en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

苏桂军(1999-),硕士研究生,研究方向为作物生理,(E-mail)su_guijun@163.com。

通讯作者:

肖冬,博士,副教授,研究方向为作物生理与分子生物学,(E-mail)xiaodong@gxu.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)06-1070-10

DOI:10.11931/guihaia.gxzw202205034

参考文献
BREDOW M, BENDER KW, JOHNSON DA, et al. , 2021. phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28 [J]. Proc Natl Acad Sci USA, 118(19): e2024272118.
参考文献
CHANG F, GU Y, MA H, et al. , 2013. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth [J]. Mol Plant, 6(4): 1187-1201.
参考文献
DING YL, LI H, ZHANG XY, et al. , 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev Cell, 32(3): 278-289.
参考文献
DRERUP MM, SCHLÜCKING K, HASHIMOTO K, et al. , 2013. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol Plant, 6(2): 559-569.
参考文献
DUCKNEY P, DEEKS MJ, DIXON MR, et al. , 2017. Actin-membrane interactions mediated by NETWORKED2 in Arabidopsis pollen tubes through associations with pollen receptor-Like kinase 4 and 5 [J]. New Phytol, 216(4): 1170-1180.
参考文献
HOU NN, 2009. Study of the regulating mechanism of abscisic acid and antioxidative system on aluminum tolerance in soybean (Glycine max L. ) [D]. Changchun: Jilin University. [侯宁宁, 2009. 脱落酸和抗氧化系统对大豆耐铝性的调控机制 [D]. 长春: 吉林大学. ]
参考文献
HUANG WJ, LIU HK, MCCORMICK S, et al. , 2014. Tomatopistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2 [J]. Plant Cell, 26(6): 2505-2523.
参考文献
HUANG WJ, OO TL, HE HY, et al. , 2014. Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips [J]. Bot Stud, 55(1): 67.
参考文献
LI QK, 1983. Red soil of China [M]. Beijing: Science Press. [李庆逵, 1983. 中国红壤 [M]. 北京: 科学出版社. ]
参考文献
LI XW, SANAGI M, LU Y, et al. , 2020. Protein phosphorylation dynamics under carbon/nitrogen-nutrient stress and identification of a cell death-related receptor-like kinase in Arabidopsis [J]. Front Plant Sci, 11: 377.
参考文献
LI XY, HUANG QY, HU HQ, et al. , 1995. Forms of active aluminum in acid soils and aluminum phytotoxicity [J]. J Huanzhong Agric Univ, (4): 356-361. [李学垣, 黄巧云, 胡红青, 等, 1995. 酸性土壤中活性铝的形态与铝毒 [J]. 华中农业大学学报, (4): 356-361. ]
参考文献
LU Q, LI SX, CHEN XP, et al. , 2017. Current situation, problems and suggestions of peanut breeding in southern China [J]. Chin J Oil Crop Sci, 39(4): 556-566. [鲁清, 李少雄, 陈小平, 等, 2017. 我国南方产区花生育种现状、存在问题及育种建议 [J]. 中国油料作物学报, 39(4): 556-566. ]
参考文献
MA YY, GAN R, WANG NN, 2005. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants [J]. J Plant Physiol Mol Biol, 31(4): 331-339. [马媛媛, 甘睿, 王宁宁, 2005. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能 [J]. 植物生理与分子生物学学报, 31(4): 331-339. ]
参考文献
MU JH, LEE HS, KAO TH, 1994. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase [J]. Plant Cell, 6(5): 709-721.
参考文献
NIBAU C, CHEUNG AY, 2011. New insights into the functional roles of CrRLKs in the control of plant cell growth and development [J]. Plant Signal Behav, 6(5): 655-659.
参考文献
OSAKABE Y, MIZUNO S, TANAKA H, et al. , 2010. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis [J]. J Biol Chem, 285(12): 9190-9201.
参考文献
SHIU SH, BLEECKER AB, 2001a. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases [J]. Proc Natl Acad Sci USA, 98(19): 10763-10768.
参考文献
SHIU SH, BLEECKER AB, 2001b. Plant receptor-like kinase gene family: diversity, function, and signaling [J]. Sci STKE, (113): re22.
参考文献
UEMURA T, HACHISU M, DESAKI Y, et al. , 2020. Soy and Arabidopsis receptor-like kinases respond to polysaccharide signals from Spodoptera species and mediate herbivore resistance [J]. Comm Biol, 3(1): 224.
参考文献
VERSLUES PE, LASKY JR, JUENGER TE, et al. , 2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis [J]. Plant Physiol, 164(1): 144-159.
参考文献
WANG X, WU MH, XIAO D, et al. , 2021. Genome-wide identification and evolutionary analysis of RLKs involved in the response to aluminium stress in peanut [J]. BMC Plant Biol, 21(1): 281.
参考文献
WEI X, WANG YL, ZHANG S, et al. , 2022. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation [J]. Plant Comm, 3(2): 100301.
参考文献
WRZACZEK M, VAINONEN JP, STAEL S, et al. , 2015. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis [J]. EMBO J, 34(1): 55-66.
参考文献
WU DM, CAO HP, SHEN H, 2014. Response of auxin and its transporter to aluminum stress in plants [J]. Plant Physiol J, 50(8): 1135-1143. [吴道铭, 曹华苹, 沈宏, 2014. 生长素及其运输蛋白对植物铝胁迫的响应 [J]. 植物生理学报, 50(8): 1135-1143. ]
参考文献
XIAO D, LI X, ZHOU YY, et al. , 2021. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress [J]. Gene, 781: 145535.
参考文献
XU FF, CHENG SY, TIAN YQ, 2014. Effects of aluminum stress on growth and physiological characteristics in peanut root [J]. J Henan Agric Sci, 43(9): 52-55. [徐芬芬, 程诗雨, 田玉清, 等, 2014. 铝胁迫对花生根系生长和生理特性的影响 [J]. 河南农业科学, 43(9): 52-55. ]
参考文献
YANG X, RAMONELL D, 2012. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity [J]. Front Biol, 7(2): 155-166.
参考文献
ZENG RX, LIU XS, LI HY, et al. , 2020. Danger peptide signaling enhances internalization of a Geminivirus symptom determinant in plant cells during Infection [J]. J Exp Bot, 71(9): 2817-2827.
参考文献
ZHAN J, KOU RJ, HE LF, 2008. Effects of aluminum on morphological structure of peanut root tips [J]. Chin J Oil Crop Sci, 30(1): 79-83. [詹洁, 寇瑞杰, 何龙飞, 2008. 铝对花生根尖细胞形态结构的影响 [J]. 中国油料作物学报, 30(1): 79-83. ]
目录contents

    摘要

    花粉类受体蛋白激酶(pollen receptor-like protein kinase,PRK)是一类富含LRR结构域的类受体蛋白激酶,不仅在花粉发育和植物受精中发挥作用,也在胁迫响应中发挥作用。基于对前期花生根尖铝胁迫转录组数据的分析,我们发现了在转录水平响应铝胁迫的花粉类受体蛋白激酶基因AhPRK4,为探究AhPRK4在花生铝胁迫中的功能,该文进一步分析了铝胁迫处理下AhPRK4在花生耐铝品种‘99-1507’和铝敏感品种‘中花2号’(‘ZH2’)根尖中的转录变化,通过序列分析、进化树构建等分析了AhPRK4蛋白的结构特点和亲缘关系,克隆了AhPRK4的胞内域序列(AhPRK4-CD),并通过原核表达和体外磷酸化体系分析了AhPRK4-CD的自磷酸化活性。结果表明:(1)不同铝处理时间及不同铝浓度处理后,AhPRK4的转录水平上调,显著响应铝处理,是铝诱导基因;(2)AhPRK4含有673个氨基酸,属于LRR-III蛋白激酶家族成员,具跨膜域和信号肽,且预测具有磷酸化活性位点;(3)体外诱导表达出约71 kD的可溶性蛋白(GST-AhPRK4-CD),经凝胶亲和层析纯化,得到基于蛋白印迹实验(Western Blot)验证正确的重组蛋白,重组蛋白可发生磷酸化修饰,但无明显的自磷酸化现象。综上认为,AhPRK4是一个铝胁迫应答基因,参与花生铝胁迫早期应答机制,且能发生磷酸化修饰。

    Abstract

    The pollen receptor-like protein kinase (PRK) family, an LRR receptor-like protein kinase, not only plays a role in pollen development and fertilization, but also plays a role in stress response. Based on the analysis of transcriptome data that generated in our previous study, we found that AhPRK4 was an aluminum-responsive gene. To explore the role of AhPRK4 in response to aluminum stress, we analyzed the expression of AhPRK4 by qRT-PCR in ‘ZH2’ (Al-sensitive) and ‘99-1507’ (Al-tolerant), clarified the protein structure and genetic relationship of AhPRK4 by sequence analysis, phylogenetic tree construction and other genetic analysis, constructed the recombinant plasmid by homologous recombination, obtained the intracellular domain recombinant protein of AhPRK4 by prokaryotic expression technology and determined the activity of the recombinant protein by incubation with phosphorylated antibodys. The results were as follows: (1) The transcription level of AhPRK4 was up-regulated after different aluminum treatments time and different aluminum concentrations, indicating that AhPRK4 was an aluminum inducible gene. (2) The AhPRK4 protein had 673 amino acids with transmembrane domain, signal peptide and phosphorylation active sites, belonging to the LRR-III protein kinase family. (3) The GST-AhPRK4-CD recombinant protein was induced in vitro and verified by Western Blot. And the recombinant protein had phosphorylated on both serine/threonine and tyrosine residues, but had no significant auto-phosphorylation activity. In conclusion, AhPRK4 is an aluminum responsive gene, which participates in the regulation of short-term aluminum stress and is phosphorylated in vitro.

  • 花生(Arachis hypogaea)是我国重要的油料和经济作物,是主要的食用植物油来源。在我国,花生产区可分为南方产区和北方产区。但是南方地区的土壤多为酸性土壤,pH值在4.5~6.0之间,Al2O3含量高,交换性Al3+占阳离子交换量的20%~80%(李庆逵,1983)。当pH低于5.0时,铝以有毒的形态存在来引起作物毒害,故酸雨和铝毒被认为是南方地区农作物生长重要的限制因子之一(李学垣等,1995)。在我国,南方产区花生产量低于全国平均水平,与北方产区相比仍然存在较大的差距(鲁清等,2017),故通过阐明花生受铝毒害的机制,进而选育耐铝性品种来提高南方花生生产力愈发重要。研究表明花生受铝毒害的部位主要是根尖,表现为根系生长受抑制、线粒体功能受损、ROS迸发以及发生细胞程序性死亡等(詹洁等,2008;徐芬芬等,2014;Huang et al.,2014)。花生响应铝毒害的机制主要包括外部排斥和内部耐受两种,这两种机制中需要众多成员参与来传递信号,发挥功能,最终使得花生响应铝毒害。

  • 类受体蛋白激酶(receptor-like protein kinases,RLKs)是一种由胞外域接收信号,后通过激酶域传递和激活下游信号通路完成胞内外信号转导的酶活性受体(马媛媛等,2005),在植物中广泛存在,并可分为多个家族(Shiu &Bleecker,2001a,b),参与众多生长代谢过程的调控,如参与植物的生长发育进程(Nibau &Cheung,2011)、植物对病虫害防御应答(Yang &Ramonell,2012)和植物抵抗非生物胁迫(Osakabe et al.,2010)等。PRKs蛋白是一类富含亮氨酸重复序列(LRR)的RLK蛋白(Duckney et al.,2017),首个PRK激酶是在矮牵牛中被发现,命名为PRK1,特异性分布在花粉中,并在减数分裂中发挥作用(Mu et al.,1994)。拟南芥中的6个PRK成员也在花粉中高表达,并命名为AtPRK1-6(Chang et al.,2013)。研究发现,PRKs在花粉管发育(Chang et al.,2013;Duckney et al.,2017)、信号转导(Huang et al.,2014)和细胞死亡(Wrzaczek et al.,2014)等方面发挥了重要的调控作用,但关于PRKs在胁迫中的功能研究很少,仅在拟南芥的低水势胁迫下研究发现,相较于野生型,突变体prk1会积累更多的脯氨酸来响应胁迫(Verslues et al.,2014),而PRKs在铝胁迫下是否有响应还未见报道。

  • RLKs通过磷酸化作用传递信号进而响应胁迫。在冷胁迫下,激酶OST1(OPEN STOMATA 1)活性被激活,通过磷酸化ICE1(Inducer of CBF expression 1)来增加该转录因子的蛋白稳定性和转录活性,进而增强拟南芥对低温的抵抗能力(Ding et al.,2015)。CIPK26(CBL-interacting protein kinase26)与RBOHF(respiratory burst oxidase homolog F)的N端存在相互作用,并且可磷酸化RBOHF来刺激ROS产生,进而影响RBOHF在植物胁迫应答中的调控(Drerup et al.,2013)。SOBIR1(suppressorn of BIR1-1)激酶依赖于其蛋白浓度发生自磷酸化,其第529位的苏氨酸以及β3-αC环结构对磷酸化至关重要,并影响SOBIR1对烟草细胞死亡的调控(Wei et al.,2022)。拟南芥CPK28(calcium-dependent protein kinase28)可响应拟南芥Ca2+信号路径参与免疫反应和生长发育调控,研究发现CPK28具自磷酸化活性,并随着Ca2+浓度增加而活性增强,其中第318位丝氨酸是关键活性位点,尽管该位点突变不会影响CPK28调控营养生长和生殖生长时期的转换,却会对AtPep1引发的氧化应激表现高敏性状,同时对丁香假单胞菌具有更强的抵抗力(Bredow et al.,2021)。这表明RLKs的磷酸化活性与这些蛋白在植物胁迫应答中的作用密切相关。

  • 通过对实验室已有转录组数据的挖掘(Xiao et al.,2021),我们发现花粉类受体蛋白激酶基因AhPRK4转录受铝胁迫处理的诱导,并且在不同花生铝耐性品种中有着不同的响应模式,暗示其参与花生铝胁迫响应过程。本研究以AhPRK4的铝胁迫响应模式和蛋白活性为研究内容,采用qRT-PCR检测了不同铝浓度和处理时间条件下,AhPRK4在花生耐铝品种‘99-1507’和铝敏感品种‘中花2号’(‘ZH2’)的转录变化,对AhPRK4胞内域进行克隆,并开展了原核表达分析,通过磷酸化抗体对其自磷酸化活性进行检测,拟探讨以下问题:(1)AhPRK4的铝响应模式;(2)AhPRK4胞内域的磷酸化状态。为后续在蛋白质水平上探究AhPRK4蛋白的生化功能以及在铝胁迫下的作用机制奠定基础。

  • 1 材料与方法

  • 1.1 材料

  • 供试花生品种由中国农业科学院油料作物研究所提供,并经实验室早期筛选鉴定出的铝敏感品种‘中花2号’(‘ZH2’)和耐铝品种‘99-1507’(詹洁等,2008)。将花生种子经湿润珍珠岩催芽3 d后,去除花生种皮并掐除约1 cm的主根根尖,在26℃条件下将材料置于改良的Hoagland营养液中培养至第三片真叶长出,转移花生幼苗至100 μmol·L-1 CaCl2溶液(pH 4.2)中培养24 h,之后做以下两种处理:一是用100 μmol·L-1 AlCl3溶液(含100 μmol·L-1 CaCl2,pH 4.2)分别处理花生幼苗4、8、12、24 h;二是用不同浓度的AlCl3溶液(50、100、200、400 μmol·L-1)分别处理花生幼苗4 h和8 h。以上两种处理均以改良的Hoagland营养液处理作为对照,取约1 cm的根尖作为实验材料。

  • 1.2 RNA提取

  • 先参照植物总RNA提取试剂盒(Promega)方法提取RNA,之后参照反转录试剂盒(Takara)方法进行RNA反转录,获得cDNA。

  • 1.3 AhPRK4在铝胁迫下表达量检测

  • 根据AhPRK4基因CDS(coding sequence)序列设计荧光定量PCR检测引物(表1),参照TB Green Premix Ex Tap II酶(Takara)说明,设置qRT-PCR反应体系和程序,以UBQ10R为内参,采用2-△△Ct法进行基因相对表达量的分析。

  • 表1 引物序列

  • Table1 Primer sequence

  • 1.4 生物信息学分析

  • 利用在线网站ProtParam tool预测AhPRK4的分子量、等电点等理化性质(https://web.expasy.org/protparam/);通过WoLF PSORT来预测其亚细胞定位(https://wolfpsort.hgc.jp/);通过NCBI比对获得其他物种对应的基因序列,利用MEGA 7.0构建进化树,并在软件DNAMAN进行多序列比对,同时通过NCBI Conserved Domain预测AhPRK4蛋白的保守结构域(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)。对于目的蛋白的跨膜域以及信号肽分析分别通过在线网站TMHMM 2.0(http://www.cbs.dtu.dk/services/TMHMM/)和SignalP 4.1 server(http://www.cbs.dtu.dk/services/SignalP-4.1/)完成,同时对AhPRK4的磷酸化位点以及互作蛋白进行了预测,磷酸化预测软件为iGPS 1.0,互作蛋白预测网站为STRING(https://stringdb.org/cgi/input.pl?sessionId=K7gDcPsKo9E0&input_page_active_form=single_sequence)。AhPRK4启动子元件预测于PlantCARE在线网站进行(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)。

  • 1.5 AhPRK4激酶域克隆和原核表达载体构建

  • 从NCBI上搜索得到AhPRK4的基因序列,运用软件PrimerPremier 5设计激酶域克隆引物(表1)。以‘ZH2’根尖cDNA为模板,克隆获得AhPRK4的胞内激酶域,参照ClonExpressll One Cloning Kit试剂盒方法连接AhPRK4-CD至pGEX-6p-1载体(双酶切位点为EcoR I和Xhol),热激转化至DH5α,将经过测序验证正确的阳性克隆菌株提取质粒(AhPRK4-CD-pGEX-6p-1)。

  • 1.6 AhPRK4蛋白的原核表达和纯化

  • AhPRK4-CD-pGEX-6p-1重组质粒转化至Rosetta感受态细胞,37℃培养至 OD600=0.6~0.8,加入终浓度为0.5 mmol·L-1的异丙基-β-D-硫代半乳糖苷(IPTG),在16℃下诱导GST-AhPRK4-CD蛋白表达,经SDS-PAGE电泳检测蛋白的表达情况。参考Glutathione Sepharose4B填料(GE公司)说明纯化AhPRK4-CD重组蛋白,并进行Western Blot验证。

  • 1.7 GST-AhPRK4-CD自磷酸化检测

  • 加0.5 μg的GST-AhPRK4-CD蛋白到100 μL PBS磷酸缓冲液(含25 mmol·L-1 Tris-HCl,pH 7.5,10 mmol·L-1 MgCl2,10 mmol·L-1 MnCl2,1 mmol·L-1 DTT,1×蛋白酶抑制剂和1 mg·mL-1 ATP)中,以不加ATP为对照组,混合液于28℃下孵育10 min,并于100℃下孵育10 min变性,后取30 μL样品经12% SDS-PAGE分离,并转膜依次用兔抗的酪氨酸磷酸化抗体(Cell Signaling公司)、苏氨酸磷酸化抗体(Cell Signaling公司)以及鼠抗的GST抗体(康为世纪公司)孵育并化学显色,根据对照组和处理组条带差异判断磷酸化及激酶活性。

  • 2 结果与分析

  • 2.1 AhPRK4在不同铝处理时间、浓度下的表达

  • 由图1:A可知,‘ZH2’和‘99-1507’经铝处理不同时间后,与对照相比,AhPRK4的表达量均上升,但两个花生品种中AhPRK4的表达趋势有所差异,‘ZH2’中,AhPRK4在4 h的表达量最高,8 h的表达量最低,随后表达量则一直增加。‘99-1507’中,AhPRK4表达量则先增加后降低,在12 h达到最高。由图1:B,C可知,在经不同铝浓度处理4 h和8 h后,发现在两个花生品种中AhPRK4的表达量随着处理浓度的增加同样呈先增加后降低的趋势;且在不同铝浓度处理8 h时,AhPRK4在耐铝性品种‘99-1507’中的响应比敏感性品种‘ZH2’更剧烈。综上所述,这些结果表明AhPRK4是铝胁迫响应基因。

  • 2.2 AhPRK4的生物信息学分析

  • 2.2.1 AhPRK4蛋白理化性质、结构特征及亲缘关系的分析

  • 分析AhPRK4(LOC112718333)的序列信息可知,该基因CDS(coding sequence)全长为2 022 bp,编码673个氨基酸。经预测该蛋白质分子量为74.92 kD,理论等电点为6.06; AhPRK4蛋白N端具多个亮氨酸重复结构域,C端具丝氨酸/苏氨酸特异性蛋白激酶结构域,激酶域含有ATP结合位点,并与其他物种PRK成员的激酶域具较高的同源性(图2);AhPRK4蛋白含有两个跨膜域,属于膜功能蛋白。因此,AhPRK4蛋白属于具有跨膜域和信号肽的丝氨酸/苏氨酸蛋白激酶。

  • 进化树构建结果显示AhPRK4独立成一个分支,与比对的9个物种之间有较大的差异; 拟南芥中,AhPRK4与AtPRK1和AtPRK4有较高的同源性(图3)。进一步查询花生LRR-RLK家族分类,AhPRK4属于LRR-III蛋白激酶家族(Wang et al.,2021)。经预测AhPRK4具可磷酸化的氨基酸位点,包括丝氨酸(S)和苏氨酸(T)。因此,AhPRK4可能与AtPRK1和AtPRK4具相近的功能,可能发生磷酸化。

  • 2.2.2 AhPRK4启动子分析和互作蛋白预测

  • 经花生基因组序列提取,得到AhPRK4基因ATG前长2 000 bp的启动子序列。分析启动子元件,结果表明:AhPRK4的启动子元件包括生长素响应元件、ABA响应元件、 MeJA响应元件等激素响应元件,光调控元件,干旱胁迫响应元件和60 K蛋白结合位点(图4:A)。以拟南芥数据库为筛选基础,筛选AhPRK4的相互作用蛋白,发现AhPRK4可与多个蛋白存在互作,包括LMK1(leucine-rich repeat receptor-like kinase with extracellular malectin-like domain 1)、 ABCB16 (ATP-binding cassette B16)、PME30(pectin methylesterase30)、激酶AT1G34420(leucine-rich repeat transmembrane protein kinase family protein)、HAK1(HDS-associated RLK1)、PEPR2(PEP1 receptor 2)、AT1G12460(leucine-rich repeat protein kinase family protein)、AT1G24650(leucine-rich repeat protein kinase family protein)、FEI1、AT1G49100(leucine-rich repeat protein kinase family protein)(图4:B),推测AhPRK4可能参与激素调控、细胞死亡、非生物胁迫应答、生物防御、细胞壁膨大等调控过程。

  • 图1 AhPRK4在铝处理下的表达分析

  • Fig.1 Expression analysis of AhPRK4 under aluminum treatment

  • 2.3 AhPRK4激酶域克隆和原核表达载体构建

  • 以‘ZH2’根尖cDNA为模板,克隆到AhPRK4胞内域片段(AhPRK4-CD)(图5:A),序列长度为1 122 bp,与目的片段(LOC107470884)序列100%同源。连接AhPRK4-CD片段和pGEX-6p-1载体,获得重组质粒(AhPRK4-CD-pGEX-6p-1)(图5:B)。

  • 2.4 重组蛋白诱导表达和纯化

  • 将含有AhPRK4-CD-pGEX-6p-1重组质粒的Rosetta菌株在16℃、0.5 mmol·L-1 IPTG环境中培养,在约71 kD处发现诱导后的上清液中有加深的特异性条带,表明其以可溶性的形式存在于上清液中(图6)。GST-AhPRK4-CD重组蛋白用Glutathione Sepharose4B填料纯化,在结合后用PBS洗脱无明显条带(图7:A),表明层析柱与GST-AhPRK4-CD重组蛋白结合较好,后经Elution buffer洗脱后获得了条带单一且位置正确的目的条带,表明GST-AhPRK4-CD重组蛋白已成功纯化。将获得的GST-AhPRK4-CD纯化蛋白根据携带的标签蛋白经特异性GST一抗孵育,进行Western Blot验证,可以发现在约71 kD处出现清晰的特异性目的条带(图7:B),表明GST-AhPRK4-CD重组蛋白纯化效果较好。

  • 2.5 重组蛋白体外磷酸化检测

  • 将纯化的GST-AhPRK4-CD蛋白进行体外磷酸化实验,用磷酸化抗体检测磷酸化水平,用GST抗体标定上样水平。由图8可知,两个磷酸化抗体孵育后,均能在目标蛋白位置处检测到条带,磷酸化苏氨酸抗体(anti-pT)有着更强的磷酸化信号,磷酸化酪氨酸抗体(anti-pY)信号较弱,表明该蛋白在原核诱导的过程中已经发生了磷酸化修饰。但与对照组相比,ATP处理并未使得条带有加深的现象(图8),暗示AhPRK4-CD蛋白不存在体外自磷酸化活性。

  • 图2 花生与其他物种PRK氨基酸序列比对

  • Fig.2 Comparison of PRK amino acid sequences between peanut and other species

  • 图3 AhPRK4进化树分析

  • Fig.3 Evolutionary tree analysis of AhPRK4

  • 3 讨论与结论

  • 目前对PRK家族在胁迫应答机理的研究还未见系统的报道,仅在拟南芥突变体prk1缺水处理下发现,相较野生型来说,该突变体会积累3.2倍的脯氨酸来响应低水量胁迫(Verslues et al.,2014)。前人研究也表明随着铝处理浓度的增加和铝处理时间的延长,花生根系游离脯氨酸的含量整体呈递增的趋势(徐芬芬等,2014)。本研究在对铝处理下花生根尖AhPRK4转录水平的检测中也发现AhPRK4是一个铝胁迫响应基因,进一步分析AhPRK4的表达水平发现其在两个铝耐性不同的花生品种中的表达模式不同,在不同铝浓度处理下,AhPRK4表达水平均显著提高,在铝处理8 h后,在耐铝品种‘99-1507’中的表达上调更强烈,暗示AhPRK4是花生耐铝相关基因,在铝胁迫下,AhPRK4是否与AtPRK1功能类似而与应激脯氨酸之间有关联?有待进一步研究。

  • 图4 AhPRK4启动子元件分析及互作蛋白分析

  • Fig.4 Promoter element analysis and interaction protein analysis of AhPRK4

  • 图5 PCR扩增AhPRK4-CD片段及重组质粒电泳检测

  • Fig.5 PCR amplification of AhPRK4-CD fragment and detection of recombinant plasmid electrophoresis

  • 图6 AhPRK4-CD 原核表达蛋白的SDS-PAGE电泳分析

  • Fig.6 SDS-PAGE electrophoresis analysis of prokaryotic expression of AhPRK4-CD

  • AhPRK4蛋白与其他物种的PRK成员的激酶域具有较高的同源性,表明此结构域在不同物种PRK以及同一物种不同PRK 成员的保守性。系统进化树中,AhPRK4与AtPRK4以及AtPRK1在同一大分支上,具有较近的亲缘关系,其中AtPRK4与AtNET2A互作共同参与微管运动来调控花粉管发育(Duckney et al.,2017), AtPRK1可在水势胁迫下通过脯氨酸响应胁迫(Verslues et al.,2014),故AhPRK4也可能参与花粉管发育和响应胁迫中。以AhPRK4的拟南芥同源蛋白AtPRK4的序列在拟南芥数据库中筛选预测AhPRK4的互作蛋白,发现互作蛋白中以各类型激酶最多,同时预测AhPRK4具有磷酸化位点,故AhPRK4可能以磷酸化与各类型激酶之间形成调控网络。在预测的互作蛋白中,部分蛋白功能已有报道,其中LMK1调控叶片死亡(Li et al.,2020),HAK1可与PBL27蛋白互作参与HDS(herbivore-derived danger)防御反应(Uemura et al.,2020),PEPR2参与BSCTV(beet severe curly top virus)病害防御(Zeng et al.,2020),推测AhPRK4在胁迫防御中起作用,进一步验证其互作蛋白对探究AhPRK4在铝胁迫中的响应机制具有重要意义。除此之外,本研究对AhPRK4基因的启动子元件进行预测,发现该基因启动子区域含有生长素和ABA响应元件。生长素在植物铝胁迫响应信号传递途径中发挥作用,铝胁迫下植物的生长素在根尖的细胞分布和在细胞的运输可能会受到影响,进而导致根长受到抑制(吴道铭等,2014);除生长素外,在大豆铝胁迫与ABA实验中也发现,大豆根尖内源ABA与铝处理时间和铝处理浓度呈正相关关系,并且ABA处理可减少铝胁迫下的氧化伤害(侯宁宁,2009)。故ABA和生长素是否也调控花生铝胁迫?有待进一步研究。

  • 图7 GST-AhPRK4-CD重组蛋白的纯化和Western Blot检测

  • Fig.7 Purification and Western Blot detection of GST-AhPRK4-CD recombinant protein

  • AhPRK4属于LRR-III类受体蛋白激酶家族的成员之一,具丝氨酸/苏氨酸激酶域,并经预测具有磷酸化位点,为了验证AhPRK4是否可发生磷酸化及探究AhPRK4的活性,本研究采用原核表达和亲和柱层析的方法获得AhPRK4-CD重组蛋白来探究其生物功能,在蛋白诱导过程中,16℃条件下可获得较好的诱导效果。本研究已成功诱导并纯化得到GST-AhPRK4-CD重组蛋白,体外磷酸化抗体孵育检测AhPRK4-CD重组蛋白可以发生磷酸化修饰,但在酪氨酸位点的磷酸化修饰水平极低,由于我们使用的磷酸化苏氨酸抗体(Cell Signaling Technology,9381)对磷酸化丝氨酸残基也有一定的识别能力,所以我们认为AhPRK4-CD的磷酸化修饰主要发生在丝/苏氨酸残基上。在本研究中,我们未检测到AhPRK4-CD的自磷酸化活性,一方面,可能是AhPRK4蛋白的自磷酸化活性较低,需要采用更灵敏的检测手段,如同位素标记等方法来进行检测;另一方面,AhPRK4也可能是一种需要被其他因子磷酸化来共同发挥作用的辅助蛋白,仍需要进一步实验探究。

  • 图8 GST-AhPRK4-CD重组蛋白自磷酸化检测

  • Fig.8 Auto-phosphorylation detection of GST-AhPRK4-CD recombinant protein

  • 综上所述,AhPRK4为铝胁迫应答基因,该基因启动子区域含有胁迫激素应答元件,预测的互作蛋白也可在胁迫下起作用。在此基础上,采用原核表达的技术成功诱导得到AhPRK4-CD纯化蛋白,并验证其可以发生磷酸化修饰,为探究该蛋白在花生铝胁迫中的调控功能奠定了基础。

  • 参考文献

    • BREDOW M, BENDER KW, JOHNSON DA, et al. , 2021. phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28 [J]. Proc Natl Acad Sci USA, 118(19): e2024272118.

    • CHANG F, GU Y, MA H, et al. , 2013. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth [J]. Mol Plant, 6(4): 1187-1201.

    • DING YL, LI H, ZHANG XY, et al. , 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev Cell, 32(3): 278-289.

    • DRERUP MM, SCHLÜCKING K, HASHIMOTO K, et al. , 2013. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol Plant, 6(2): 559-569.

    • DUCKNEY P, DEEKS MJ, DIXON MR, et al. , 2017. Actin-membrane interactions mediated by NETWORKED2 in Arabidopsis pollen tubes through associations with pollen receptor-Like kinase 4 and 5 [J]. New Phytol, 216(4): 1170-1180.

    • HOU NN, 2009. Study of the regulating mechanism of abscisic acid and antioxidative system on aluminum tolerance in soybean (Glycine max L. ) [D]. Changchun: Jilin University. [侯宁宁, 2009. 脱落酸和抗氧化系统对大豆耐铝性的调控机制 [D]. 长春: 吉林大学. ]

    • HUANG WJ, LIU HK, MCCORMICK S, et al. , 2014. Tomatopistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2 [J]. Plant Cell, 26(6): 2505-2523.

    • HUANG WJ, OO TL, HE HY, et al. , 2014. Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips [J]. Bot Stud, 55(1): 67.

    • LI QK, 1983. Red soil of China [M]. Beijing: Science Press. [李庆逵, 1983. 中国红壤 [M]. 北京: 科学出版社. ]

    • LI XW, SANAGI M, LU Y, et al. , 2020. Protein phosphorylation dynamics under carbon/nitrogen-nutrient stress and identification of a cell death-related receptor-like kinase in Arabidopsis [J]. Front Plant Sci, 11: 377.

    • LI XY, HUANG QY, HU HQ, et al. , 1995. Forms of active aluminum in acid soils and aluminum phytotoxicity [J]. J Huanzhong Agric Univ, (4): 356-361. [李学垣, 黄巧云, 胡红青, 等, 1995. 酸性土壤中活性铝的形态与铝毒 [J]. 华中农业大学学报, (4): 356-361. ]

    • LU Q, LI SX, CHEN XP, et al. , 2017. Current situation, problems and suggestions of peanut breeding in southern China [J]. Chin J Oil Crop Sci, 39(4): 556-566. [鲁清, 李少雄, 陈小平, 等, 2017. 我国南方产区花生育种现状、存在问题及育种建议 [J]. 中国油料作物学报, 39(4): 556-566. ]

    • MA YY, GAN R, WANG NN, 2005. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants [J]. J Plant Physiol Mol Biol, 31(4): 331-339. [马媛媛, 甘睿, 王宁宁, 2005. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能 [J]. 植物生理与分子生物学学报, 31(4): 331-339. ]

    • MU JH, LEE HS, KAO TH, 1994. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase [J]. Plant Cell, 6(5): 709-721.

    • NIBAU C, CHEUNG AY, 2011. New insights into the functional roles of CrRLKs in the control of plant cell growth and development [J]. Plant Signal Behav, 6(5): 655-659.

    • OSAKABE Y, MIZUNO S, TANAKA H, et al. , 2010. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis [J]. J Biol Chem, 285(12): 9190-9201.

    • SHIU SH, BLEECKER AB, 2001a. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases [J]. Proc Natl Acad Sci USA, 98(19): 10763-10768.

    • SHIU SH, BLEECKER AB, 2001b. Plant receptor-like kinase gene family: diversity, function, and signaling [J]. Sci STKE, (113): re22.

    • UEMURA T, HACHISU M, DESAKI Y, et al. , 2020. Soy and Arabidopsis receptor-like kinases respond to polysaccharide signals from Spodoptera species and mediate herbivore resistance [J]. Comm Biol, 3(1): 224.

    • VERSLUES PE, LASKY JR, JUENGER TE, et al. , 2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis [J]. Plant Physiol, 164(1): 144-159.

    • WANG X, WU MH, XIAO D, et al. , 2021. Genome-wide identification and evolutionary analysis of RLKs involved in the response to aluminium stress in peanut [J]. BMC Plant Biol, 21(1): 281.

    • WEI X, WANG YL, ZHANG S, et al. , 2022. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation [J]. Plant Comm, 3(2): 100301.

    • WRZACZEK M, VAINONEN JP, STAEL S, et al. , 2015. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis [J]. EMBO J, 34(1): 55-66.

    • WU DM, CAO HP, SHEN H, 2014. Response of auxin and its transporter to aluminum stress in plants [J]. Plant Physiol J, 50(8): 1135-1143. [吴道铭, 曹华苹, 沈宏, 2014. 生长素及其运输蛋白对植物铝胁迫的响应 [J]. 植物生理学报, 50(8): 1135-1143. ]

    • XIAO D, LI X, ZHOU YY, et al. , 2021. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress [J]. Gene, 781: 145535.

    • XU FF, CHENG SY, TIAN YQ, 2014. Effects of aluminum stress on growth and physiological characteristics in peanut root [J]. J Henan Agric Sci, 43(9): 52-55. [徐芬芬, 程诗雨, 田玉清, 等, 2014. 铝胁迫对花生根系生长和生理特性的影响 [J]. 河南农业科学, 43(9): 52-55. ]

    • YANG X, RAMONELL D, 2012. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity [J]. Front Biol, 7(2): 155-166.

    • ZENG RX, LIU XS, LI HY, et al. , 2020. Danger peptide signaling enhances internalization of a Geminivirus symptom determinant in plant cells during Infection [J]. J Exp Bot, 71(9): 2817-2827.

    • ZHAN J, KOU RJ, HE LF, 2008. Effects of aluminum on morphological structure of peanut root tips [J]. Chin J Oil Crop Sci, 30(1): 79-83. [詹洁, 寇瑞杰, 何龙飞, 2008. 铝对花生根尖细胞形态结构的影响 [J]. 中国油料作物学报, 30(1): 79-83. ]

  • 参考文献

    • BREDOW M, BENDER KW, JOHNSON DA, et al. , 2021. phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28 [J]. Proc Natl Acad Sci USA, 118(19): e2024272118.

    • CHANG F, GU Y, MA H, et al. , 2013. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth [J]. Mol Plant, 6(4): 1187-1201.

    • DING YL, LI H, ZHANG XY, et al. , 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev Cell, 32(3): 278-289.

    • DRERUP MM, SCHLÜCKING K, HASHIMOTO K, et al. , 2013. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol Plant, 6(2): 559-569.

    • DUCKNEY P, DEEKS MJ, DIXON MR, et al. , 2017. Actin-membrane interactions mediated by NETWORKED2 in Arabidopsis pollen tubes through associations with pollen receptor-Like kinase 4 and 5 [J]. New Phytol, 216(4): 1170-1180.

    • HOU NN, 2009. Study of the regulating mechanism of abscisic acid and antioxidative system on aluminum tolerance in soybean (Glycine max L. ) [D]. Changchun: Jilin University. [侯宁宁, 2009. 脱落酸和抗氧化系统对大豆耐铝性的调控机制 [D]. 长春: 吉林大学. ]

    • HUANG WJ, LIU HK, MCCORMICK S, et al. , 2014. Tomatopistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2 [J]. Plant Cell, 26(6): 2505-2523.

    • HUANG WJ, OO TL, HE HY, et al. , 2014. Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips [J]. Bot Stud, 55(1): 67.

    • LI QK, 1983. Red soil of China [M]. Beijing: Science Press. [李庆逵, 1983. 中国红壤 [M]. 北京: 科学出版社. ]

    • LI XW, SANAGI M, LU Y, et al. , 2020. Protein phosphorylation dynamics under carbon/nitrogen-nutrient stress and identification of a cell death-related receptor-like kinase in Arabidopsis [J]. Front Plant Sci, 11: 377.

    • LI XY, HUANG QY, HU HQ, et al. , 1995. Forms of active aluminum in acid soils and aluminum phytotoxicity [J]. J Huanzhong Agric Univ, (4): 356-361. [李学垣, 黄巧云, 胡红青, 等, 1995. 酸性土壤中活性铝的形态与铝毒 [J]. 华中农业大学学报, (4): 356-361. ]

    • LU Q, LI SX, CHEN XP, et al. , 2017. Current situation, problems and suggestions of peanut breeding in southern China [J]. Chin J Oil Crop Sci, 39(4): 556-566. [鲁清, 李少雄, 陈小平, 等, 2017. 我国南方产区花生育种现状、存在问题及育种建议 [J]. 中国油料作物学报, 39(4): 556-566. ]

    • MA YY, GAN R, WANG NN, 2005. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants [J]. J Plant Physiol Mol Biol, 31(4): 331-339. [马媛媛, 甘睿, 王宁宁, 2005. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能 [J]. 植物生理与分子生物学学报, 31(4): 331-339. ]

    • MU JH, LEE HS, KAO TH, 1994. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase [J]. Plant Cell, 6(5): 709-721.

    • NIBAU C, CHEUNG AY, 2011. New insights into the functional roles of CrRLKs in the control of plant cell growth and development [J]. Plant Signal Behav, 6(5): 655-659.

    • OSAKABE Y, MIZUNO S, TANAKA H, et al. , 2010. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis [J]. J Biol Chem, 285(12): 9190-9201.

    • SHIU SH, BLEECKER AB, 2001a. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases [J]. Proc Natl Acad Sci USA, 98(19): 10763-10768.

    • SHIU SH, BLEECKER AB, 2001b. Plant receptor-like kinase gene family: diversity, function, and signaling [J]. Sci STKE, (113): re22.

    • UEMURA T, HACHISU M, DESAKI Y, et al. , 2020. Soy and Arabidopsis receptor-like kinases respond to polysaccharide signals from Spodoptera species and mediate herbivore resistance [J]. Comm Biol, 3(1): 224.

    • VERSLUES PE, LASKY JR, JUENGER TE, et al. , 2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis [J]. Plant Physiol, 164(1): 144-159.

    • WANG X, WU MH, XIAO D, et al. , 2021. Genome-wide identification and evolutionary analysis of RLKs involved in the response to aluminium stress in peanut [J]. BMC Plant Biol, 21(1): 281.

    • WEI X, WANG YL, ZHANG S, et al. , 2022. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation [J]. Plant Comm, 3(2): 100301.

    • WRZACZEK M, VAINONEN JP, STAEL S, et al. , 2015. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis [J]. EMBO J, 34(1): 55-66.

    • WU DM, CAO HP, SHEN H, 2014. Response of auxin and its transporter to aluminum stress in plants [J]. Plant Physiol J, 50(8): 1135-1143. [吴道铭, 曹华苹, 沈宏, 2014. 生长素及其运输蛋白对植物铝胁迫的响应 [J]. 植物生理学报, 50(8): 1135-1143. ]

    • XIAO D, LI X, ZHOU YY, et al. , 2021. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress [J]. Gene, 781: 145535.

    • XU FF, CHENG SY, TIAN YQ, 2014. Effects of aluminum stress on growth and physiological characteristics in peanut root [J]. J Henan Agric Sci, 43(9): 52-55. [徐芬芬, 程诗雨, 田玉清, 等, 2014. 铝胁迫对花生根系生长和生理特性的影响 [J]. 河南农业科学, 43(9): 52-55. ]

    • YANG X, RAMONELL D, 2012. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity [J]. Front Biol, 7(2): 155-166.

    • ZENG RX, LIU XS, LI HY, et al. , 2020. Danger peptide signaling enhances internalization of a Geminivirus symptom determinant in plant cells during Infection [J]. J Exp Bot, 71(9): 2817-2827.

    • ZHAN J, KOU RJ, HE LF, 2008. Effects of aluminum on morphological structure of peanut root tips [J]. Chin J Oil Crop Sci, 30(1): 79-83. [詹洁, 寇瑞杰, 何龙飞, 2008. 铝对花生根尖细胞形态结构的影响 [J]. 中国油料作物学报, 30(1): 79-83. ]