreblusL.)植物中的鹊肾树、假鹊肾树和刺桑在民间一直作为民间药使用,药用历史悠久。鹊肾树属为桑科(Moraceae)植物,约有22种,我国分布有7种,包括鹊肾树、假鹊肾树、刺桑、双果桑、尾叶刺桑、叶被木和米杨噎,主要分布在海南、广西、云南东南至西南部地区(中国科学院中国植物志编委会,1998)。鹊肾树属植物的化学成分多样且具有多种药理活性,常作为药物在民间使用。鹊肾树的叶萃取物具有抗癌作用(梁成钦等,2010),其心材或皮的化学成分具有抗菌、抗肝炎病毒、抗氧化、抗炎等药理作用(黄纪国等,2012; Li et al.,2012; 张高荣等,2021)。假鹊肾树皮常用于治疗外伤出血、跌打损伤、消化道出血,常常被称为“止血树皮”“滑叶跌打”(陈锦明等,1983; He et al.,2017)。前期化学药效物质研究表明,该属植物的化学成分主要有苯丙素类、甾体类、黄酮类、萜类及其他类化合物(Prakash et al.,1992; Li et al.,2012; Li et al.,2012; Li et al.,2013; Li et al.,2014; Singh et al.,2015; Ren et al.,2017; 张高荣等,2021)。

  • 刺桑(Streblusilicifolius)隶属于鹊肾树属植物。基于同属植物亲缘性关系,其化学成分及药理活性可能具有相似性。经文献调研发现,刺桑化学成分及其生物活性的研究未见有报道。基于鹊肾树和假鹊肾树的化学成分及多样的药理活性,为了更深入研究、开发和利用该属植物,本研究通过多种色谱方法,对刺桑皮正丁醇部位进行化学成分研究,共鉴定出16个化合物,主要为酚苷类化合物,这些化合物均为首次从鹊肾树属植物中分离得到。

  • 1 材料、仪器与试剂

  • 所用药材于2019年8月12日采自海南陵水县佳西,经云南中医药大学中药学院李国栋教授鉴定为刺桑(Streblusilicifolius),植物标本(编号为ZFC201903014e)存放于广西师范大学化学与药学学院国家重点实验室天然产物研究室。

  • 仪器和试剂:Agilent 6545 Q-TOF LC-MS高分辨质谱仪(美国Agilent公司); Bruker AVANCE 400/600 MHz 核磁共振仪(Bruker BioSpin AGFacilities 公司); LC 3000半制备高效液相色谱仪(北京创新通恒科技有限公司); LC 1260半制备高效液相色谱仪(美国Agilent公司); 柱层析硅胶粉(200~400目)和薄层色谱硅胶板(G254)购自青岛海洋化工厂; ODS填料、Sephadex LH-20填料、MCI填料(Merck,Germany)均购自北京绿百草科技有限公司。5%硫酸乙醇显色剂自配,其原材料购自西陇化工有限公司; 甲醇、乙醇、丙酮、乙酸乙酯、三氯甲烷、二氯甲烷等分析纯化学试剂均购自西陇化工有限公司。

  • 2 研究方法

  • 取干燥的刺桑皮 20 kg,粉碎成粗粉,用75%乙醇浸泡过夜,70℃加热回流提取4次(每次为80 L),浓缩,除尽乙醇后得到乙醇提取物浸膏 1.8 kg。将所得浸膏用水溶解,分别用乙酸乙酯和正丁醇进行萃取,得到乙酸乙酯萃取物部位(523.8 g)和正丁醇萃取物部位(374.6 g)。

  • 图1 化合物 1-16 的结构式

  • Fig.1 Structures of compounds 1-16

  • 将正丁醇萃取物部位(374.6 g)与等量的硅胶(200~300目)进行拌样,混匀烘干,以二氯甲烷-甲醇(V/V,100∶0~1∶1)作为洗脱剂经硅胶柱层析进行梯度洗脱,得到7个组分Fr.1~Fr.7。Fr.3(28.3 g)用RP-C18 填料进行拌样,用甲醇-水(V/V,5∶95~100∶0)体系经RP-C18柱层析进行梯度洗脱,得到8个亚组分Fr.3-1~Fr.3-8。Fr.3-3 经RP-C18柱,甲醇-水(V/V,5∶95~50∶50)体系梯度洗脱得到8个组分Fr.3-3-1~Fr.3-3-8。Fr.3-3-1经Sephadex LH-20,流动相洗脱剂为甲醇-水(V/V,20∶80),经半制备HPLC以甲醇-水(V/V,20∶80)洗脱得到化合物1(3.8 mg)。化合物2 (4.6 mg)经葡聚糖凝胶Sephadex LH-20(甲醇)分离后以甲醇-水(V/V,30∶70)为流动相经半制备型HPLC分离得到。化合物4(3.7 mg)由组分Fr.3-3-8 通过半制备HPLC以甲醇-水(V/V,28∶72)洗脱得到。

  • Fr.3-4组分用葡聚糖凝胶 Sephadex LH-20 分离,甲醇作为流动相,合并得到6个组分Fr.3-4-1~Fr.3-4-6。Fr.3-4-2 通过半制备HPLC以甲醇-水(V/V,20∶80)洗脱得到化合物3(5.1 mg)。Fr.3-5 组分先用葡聚糖凝胶 Sephadex LH-20分离,甲醇作为流动相,合并得到6个组分Fr.3-5-1~Fr.3-5-6。Fr.3-5-3 组分经过葡聚糖凝胶 Sephadex LH-20 分离,甲醇-水(V/V,10∶90~80∶20)作为流动相进行梯度洗脱后通过半制备HPLC以甲醇-水(V/V,18∶82)洗脱得到化合物5 (3.4 mg)。Fr.3-5-5 经葡聚糖凝胶 Sephadex LH-20 分离,甲醇-水(V/V,10∶90~80∶20)作为流动相进行梯度洗脱后得到5个组分Fr.3-5-5-1~Fr.3-5-5-5,将Fr.3-5-5-2和Fr.3-5-5-3组分分别通过半制备HPLC以甲醇-水(V/V,16∶84)洗脱分别得到化合物13(3.5 mg)和化合物6(3.0 mg)。

  • Fr.4组分经过硅胶柱层析,以二氯甲烷-甲醇(V/V,20∶1~1∶1)体系进行梯度洗脱,得到5个组分Fr.4-1~Fr.4-5。Fr.4-2组分经葡聚糖凝胶 Sephadex LH-20 分离,甲醇作为流动相,合并得到7个组分Fr.4-2-1~Fr.4-2-7。将Fr.4-2-2 组分经葡聚糖凝胶 Sephadex LH-20 分离,二氯甲烷-甲醇(V/V,1∶1)作为流动相分离得到7小段Fr.4-2-2-1~Fr.4-2-2-7。Fr.4-2-2-2、Fr.4-2-2-3、Fr.4-2-2-5组分分别通过半制备HPLC,以乙腈-水(V/V,8∶92)洗脱分别得到化合物8(3.4 mg)、9 (3.5 mg)、10(4.1 mg)。Fr.4-2-5组分经葡聚糖凝胶Sephadex LH-20 分离,甲醇-水(V/V,30∶70)体系作为流动相进行洗脱,通过半制备型HPLC,以甲醇-水(V/V,16∶84)体系进行洗脱得到化合物12 (2.8 mg)。Fr.4-4 组分经葡聚糖凝胶Sephadex LH-20分离,甲醇作为流动相,合并得到5个组分Fr.4-4-1~Fr.4-4-5。Fr.4-4-2 组分经葡聚糖凝胶 Sephadex LH-20 分离,甲醇-水(V/V,10∶90~80∶20)作为流动相进行梯度洗脱得到4个小段Fr.4-4-2-1~Fr.4-4-2-4。Fr.4-4-2-2 经半制备型HPLC,以甲醇-水(V/V,18∶82)体系洗脱得到化合物7 (4.3 mg)。Fr.4-4-3 组分经葡聚糖凝胶 Sephadex LH-20分离,甲醇-水(V/V,10∶90~80∶20)作为流动相进行洗脱得到5个组分Fr.4-4-3-1~Fr.4-4-3-5。Fr.4-4-3-1组分经半制备型HPLC,以甲醇-水(V/V,16∶84)体系洗脱得到化合物11(2.9 mg)和化合物14(4.0 mg)。Fr.4-3组分合并后经葡聚糖凝胶 Sephadex LH-20 分离,甲醇-水(V/V,10∶90~80∶20)作为流动相进行梯度洗脱得到6个小段Fr.4-3-1~Fr.4-3-6。Fr.4-3-2 经半制备型HPLC,以甲醇-水(V/V,18∶82)体系洗脱得到化合物15(6.6 mg)。Fr.4-3-3 经半制备型HPLC,以甲醇-水(V/V,10∶90)体系洗脱分别得到化合物16 (3.1 mg)。化合物1-16的结构式如图1所示。

  • 3 化合物的结构鉴定

  • 化合物1 无定形粉末。HR-ESI-MS m/z: 545.199 3 [M+Na]+1H-NMR(400 MHz,CD3OD)δH 6.58(1H,d,J = 8.0 Hz,H-2),6.56(1H,d,J = 1.9 Hz,H-5),6.47(1H,dd,J =8.0,1.9 Hz,H-6),2.96(1H,dd,J = 13.8,5.6 Hz,H-7a),2.72(1H,dd,J = 13.8,9.4 Hz,H-7b),3.95(1H,d,J =6.7,2.7 Hz,H-8a),3.76(1H,m,H-9a),3.65(1H,m,H-9b),6.93(1H,d,J = 1.9 Hz,H-2′),6.91(1H,d,J = 2.0 Hz,H-6′),6.54(1H,dd,J = 16.0 Hz,H-7′),6.31(1H,dd, J = 16.0 Hz,H-8′),4.22(1H,d,J = 5.6,1.6 Hz,H-9′a),4.67(1H,dd,J = 7.3 Hz,H-1″),3.43(1H,m,H-2″),3.39(1H,m,H-3″),3.36(1H,m,H-4″),3.11(1H,m,H-5″),3.79(1H,d,J = 1.9 Hz,H-6″a),3.65(1H,d,J = 1.9 Hz,H-6″b),3.68(3H,s,3-OCH3),3.82(3H,s,3′-OCH3); 13C-NMR(100 MHz,CD3OD)δC 133.16(C-1),115.61(C-2),148.37(C-3),145.32(C-4),113.68(C-5),122.55(C-6),39.13(C-7),42.77(C-8),66.80(C-9),135.35(C-1′),109.03(C-2′),153.42(C-3′),144.95(C-4′),138.91(C-5′),119.09(C-6′),131.46(C-7′),129.62(C-8′),63.65(C-9′),105.31(C-1″),75.91(C-2″),78.04(C-3″),71.20(C-4″),77.82(C-5″),62.40(C-6″),56.32(3-OCH3),56.20(3′-OCH3)。以上数据与文献(Lee et al.,2009)比对基本一致,故鉴定化合物1为icariside E5。

  • 化合物2 浅黄色油状物。HR-ESI-MS m/z: 443.167 6 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 6.68(1H,d,J = 2.5 Hz,H-2),6.64(1H,d,J = 1.9 Hz,H-5),6.58(1H,dd,J = 3.6,1.9 Hz,H-6),2.70(1H,dd,J = 13.7,7.8 Hz,H-7a),2.59(1H,m,H-7b),2.08(1H,dd,J = 7.8,4.3 Hz,H-8),3.89(1H,m,H-9a),3.54(1H,m,H-9b),6.66(1H,d,J = 2.5 Hz,H-2′),6.62(1H,d,J = 1.9 Hz,H-5′),6.56(1H,dd, J = 3.6,1.9 Hz,H-6′),2.61(2H,m,H-7′),2.00(1H,dd, J = 8.2,5.1 Hz,H-8′),3.65(1H,m,H-9′a),3.57(1H,dd,J = 5.8,2.7 Hz,H-9′b),4.19(1H,d,J = 7.8 Hz,H-1″),3.21(1H,m,H-2″),3.33(1H,m,H-3″),3.33(1H,m,H-4″),3.28(1H,m,H-5″),3.86(1H,m,H-6″a),3.68(1H,d, J = 5.2 Hz,H-6″b),3.75(6H,s,3,3′-OCH3); 13C-NMR(100 MHz,CD3OD)δC 133.98(C-1),113.52(C-2),148.80(C-3),145.41(C-4),115.74(C-5),122.77(C-6),35.35(C-7),41.56(C-8),70.38(C-9),133.94(C-1′),113.35(C-2′),148.75(C-3′),145.39(C-4′),115.74(C-5′),122.71(C-6′),104.62(C-1″),78.15(C-2″),77.95(C-3″),71.67(C-4″),75.20(C-5″),62.72(C-6″),56.30(3,3′-OCH3)。以上数据与文献(蒋欢等,2018)比对基本一致,故鉴定化合物2为裂环异落叶松脂醇-9-O-β-吡喃葡萄糖苷。

  • 化合物3 白色粉末。HR-ESI-MS m/z: 369.115 6 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 6.49(2H,s,H-3,5),4.81(1H,d, J = 7.2 Hz,H-1′),3.33(2H,m,H-2′,3′),3.44(2H,m,H-4′,5′),3.92(1H,dd,J = 12.0,2.3 Hz,H-6′a),3.66(1H,dd,J = 12.0,6.7 Hz,H-6′b); 13C-NMR(100 MHz,CD3OD)δC 134.36(C-1),154.80(C-2,6),96.02(C-3,5),156.10(C-4),103.20(C-1′),74.95(C-2′),78.08(C-3′),71.71(C-4′),78.45(C-5′),62.73(C-6′),56.52(2,6-OCH3),61.23(4-OCH3)。以上数据与文献(Chang et al.,2013)比对基本一致,故鉴定化合物3为2,4,6-三甲氧基苯酚-1-O-β-D-葡萄糖苷。

  • 化合物4 浅黄色粉末。HR-ESI-MS m/z: 297.133 3 [M + H]+1H-NMR(400 MHz,CD3OD)δH 7.40(2H,d,J = 7.6 Hz,H-2,6),7.29(2H,d,J = 8.5 Hz,H-3,5),7.21(1H,m,H-4),6.72(1H,d,J = 16.3 Hz,H-7),6.15(1H,dd,J = 16.3,8.1 Hz,H-8),4.35(1H,d, J = 7.9 Hz,H-1′); 13C-NMR(100 MHz,CD3OD)δC 137.76(C-1),126.58(C-2,6),127.72(C-3,5),128.99(C-4),135.15(C-7),128.63(C-8),71.69(C-9),100.89(C-1′),78.06(C-2′),77.95(C-3′),775.01(C-4′),75.98(C-5′),62.83(C-6′)。以上数据与文献(Abd-ellah et al.,2014)比对基本一致,故鉴定化合物4为9-O-β-glucopyranosyl trans-cinnamyl alcohol。

  • 化合物5 无色油状物。HR-ESI-MS m/z: 479.175 9 [M + H]+1H-NMR(400 MHz,CD3OD)δH 6.46(2H,s,H-2,6),4.80(1H,d,J = 7.1 Hz,H-1′),3.44(2H,m,H-2′,3′),3.35(1H,m,H-4′),3.59(1H,m,H-5′),4.04(1H,d,J = 9.3,4.8 Hz,H-6′a),3.59(1H,m,H-6′b),4.97(1H,d,J = 2.7 Hz,H-1″),3.88(1H,d,J = 2.6 Hz,H-2″),3.59(1H,m,H-3″),3.95(1H,d,J = 9.7 Hz,H-4″a),3.74(1H,d, J = 9.7 Hz,H-4″b),3.55(2H,m,H-5″),3.82(6H,s,3,5-OCH3),3.71(3H,s,4-OCH3); 13C-NMR(100 MHz,CD3OD)δC 134.59(C-1),96.31(C-2,6),154.80(C-3,5),155.95(C-4),103.17(C-1′),74.87(C-2′),77.95(C-3′),71.58(C-4′),77.00(C-5′),68.74(C-6′),110.84(C-1″),77.93(C-2″),80.48(C-3″),74.91(C-4″),65.34(C-5″),56.30(3,5-OCH3),56.20(4-OCH3)。以上数据与文献(Kanchanapoom et al.,2002)比对基本一致,故鉴定化合物5为3,4,5-三甲氧基苯酚-1-O-β-呋喃芹糖基-(1″→6′)-β-吡喃葡萄糖苷。

  • 化合物6 白色无定形粉末。HR-ESI-MS m/z: 355.099 9 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 6.28(1H,d,J = 2.8 Hz,H-2),6.34(1H,d,J = 2.7 Hz,H-6),4.78(1H,d,J = 7.2 Hz,H-1′),3.48~3.33(4H,m,H-2′,3′,4′,5′),3.91(1H,dd,J = 12.0,2.2 Hz,H-6′a),3.69(1H,dd, J = 12.0,5.7 Hz,H-6′b),3.72(3H,s,4-OCH3),3.80(3H,s,5-OCH3); 13C-NMR(100 MHz,CD3OD)δC 155.85(C-1),98.70(C-2),151.90(C-3),133.21(C-4),154.90(C-5),94.81(C-6),102.90(C-1′),74.90(C-2′),78.03(C-3′),71.48(C-4′),78.23(C-5′),62.59(C-6′),61.11(4-OCH3),56.35(5-OCH3)。以上数据与文献(Takara et al.,2002)比对基本一致,故鉴定化合物6为3-羟基-4,5-二甲氧基苯酚-β-D-吡喃葡萄糖苷。

  • 化合物7 白色无定形粉末。HR-ESI-MS m/z: 355.099 9 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 6.13(2H,s,H-3,5),4.67(1H,d,J = 7.1 Hz,H-1′),3.21(1H,m,H-2′)3.48-3.33(3H,m,H-3′,4′,5′),3.81(1H,d,J = 2.1 Hz,H-6′a),3.69(1H,d,J = 2.1,5.0 Hz,H-6′b),3.79(6H,s,2,6-OCH3); 13C-NMR(100 MHz CD3OD)δC 129.57(C-1),154.74(C-2,6),94.47(C-3,5),156.01(C-4),106.19(C-1′),75.70(C-2′),77.79(C-3′),71.29(C-4′),78.26(C-5′),62.58(C-6′),56.76(2,6-OCH3)。以上数据与文献(Ishimaru et al.,1990)比对基本一致,故鉴定化合物7为2,6-二甲氧基-4-羟基苯酚-1-O-β-D-吡喃葡萄糖苷。

  • 化合物8 白色无定形粉末。HR-ESI-MS m/z: 303.107 4 [M + H]+1H-NMR(400 MHz,CD3OD)δH 6.47(H,d, J = 2.7 Hz,H-2),7.01(H,d,J = 8.7 Hz,H-5),6.30(H,dd,J = 8.7,2.7 Hz,H-6),4.70(1H,d,J = 7.8 Hz,H-1′),3.46~3.32(3H,m,H-2′,3′,4′,5′),3.86(1H,dd,J = 12.0,2.4 Hz,H-6′a),3.69(1H,dd,J = 12.0,5.5 Hz,H-6′b),3.81(3H,s,3-OCH3); 13C-NMR(100 MHz,CD3OD)δC 141.02(C-1),151.98(C-2),101.23(C-3),154.91(C-4),107.55(C-5),120.46(C-6),104.28(C-1′),75.05(C-2′),78.12(C-3′),71.35(C-4′),77.81(C-5′),62.35(C-6′),56.76(3-OCH3)。以上数据与文献(刘彦飞等,2014)比对基本一致,故鉴定化合物8为isotachioside。

  • 化合物9 白色粉末。HR-ESI-MS m/z: 381.115 6 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 6.99(1H,d,J = 1.9 Hz,H-2),6.78(1H,d,J = 8.1 Hz,H-5),6.86(1H,dd,J = 8.1,1.9 Hz,H-6),4.45(1H,d,J = 9.5 Hz,H-7),3.80(1H,ddd,J = 9.6,5.2,2.3 Hz,H-8),3.45~3.34(2H,m,H-9),4.60(1H,d, J = 7.7 Hz,H-1′),3.15(1H,dd,J = 9.7,7.7 Hz,H-2′),3.58(1H,t,J = 9.1 Hz,H-3′),3.48(1H,ddd,J = 11.5,5.7,2.5 Hz,H-4′),3.45~3.34(1H,m,H-5′),3.91(1H,dd,J = 11.9,2.2 Hz,H-6′a),3.73(1H,dd,J = 11.9,5.6 Hz,H-6′b); 13C-NMR(100 MHz,CD3OD)δC 130.11(C-1),112.28(C-2),148.96(C-3),148.02(C-4),116.03(C-5),121.85(C-6),80.22(C-7),82.67(C-8),62.08(C-9),99.79(C-1′),80.75(C-2′),75.07(C-3′),71.85(C-4′),79.79(C-5′),62.55(C-6′),56.40(4-OCH3)。以上数据与文献(Wang et al.,2017)比对基本一致,故鉴定化合物9为ficuscarpanoside A。

  • 化合物10 白色晶状物质。HR-ESI-MS m/z: 245.078 6 [M + H]+1H-NMR(400 MHz,CD3OD)δH 5.70(1H,d,J = 8.1 Hz,H-2,6),8.02(1H,d,J = 7.1 Hz,H-6),5.90(1H,d, J = 4.7 Hz,H-1′),4.18(1H,d,J = 5.0 Hz,H-2′),4.15(1H,d,J = 4.9 Hz,H-3′),4.01(1H,d,J = 4.0 Hz,H-4′)3.84(1H,dd, J = 12.3,2.8 Hz,H-5′a),3.73(1H,dd, J = 12.3,3.2 Hz,H-5′b); 13C-NMR(100 MHz,CD3OD)δC 152.47(C-2),166.21(C-4),102.64(C-5),142.73(C-6),90.64(C-1′),71.31(C-2′),75.73(C-3′),86.37(C-4′),62.26(C-5′)。以上数据与文献(Ma et al.,2010)比对基本一致,故鉴定化合物10为uridine。

  • 化合物11 无色晶体。HR-ESI-MS m/z: 375.128 6 [M + H]+1H-NMR(400 MHz,CD3OD)δH 7.35(2H,s,H-2,6),5.08(1H,d,J = 7.5 Hz,H-1′),3.40(1H,m,H-2′),3.22(1H,ddd,J = 9.5,5.5,2.4 Hz,H-3′),3.40(1H,m,H-4′),3.49(1H,m,H-5′),3.77(1H,dd,J = 12.0,2.4 Hz,H-6′a),3.65(1H,dd,J = 12.0,5.3 Hz,H-6′a),3.90(6H,s,3,5-OCH3),3.89(3H,s,7-OCH3); 13C-NMR(100 MHz,CD3OD)δC 127.07(C-1),108.40(C-2,6),154.19(C-3,5),140.23(C-4),168.03(C=O),104.44(C-1′),78.45(C-2′),71.34(C-3′),75.70(C-4′),77.86(C-5′),62.52(C-6′),57.05(3,5-OCH3),52.78(4-OCH3)。以上数据与文献(Fujimatu et al.,2003)比对基本一致,故鉴定化合物11为methyl syringate4-O-β-D-glucopyranoside。

  • 化合物12 白色粉末。HR-ESI-MS m/z: 369.110 5 [M + Na]+1H-NMR(600 MHz,CD3OD)δH 6.46(2H,s,H-2,6),4.81(1H,m,J = 7.8 Hz,H-1′),3.92(1H,dd,J = 12.0,2.2 Hz,H-6′a),3.81(6H,s,3,5-OCH3),3.70(3H,s,4-OCH3); 13C-NMR(150 MHz,CD3OD)δC 156.06(C-1),96.05(C-2,6),154.79(C-3,5),134.38(C-4),103.18(C-1′),74.93(C-2′),78.42(C-3′),71.69(C-4′),78.06(C-5′),62.72(C-6′),56.52(3,5-OCH3),61.21(4-OCH3)。以上数据与文献(宣伟东等,2006)比对基本一致,故鉴定化合物12为3,4,5-三甲氧基苯酚-β-D-吡喃葡萄糖苷。

  • 化合物13 黄色粉末。1H-NMR(400 MHz,CD3OD)δH 6.53(1H,s,H-3),6.20(1H,d,J = 2.1 Hz,H-6),6.43(1H,d,J = 2.1 Hz,H-8),7.37(1H,s,H-2′),6.90(1H,d,J = 8.5 Hz,H-5),7.39(1H,d,J = 2.2 Hz,H-6′)。以上数据与文献(刘文斌等,2018)比对基本一致,故鉴定化合物13为木犀草素。

  • 化合物14 白色粉末。HR-ESI-MS m/z: 615.386 7 [M + Na]+1H-NMR(400 MHz,CD3OD)δH 1.00(3H,s,H-18),1.00(3H,s,H-19),1.62(3H,s,H-21),1.10(3H,s,H-26),1.34(3H,s,H-27),1.68(3H,s,H-28),1.33(3H,s,H-29),0.95(3H,s,H-30),4.35(1H,d,J = 7.8 Hz,H-1″),4.81(1H,d,J = 7.8 Hz,H-1′); 13C-NMR(100 MHz,CD3OD)δC 40.17(C-1),25.57(C-2),77.63(C-3),40.47(C-4),61.74(C-5),80.92(C-6),42.25(C-7),41.84(C-8),50.57(C-9),40.34(C-10),31.37(C-11),71.15(C-12),50.57(C-13),52.42(C-14),30.93(C-15),27.23(C-16),53.10(C-17),17.63(C-18),17.82(C-19),84.90(C-20),22.83(C-21),36.61(C-22),24.22(C-23),125.83(C-24),132.28(C-25),25.89(C-26),17.96(C-27),31.51(C-28),16.10(C-29),17.11(C-30),105.54(C-1′),75.45(C-2′),79.82(C-3′),71.84(C-4′),78.18(C-5′),62.50(C-6′),98.26(C-1″),75.35(C-2″),79.04(C-3″),71.66(C-4″),77.90(C-5″),62.88(C-6″)。以上数据与文献(杨炳友等,2018)比对基本一致,故鉴定化合物14为人参皂苷Rg1。

  • 化合物15 浅黄色油状物。HR-ESI-MS m/z: 465.175 5 [M + H]+1H-NMR(400 MHz,CD3OD)δH 2.63(1H,dd,J = 15.1 Hz,H-1a),2.74(1H,dd,J = 15.1,4.8 Hz,H-1b),1.72(1H,m,H-2),2.08(1H,m,H-3),4.42(1H,d,J = 6.2 Hz,H-4),4.42(1H,d,J = 6.2 Hz,H-4),6.58(1H,s,H-8),3.65(1H,dd,J = 5.2,11.8 Hz,H-11a),3.55(1H,dd,J = 10.9,6.6 Hz,H-11b),3.90(1H,dd,J = 9.8,4.4 Hz,H-12a),3.45(1H,dd,J = 4.1,9.8 Hz,H-12a),6.43(1H,s,H-2′,6′),4.28(1H,d,J = 7.7 Hz,H-1″),3.24(1H,m,H-2″),3.45(1H,m,H-3″),3.38(1H,m,H-4″),3.24(1H,m,H-5″),3.65(1H,dd,H-6″a),3.83(1H,dd,H-6″b),3.34(3H,s,5-OCH3),3.86(1H,s,7-OCH3),3.75(6H,s,3′,5′-OCH3); 13C-NMR(100 MHz,CD3OD)δC 34.9(C-1),41.02(C-2),47.15(C-3),43.24(C-4),148.01(C-5),139.78(C-6),149.42(C-7),108.26(C-8),130.62(C-9),126.87(C-10),66.64(C-11),71.86(C-12),139.35(C-1′),107.32(C-2′,6′)149.07(C-3′,5′),134.90(C-4′),105.28(C-1″),75.62(C-2″),78.68(C-3″),72.10(C-4″),78.39(C-5″),63.27(C-6″),60.60(5-OCH3),57.02(7-OCH3),57.28(3′,5′-OCH3)。以上数据与文献(Balázs et al.,2002)比对基本一致,故鉴定化合物15为(+)-lyonirenisol-3α-O-β-D-glucopyranoside。

  • 化合物16 黄色无定形粉末。HR-ESI-MS m/z: 611.160 6 [M + H]+1H-NMR(400 MHz,CD3OD)δH 6.21(1H,d,J = 2.0 Hz,H-6),6.40(1H,d,J = 2.0 Hz,H-8),7.66(1H,d,J = 2.1 Hz,H-2′),6.87(1H,d,J = 8.5 Hz,H-5′),7.62(1H,dd,J = 2.1,8.5 Hz,H-6′),5.10(1H,d,J = 7.7 Hz,H-1″),3.46(1H,dd,J = 7.7 Hz,8.9 Hz,H-2″),3.40(1H,t,J = 8.9 Hz,H-3″),3.26(1H,t,J = 8.9 Hz,H-4″),3.32(1H,ddd,J = 1.2,6.1,8.9 Hz,H-5″),3.80(1H,dd,J = 1.2,11.0 Hz,H-6a″),3.38(1H,dd,J = 6.1,11.0 Hz,H-6b″),4.51(1H,d,J = 1.5 Hz,H-1′′′),3.62(1H,dd,J = 1.5,3.4 Hz,H-2′′′),3.53(1H,dd,J = 3.4,9.6 Hz,H-3′′′),3.27(1H,t,J = 9.6 Hz,H-4′′′),3.44(1H,dq,J = 6.2,9.6 Hz,H-5′′′),1.11(1H,d,J = 6.2 Hz,H-6′′′); 13C-NMR(100 MHz,CD3OD)δC 179.4(C-4),166.1(C-7),162.9(C-5),159.4(C-9),158.5(C-2),149.8(C-4′),145.9(C-3′),135.6(C-3),123.5(C-6′),123.1(C-1′),117.7(C-2′),116.1(C-5′),105.6(C-10),104.7(C-1″),102.4(C-1′′′),99.9(C-6),94.9(C-8),78.2(C-3″),77.2(C-5″),75.7(C-2″),73.9(C-4′′′),72.2(C-3′′′),72.1(C-2′′′),71.4(C-4″),69.7(C-5′′′),68.5(C-6″),17.9(C-6′′′)。以上数据与文献(Kohei et al.,2003)比对基本一致,故鉴定化合物16为myricetin 3-neohesperidoside。

  • 4 讨论与结论

  • 本研究对刺桑皮的正丁醇部位化学成分进行研究,并从该植物中首次分离并鉴定了16个化合物,其结构涉及苯丙素类、黄酮类、皂苷类和酚苷类,主要以酚苷类成分为主。据文献报道,化合物icariside E5(1)具有清除DPPH的能力,其半抑制浓度(IC50)值为42.1 μmol·L-1,表明其具有一定的抗氧化能力(Lee et al.,2009); 木犀草素(13)具有抗肿瘤、抗氧化、抗炎等作用,这与Wang等(2013)的研究结果一致; 人参皂苷Rg1(14)具有抗疲劳、抗衰老、促血管生成和保护血管的作用,这与Yang等(2021)的研究结果一致。本研究首次对刺桑的化学成分进行研究,研究结果丰富了对刺桑物质基础的认识,在一定程度上填补了该植物化学成分的研究空白,拓展了该属植物的化学成分。其药理活性目前正在研究中,以期发现活性好的先导化合物,为新药研究提供先导化合物来源,为开发和利用该属植物提供一定的理论依据。

  • 参考文献

    • ABD-ELLAH AE, MOHAMED KM, BACKHEET EY, et al. , 2014. Cinnamyl alcohol, benzyl alcohol, and flavonoid glycosides from Sanchezia nobilis [J]. Chem Nat Comp, 50(5): 823-826.

    • BALÁZS B, TTH G, DUDDECK H, et al. , 2006. Iridoid and lignan glycosides from Citharexylum spinosum L. [J]. Nat Prod Res, 20(2): 201-205.

    • CHANG RJ, WANG CH, ZENG Q, et al. , 2013. Chemical constituents of the stems of Celastrus rugosus [J]. Arch Pharm Res, 36: 1291-1301.

    • CHEN JM, QIN YN, CANG HD, 1983. Analgesic and sedative effects of Pseudostreblus indica Bur. [J]. J Xuzhou Med Univ, 4: 20-22. [陈锦明, 秦延年, 仓汉德, 1983. 假鹊肾树皮的镇痛镇静作用 [J]. 徐州医学院学报, 4: 20-22. ]

    • Editorial Committee of Flora of China Chinese Academy of Sciences 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 38-41. ]

    • FUJIMATU E, ISHIKAWA T, KITAJIMA J, 2003. Aromatic compoundglucosides, alkyl glucoside and glucide from the fruit of anise [J]. Phytochemistry, 63(5): 609-616.

    • HE RJ, ZHANG YJ, WU LD, et al. , 2017. Benzofuran glycosides and coumarins from the bark of Streblus indicus (Bur. ) Corner [J]. Phytochemistry, 138: 170-177.

    • HUANG JG, LI J, WU Q, et al. , 2012. Constituents from heartwood of Streblus asper and their antibacterial activity [J]. Nat Prod Res Dev, 24(6): 780-783. [黄纪国, 李俊, 吴强, 等, 2012. 鹊肾树心材的化学成分及体外抗菌活性研究 [J]. 天然产物研究与开发, 24(6): 780-783. ]

    • ISHIMARU K, SUDO H, SATAKE M, et al. , 1990. Phenyl glucosides from a hairy root culture of Swertia japonzca [J]. Phytochemistry, 29(12): 3823-3825.

    • JIANG H, HUANG CW, LIAO HB, et al. , 2018. Two new lignan glucosides from caulis of Tinospora sinensis [J]. Chin Trad Herb Drugs, 49(10): 2336-2344. [蒋欢, 黄诚伟, 廖海兵, 等, 2018. 中华青牛胆中2个新的木脂素葡萄糖苷 [J]. 中草药, 49(10): 2336-2344. ]

    • KANCHANAPOOM T, KASAIA R, YAMASAKIA K, et al. , 2002. Iridoid and phenolic glycosides from Morinda coreia [J]. Phytochemistry, 59(5): 551-556.

    • KAUMA K, NODA N, SUZUKI M, 2003. Malonylated flavonol glycosides from the petals of Clitoria ternatea [J]. Phytochemistry, 62(2): 229-237.

    • LEE DY, LEE DG, CHO JG, et al. , 2009. Lignans from the fruits of the red pepper (Capsicum annuum L. ) and their antioxidant effects [J]. Arch Pharm Res, 32(10): 1345-1349.

    • LIANG CQ, DAI ZK, WANG Z, et al. , 2010. Anticancer effect petroleum ether extract from leaves of Streblus asper Lour and its conponents [J]. J Anhui Agric Sci, 38(8): 2340-2341. [梁成钦, 戴支凯, 王峥, 等, 2010. 鹊肾树叶石油醚萃取物及其组分抗肿瘤作用研究 [J]. 安徽农业科学, 38(5): 2340-2341. ]

    • LI C, HUANG CP, LU TL, et al. , 2014. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper [J]. Rapid Commun Mass Spectrom, 28(21): 2363.

    • LI LQ, LI J, HUANG Y, et al. , 2012. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus [J]. Fitoterapia, 83(2): 303-309.

    • LI J, MENG AP, GUAN XL, et al. , 2013. Anti-hepatitis B virus lignans from the root of Streblus asper [J]. Bioorg Med Chem Lett, 23(7): 2238-2244.

    • LI J, TANG MT, WU Q, et al. , 2012. Water-soluble constituents of the heartwood of Streblus asper [J]. Nat Prod Commun, 7(5): 599-602.

    • LIU WB, DONG LM, LUO B, et al. , 2018. Chemical constituents from the leaves of Cyclocarya paliurus [J]. J Trop Subtrop Bot, 26(3): 317-322. [刘文斌, 董丽梅, 罗碧, 等, 2018. 青钱柳叶的化学成分研究 [J]. 热带亚热带植物学报, 26(3): 317-322. ]

    • LIU YF, LIANG D, LUO H, et al. , 2014. Chemical constituents from root tubers of Rehmannia glutinosa [J]. Chin Trad Herb Drugs, 45(1): 16-22. [刘彦飞, 梁东, 罗桓, 等, 2014. 地黄的化学成分研究 [J]. 中草药, 45(1): 16-22. ]

    • MA YT, QIAO LR, SHI WQ, et al. , 2010. Metabolites produced by an endophyte Alternaria Alternata isolated from Maytenus hookeri [J]. Chem Nat Comp, 46(3): 504-506.

    • PRAKASH K, DEEPAK D, KHARE A, et al. , 1992. A pregnane glycoside from Streblus asper [J]. Phytochemtstry, 31(3): 1056-1057.

    • REN Y, CHEN WL, LANTVIT DD, et al. , 2017. Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity [J]. J Nat Prod, 80(3): 648-658.

    • SINGH SP, SINGH AP, SINGH R, et al. , 2015. A brief study on Strebulus asper L. [J]. Res J Phytomed, 1(2): 65-71.

    • TAKARA K, MATSUI D, WADA K, et al. , 2002. New antioxidative phenolic glycosides isolated from Kokuto non-centrifuged cane sugar [J]. Biol Biotechnol Biochem, 66(1): 29-35.

    • WANG JS, HE Y, ZHANG WJ, et al. , 2013. Advances in studies on pharmacological effects of luteolin [J]. Chin Bull Life Sci, 25(6): 560-565. [王继双, 何焱, 张文静, 等, 2013. 木犀草素的药理作用研究进展 [J]. 生命科学, 25(6): 560-565. ]

    • WANG LY, CHEN MH, WU J, et al. , 2017. Bioactive glycosides from the twigs of Litsea cubeba [J]. J Nat Prod, 80(6): 1808-1818.

    • XUAN WD, CHEN HS, BIAN J, 2006. A new indole alkaloid glycoside from stem of Nauclea officinalis [J], Acta Pharm Sin, 41(11): 1064-1067. [宣伟东, 陈海生, 卞俊, 2006. 胆木茎中一个新的吲哚生物碱苷 [J]. 药学学报, 41(11): 1064-1067. ]

    • YANG BY, YANG CL, LIU Y, et al. , 2018. Chemical constituents from roots of Datura metel [J]. Chin J Chin Mat Med, 43(8): 1654-1661. [杨炳友, 杨春丽, 刘艳, 等, 2018. 洋金花根化学成分研究 [J]. 中国中药杂志, 43(8): 1654-1661. ]

    • YANG YT, YANG Y, XIAO JM, et al. , 2021. Research advances on the effect of ginsenoside Rg1 on angiogenesis and vascular protection [J]. Acta Pharm Sin, 56(8): 2146-2153. [杨岩涛, 杨岩, 肖佳妹, 等, 2021. 人参皂苷Rg1促血管生成及其血管保护作用研究进展 [J]. 药学学报, 56(8): 2146-2153. ]

    • ZHANG GR, HUANG XS, HUANG Y, et al. , 2021. Research progress on chemical constituents and pharmacological activities of plants from Streblus [J]. Chin Trad Herb Drugs, 52(19): 6066-6075. [张高荣, 黄锡山, 黄艳, 等, 2021. 鹊肾树属植物的化学成分和药理活性研究进展 [J]. 中草药, 52(19): 6066-6075. ]

  • 参考文献

    • ABD-ELLAH AE, MOHAMED KM, BACKHEET EY, et al. , 2014. Cinnamyl alcohol, benzyl alcohol, and flavonoid glycosides from Sanchezia nobilis [J]. Chem Nat Comp, 50(5): 823-826.

    • BALÁZS B, TTH G, DUDDECK H, et al. , 2006. Iridoid and lignan glycosides from Citharexylum spinosum L. [J]. Nat Prod Res, 20(2): 201-205.

    • CHANG RJ, WANG CH, ZENG Q, et al. , 2013. Chemical constituents of the stems of Celastrus rugosus [J]. Arch Pharm Res, 36: 1291-1301.

    • CHEN JM, QIN YN, CANG HD, 1983. Analgesic and sedative effects of Pseudostreblus indica Bur. [J]. J Xuzhou Med Univ, 4: 20-22. [陈锦明, 秦延年, 仓汉德, 1983. 假鹊肾树皮的镇痛镇静作用 [J]. 徐州医学院学报, 4: 20-22. ]

    • Editorial Committee of Flora of China Chinese Academy of Sciences 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 38-41. ]

    • FUJIMATU E, ISHIKAWA T, KITAJIMA J, 2003. Aromatic compoundglucosides, alkyl glucoside and glucide from the fruit of anise [J]. Phytochemistry, 63(5): 609-616.

    • HE RJ, ZHANG YJ, WU LD, et al. , 2017. Benzofuran glycosides and coumarins from the bark of Streblus indicus (Bur. ) Corner [J]. Phytochemistry, 138: 170-177.

    • HUANG JG, LI J, WU Q, et al. , 2012. Constituents from heartwood of Streblus asper and their antibacterial activity [J]. Nat Prod Res Dev, 24(6): 780-783. [黄纪国, 李俊, 吴强, 等, 2012. 鹊肾树心材的化学成分及体外抗菌活性研究 [J]. 天然产物研究与开发, 24(6): 780-783. ]

    • ISHIMARU K, SUDO H, SATAKE M, et al. , 1990. Phenyl glucosides from a hairy root culture of Swertia japonzca [J]. Phytochemistry, 29(12): 3823-3825.

    • JIANG H, HUANG CW, LIAO HB, et al. , 2018. Two new lignan glucosides from caulis of Tinospora sinensis [J]. Chin Trad Herb Drugs, 49(10): 2336-2344. [蒋欢, 黄诚伟, 廖海兵, 等, 2018. 中华青牛胆中2个新的木脂素葡萄糖苷 [J]. 中草药, 49(10): 2336-2344. ]

    • KANCHANAPOOM T, KASAIA R, YAMASAKIA K, et al. , 2002. Iridoid and phenolic glycosides from Morinda coreia [J]. Phytochemistry, 59(5): 551-556.

    • KAUMA K, NODA N, SUZUKI M, 2003. Malonylated flavonol glycosides from the petals of Clitoria ternatea [J]. Phytochemistry, 62(2): 229-237.

    • LEE DY, LEE DG, CHO JG, et al. , 2009. Lignans from the fruits of the red pepper (Capsicum annuum L. ) and their antioxidant effects [J]. Arch Pharm Res, 32(10): 1345-1349.

    • LIANG CQ, DAI ZK, WANG Z, et al. , 2010. Anticancer effect petroleum ether extract from leaves of Streblus asper Lour and its conponents [J]. J Anhui Agric Sci, 38(8): 2340-2341. [梁成钦, 戴支凯, 王峥, 等, 2010. 鹊肾树叶石油醚萃取物及其组分抗肿瘤作用研究 [J]. 安徽农业科学, 38(5): 2340-2341. ]

    • LI C, HUANG CP, LU TL, et al. , 2014. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper [J]. Rapid Commun Mass Spectrom, 28(21): 2363.

    • LI LQ, LI J, HUANG Y, et al. , 2012. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus [J]. Fitoterapia, 83(2): 303-309.

    • LI J, MENG AP, GUAN XL, et al. , 2013. Anti-hepatitis B virus lignans from the root of Streblus asper [J]. Bioorg Med Chem Lett, 23(7): 2238-2244.

    • LI J, TANG MT, WU Q, et al. , 2012. Water-soluble constituents of the heartwood of Streblus asper [J]. Nat Prod Commun, 7(5): 599-602.

    • LIU WB, DONG LM, LUO B, et al. , 2018. Chemical constituents from the leaves of Cyclocarya paliurus [J]. J Trop Subtrop Bot, 26(3): 317-322. [刘文斌, 董丽梅, 罗碧, 等, 2018. 青钱柳叶的化学成分研究 [J]. 热带亚热带植物学报, 26(3): 317-322. ]

    • LIU YF, LIANG D, LUO H, et al. , 2014. Chemical constituents from root tubers of Rehmannia glutinosa [J]. Chin Trad Herb Drugs, 45(1): 16-22. [刘彦飞, 梁东, 罗桓, 等, 2014. 地黄的化学成分研究 [J]. 中草药, 45(1): 16-22. ]

    • MA YT, QIAO LR, SHI WQ, et al. , 2010. Metabolites produced by an endophyte Alternaria Alternata isolated from Maytenus hookeri [J]. Chem Nat Comp, 46(3): 504-506.

    • PRAKASH K, DEEPAK D, KHARE A, et al. , 1992. A pregnane glycoside from Streblus asper [J]. Phytochemtstry, 31(3): 1056-1057.

    • REN Y, CHEN WL, LANTVIT DD, et al. , 2017. Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity [J]. J Nat Prod, 80(3): 648-658.

    • SINGH SP, SINGH AP, SINGH R, et al. , 2015. A brief study on Strebulus asper L. [J]. Res J Phytomed, 1(2): 65-71.

    • TAKARA K, MATSUI D, WADA K, et al. , 2002. New antioxidative phenolic glycosides isolated from Kokuto non-centrifuged cane sugar [J]. Biol Biotechnol Biochem, 66(1): 29-35.

    • WANG JS, HE Y, ZHANG WJ, et al. , 2013. Advances in studies on pharmacological effects of luteolin [J]. Chin Bull Life Sci, 25(6): 560-565. [王继双, 何焱, 张文静, 等, 2013. 木犀草素的药理作用研究进展 [J]. 生命科学, 25(6): 560-565. ]

    • WANG LY, CHEN MH, WU J, et al. , 2017. Bioactive glycosides from the twigs of Litsea cubeba [J]. J Nat Prod, 80(6): 1808-1818.

    • XUAN WD, CHEN HS, BIAN J, 2006. A new indole alkaloid glycoside from stem of Nauclea officinalis [J], Acta Pharm Sin, 41(11): 1064-1067. [宣伟东, 陈海生, 卞俊, 2006. 胆木茎中一个新的吲哚生物碱苷 [J]. 药学学报, 41(11): 1064-1067. ]

    • YANG BY, YANG CL, LIU Y, et al. , 2018. Chemical constituents from roots of Datura metel [J]. Chin J Chin Mat Med, 43(8): 1654-1661. [杨炳友, 杨春丽, 刘艳, 等, 2018. 洋金花根化学成分研究 [J]. 中国中药杂志, 43(8): 1654-1661. ]

    • YANG YT, YANG Y, XIAO JM, et al. , 2021. Research advances on the effect of ginsenoside Rg1 on angiogenesis and vascular protection [J]. Acta Pharm Sin, 56(8): 2146-2153. [杨岩涛, 杨岩, 肖佳妹, 等, 2021. 人参皂苷Rg1促血管生成及其血管保护作用研究进展 [J]. 药学学报, 56(8): 2146-2153. ]

    • ZHANG GR, HUANG XS, HUANG Y, et al. , 2021. Research progress on chemical constituents and pharmacological activities of plants from Streblus [J]. Chin Trad Herb Drugs, 52(19): 6066-6075. [张高荣, 黄锡山, 黄艳, 等, 2021. 鹊肾树属植物的化学成分和药理活性研究进展 [J]. 中草药, 52(19): 6066-6075. ]