en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王晶(1979-),硕士,工程师,研究方向为森林生态学,(E-mail)9301003@qq.com。

通讯作者:

袁志良,博士,教授,研究方向为生物多样性和森林生态学,(E-mail)zhiliangyuan@henau.edu.cn。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2023)08-1467-11

DOI:10.11931/guihaia.gxzw202302041

参考文献
BAO SD, 2010. Soil agronomic analysis [M]. 3rd ed. Beijing: China Agricultural Press: 22-114. [鲍士旦, 2010. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社: 22-114. ]
参考文献
CHEN GD, LI W, ZHOU YQ, et al. , 2020. Technology of interplanting Anemone altaica under oak forest in Funiu mountain area [J]. J Henan For Sci Technol, 40(1): 54-56. [陈国典, 李伟, 周永强, 等, 2020. 伏牛山区栎类林下套种九节菖蒲技术 [J]. 河南林业科技, 40(1): 54-56. ]
参考文献
CLAUDINE F, KRISTINA L, CLAUDINE E, 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants [J]. Plant Soil, 321(1/2): 35-59.
参考文献
DONG QQ, ZHANG KP, HE MY, et al. , 2022. Plant competition and insect herbivory mediate the impact of invasive plants on soil bacterial community and function [J]. Plant Sci J, 40(2): 155-168. [董青青, 张考萍, 何敏艳, 等, 2022. 植物竞争和昆虫取食调节入侵植物对土壤细菌群落和功能的影响 [J]. 植物科学学报, 40(2): 155-168. ]
参考文献
DONG ZY, RAO MPN, LIAO TJ, et al. , 2021. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions [J]. Arch Microbiol, 203(6): 3657-3665.
参考文献
EDWARDS J, JOHNSON C, SANTOS-MEDELLN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci USA, 112(8): E911-E920.
参考文献
FANG XX, WANG HY, ZHAO L, et al. , 2022. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng [J]. BMC Microbiol, 22(1): 2-11.
参考文献
FIERER N, LAUBER CL, RAMIREZ KS, et al. , 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients [J]. ISME J, 6(5): 1007-1017.
参考文献
HIMADRI K, PRANAB D, 2016. Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea [J]. Res Crops, 17(2): 375-387.
参考文献
HOU Q, WANG WX, YANG Y, et al. , 2020. Rhizosphere microbial diversity and community dynamics during potato cultivation [J]. Eur J Soil Biol, 98(C): 103176.
参考文献
JIN Q, ZHANG YY, WANG QX, et al. , 2022. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng [J]. Microbiol Res, 254(2): 126914.
参考文献
LIU X, WANG YZ, LIU YH, et al. , 2020. Response of bacterial and fungal soil communities to Chinese fir (Cunninghamia lanceolate) long-term monoculture plantations [J]. Front Microbiol, 11(1): 181.
参考文献
LI M, GAO XH, 2021. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain [J]. Chin J Ecol, 40(5): 1244-1252. [李敏, 高秀宏, 2021. 大青山白桦根围外生菌根真菌群落结构及其驱动因素 [J]. 生态学杂志, 40(5): 1244-1252. ]
参考文献
LI DH, LI XJ, WU QG, et al. , 2022. Effects of gap locations on the decomposition of fine root of Toona sinensis and soil fungal community diversity in cypress plantation forest [J]. Acta Ecol Sin, 42(7): 1-14. [李德会, 李相君, 吴庆贵, 等, 2022. 柏木人工林林窗位置对香椿细根分解及土壤真菌群落多样性的影响 [J]. 生态学报, 42 (7): 1-14. ]
参考文献
LIU HM, ZHANG HF, QIN J, et al. , 2019. Effects of nitrogen deposition on soil fungi community structure in Stipa baicalensis Steppe [J]. Acta Agr Sin, 27(1): 63-70. [刘红梅, 张海芳, 秦洁, 等, 2019. 氮沉降对贝加尔针茅草原土壤真菌群落结构的影响 [J]. 草地学报, 27(1): 63-70. ]
参考文献
LUNDELL TK, MKEL MR, KRISTIINA H, 2010. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review [J]. J Basic Microb, 50(1): 5-20.
参考文献
MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.
参考文献
NIE YX, WANG MC, ZHANG W, et al. , 2018. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment [J]. Sci Total Environ, 624(1): 407-415.
参考文献
SHI YC, ZOU R, TANG JM, et al. , 2018. Structural and functional diversity of rhizosphere microbial community of Heteroplex [J]. Guihaia, 38(1): 1-10. [史艳财, 邹蓉, 唐健民, 等, 2018. 异裂菊属根际微生物群落结构及功能多样性 [J]. 广西植物, 38(1): 1-10.
参考文献
TONG L, LEI FW, WU YM, et al. , 2022. Study on rhizosphere microorganism diversity of a myco-heterotrophic Orchid endemic to North China, Holopogon pekinensis X. Y. Mu & Bing Liu [J]. Plant Sci J, 40(3): 324-333. [童玲, 雷丰玮, 吴远密, 等, 2022. 华北特有腐生型兰科植物北京无喙兰根际土壤微生物多样性研究 [J]. 植物科学学报, 40(3): 324-333. ]
参考文献
ULLAH A, AKBAR A, LUO QQ, et al. , 2019. Microbiome diversity in cotton rhizosphere under normal and drought conditions [J]. Microb Ecol, 77(2): 429-439.
参考文献
WAN RY, MA HJ, JIANG B, et al. , 2021. The fungi community structure and influencing factors in tea gardens soil [J]. Chin Agric Sci Bull, 37(33): 88-97. [万人源, 马会杰, 蒋宾, 等, 2021. 茶园土壤真菌群落组成及影响因素研究 [J]. 中国农学通报, 37(33): 88-97. ]
参考文献
WANG HC, XIANG LG, ZHENG P, et al. , 2022. Micbial communily stucture and diversity of tobacco stem tissue in the mixture occurences of bacterial wilt and black shank [J]. Guihaia, 42(2): 228-239. [汪汉成, 向立刚, 郑苹, 等, 2022. 青枯病与黑胫病混发烟株发病茎秆组织微生物群落结构与多样性 [J]. 广西植物, 42(2): 228-239. ]
参考文献
WANG YZ, JIAO PY, GUO W, et al. , 2022. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China [J]. Front Microbiol, 12: 777862.
参考文献
WANG XL, WANG ZK, JIANG P, et al. , 2018. Bacterial diversity and community structure in the rhizosphere of four Ferula species [J]. Sci Rep, 8(1): 5345.
参考文献
WEI ZW, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan [D]. Wuxi: Jiangnan University. [魏志文, 2019. 赣南稀土尾矿修复区细菌多样性研究 [D]. 无锡: 江南大学. ]
参考文献
YAN SJ, LIU YM, SUN YL, et al. , 2022. Analysis of microbial diversities and enzyme activities of rhizosphere soil of Pennisetum giganteum (giant juncao) under different degrees of saline-alkali stress [J]. Guihaia, 42(3): 491-500. [严少娟, 刘怡萌, 孙艳丽, 等, 2022. 盐碱胁迫对巨菌草根际土壤微生物多样性及酶活性的影响 [J]. 广西植物, 42(3): 491-500. ]
参考文献
YANG XD, LI FB, MEI J, et al. , 2017. Study on the extraction technology of phenolic acids from Anemone altica [J]. Chin Pharm, 28(13): 1848-1851. [杨晓东, 李福兵, 梅娇, 等, 2017. 九节菖蒲中酚酸类成分的提取工艺研究 [J]. 中国药房, 28(13): 1848-1851. ]
参考文献
YANG L, SUI X, ZHANG T, et al. , 2018. Soil bacterial community structure and diversity of brown coniferous forest in Daxing' Anling Mountain, China [J]. Bangl J Bot, 47(3): 677-688.
参考文献
YUAN J, ZHENG XF, CHENG F, et al. , 2017. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China [J]. Sci Rep, 7(1): 13866.
参考文献
ZHANG LF, HU HL, GUI TR, et al. , 2023. Diversity of endophytic bacterial community in different Pyracantha fortuneana tissues [J]. Guihaia, 43(7): 1193-1200. [张丽芳, 胡海林, 桂腾茸, 等, 2023. 火棘不同组织内生细菌群落多样性 [J]. 广西植物, 43(7): 1193-1200. ]
参考文献
ZHANG YY, SONG XX, SUN H, et al. , 2008. Studies on the changes of pH and enzyme activities in soils in different years of Panax Ginseng C. A. Mey cropping [J]. Special Wild Econ Animal Plant Res, 30(4): 34-36. [张亚玉, 宋晓霞, 孙海, 等, 2008. 栽培人参、西洋参不同年限土壤酸碱度和酶活性的变化 [J]. 特产研究, 30(4): 34-36. ]
参考文献
ZHANG YN, ZHOU XG, WEN YG, et al. , 2022. Characteristics of soil microbial community structure of three plantations in a karst region [J]. Guihaia, 42(6): 938-950. [张彧娜, 周晓果, 温远光, 等, 2022. 喀斯特地区三种人工林土壤微生物群落结构特征 [J]. 广西植物, 42(6): 938-950. ]
参考文献
ZHU P, CHEN RS, SONG YX, et al. , 2017. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China [J]. Acta Ecol Sin, 37(10): 3505-3514. [朱平, 陈仁升, 宋耀选, 等, 2017. 祁连山中部4种典型植被类型土壤细菌群落结构差异 [J]. 生态学报, 37(10): 3505-3514. ]
参考文献
ZHU P, LIU XS, WANG HL, et al. , 2021. Progress in comparative research on three kinds of Calamus [J]. Chin J Ethnomed Ethnopharm, 30(2): 59-62. [朱平, 刘效栓, 王红丽, 等, 2021. 三种菖蒲的比较研究进展 [J]. 中国民族民间医药, 30(2): 59-62. ]
目录contents

    摘要

    为了解野生和栽培阿尔泰银莲花根际土壤微生物多样性的差异,该研究采用Illumina MiSeq高通量测序技术对野生和栽培阿尔泰银莲花根际土壤微生物的群落组成和多样性进行探究。结果表明:(1)野生阿尔泰银莲花根际土壤的真菌多样性显著高于栽培阿尔泰银莲花(P<0.05),而细菌多样性差异不显著(P>0.05);NMDS分析结果显示,野生和栽培阿尔泰银莲花根际土壤真菌群落结构差异更显著。(2)细菌9566个可操作分类单元(OTUs)涉及39门127纲315目500科886属,真菌2670个OTUs涉及15门57纲138目293科597属。在门水平上,细菌群落中的变形菌门、酸杆菌门、放线菌门及真菌群落中的担子菌门、子囊菌门、被孢霉门均为野生和栽培阿尔泰银莲花根际土壤优势菌门,但其相对丰度在不同生长方式下存在差异。(3)环境因子关联分析(RDA)结果显示,土壤有机质是影响土壤细菌群落的主要因子(P<0.05),土壤pH、碱解氮和有效磷是影响真菌群落的主要因子(P<0.05)。综上认为,野生和栽培下的阿尔泰银莲花根际土壤微生物群落组成和多样性存在显著差异,这种差异可能与不同生长条件下的土壤理化性质存在密切的联系,该研究结果对阿尔泰银莲花科学种植以及土壤改良具有一定意义。

    Abstract

    In order to understand the difference in microbial diversity between wild and cultivated Anemone altaica rhizosphere soils, Illumina MiSeq high-throughput sequencing technology was used to study the microbial composition and diversity in rhizosphere soils between wild and cultivated A. altaica. The results were as follows: (1) Alpha diversity analysis showed that the diversity of fungi in the rhizosphere soil of wild A. altaica was significantly higher than that of cultivated A. altaica (P<0.05), while the difference in bacterial diversity was not significant (P>0.05). The non-metric multidimensional scaling (NMDS) analysis revealed that the fungal community structures of wild and cultivated A. altaica rhizosphere soils had more significant differences. (2) A total of 9566 operational taxonomic units (OTUs) of bacteria belonged to 39 phyla, 127 classes, 315 orders, 500 families and 886 genera, and 2670 OTUs of fungi belonged to 15 phyla, 57 classes, 138 orders, 293 families and 597 genera. The bacterial phylum Proteobacteria, Acidobacteria, Actinobacteria and the fungal phylum Basidiomycota, Ascomycota, Mortierellomycota were the dominant phyla in the rhizosphere soil between wild and cultivated plants, but their relative abundance was different under different growth modes. At genus level, Candidatus_Udaeobacter, norank_f_Xanthobacteraceae and Rokubacteriales were the dominant rhizosphere soil bacteria of wild Anemone altaica. However, Candidatus_Udaeobacter, Vicinamibacter and Rokubacteriales were the dominant rhizosphere soil bacteria of cultivated Anemone altaica. The dominant rhizosphere fungi of wild A. altaica were Mortierella, Sebacina and Russula, while the dominant rhizosphere fungi of cultivated Anemone altaica were Sebacina, Mortierella and unclassified_f_Hyaloscyphaceae. (3) The redundancy analysis (RDA) showed that soil organic matter was the main factor affecting soil bacterial community (P < 0.05), and soil pH, alkali-hydrolyzable nitrogen and available phosphorus were the main factors affecting fungi communities (P < 0.05), while bacterial community structure were not significantly correlated with soil pH, alkali-hydrolyzable nitrogen and available phosphorus (P > 0.05). In summary, this study reveales significant differences in the composition and diversity of rhizosphere microbial communities between wild and cultivated A. altaica, which may be closely related to the physicochemical properties of soils under different growing conditions. The results of this study have certain significance for scientific planting and soil improvement of A. altaica.

  • 阿尔泰银莲花(Anemone altaica)为毛茛科(Ranunculaceae)银莲花属(Anemone)多年生草本植物,又名穿骨七、玄参、九节菖蒲等,是我国名贵中药材(杨晓东等,2017;朱平等,2021)。阿尔泰银莲花喜凉爽、湿润、遮荫环境,广泛分布于海拔800~2 000 m的山地、林下、沟边等地方(陈国典等,2020)。其特殊的生长环境,加上过度采掘,阿尔泰银莲花野生资源的产量和质量逐年下降。近年来,阿尔泰银莲花栽培技术逐渐有所突破,形成了一定的商品规模,这在一定程度上缓解了因过度采集野生阿尔泰银莲花而造成的生态压力(陈国典等,2020)。对阿尔泰银莲花种植来说,深入了解适合种植阿尔泰银莲花的土壤条件对促进阿尔泰银莲花的高产、高质与可持续发展具有重要意义。大力开展阿尔泰银莲花发育生物学研究,摸清其生长机制势在必行。

  • 根际是植物根系与土壤微生物群落发生相互作用的独特区域(Mendes et al.,2013)。根际微生物是土壤生态系统的重要组成部分,在物质和能量循环、土壤结构维持和土壤微生态平衡等方面发挥着重要作用(Edwards et al.,2015; Hou et al.,2020)。此外,根际微生物可以将有机物分解为无机物,为植物提供有效养料,其分泌的土壤酶、有机酸、生长刺激素等可促进植物的生长以及提高植物对环境的适应能力(史艳财等,2018)。土壤微生物群落的多样性和稳定性有利于维持土壤系统和植物的健康(Fierer et al.,2012)。张丽芳等(2023)研究发现,不同生境下植物根际微生物的数量和组成是影响其生态适应力的关键因子。因此,探究生长过程中根际土壤微生物群落结构可为研究阿尔泰银莲花种植管理提供新思路。

  • 考虑到根际微生物对土壤生物化学过程以及植物生长发育的重要作用,已有研究者推测,根际微生物群落结构的失衡可能导致药用植物土壤质量退化、产量减少和病害发生(Claudine et al.,2009)。同理,根际微生物群落结构差异也很可能是野生和栽培阿尔泰银莲花产量与质量差异的关键影响因素。目前,有关阿尔泰银莲花的研究主要集中于药理作用、化学成分、临床应用、适应生境等方面,其根际微生物群落相关研究却几近空白(陈国典等,2020)。因此,本研究对阿尔泰银莲花根际土壤微生物群落结构进行探究,具有较大的研究价值。

  • 本研究以白云山国家级自然保护区为研究区域,以野生和栽培阿尔泰银莲花为研究对象,采用高通量测序技术对阿尔泰银莲花根际土壤微生物群落进行深入研究。拟探讨以下问题:(1)野生和栽培阿尔泰银莲花根际土壤微生物多样性分析;(2)野生和栽培阿尔泰银莲花根际土壤微生物群落组成及差异分析;(3)识别影响阿尔泰银莲花根际土壤微生物的主要驱动因素。本研究以期为阿尔泰银莲花科学种植以及土壤改良提供理论依据和指导。

  • 1 材料与方法

  • 1.1 研究地点和样品采集

  • 白云山国家级自然保护区(111°48′—112°16′ E、33°33′—33°56′ N)位于河南省洛阳市嵩县南部的伏牛山腹地,总面积达16 800 km2,平均海拔1 800 m。研究区属于典型的大陆性季风气候,夏季高温多雨,冬季寒冷干燥,气温13.1~13.9℃,年均降雨量1 200 mm。白云山国家级森林公园属于暖温带向北亚热带过渡的地段,南北植物交汇,植被茂盛,地理景观高度多样化,为阿尔泰银莲花的生长与繁殖创造了良好环境条件。

  • 取样点位于白云山国家级自然保护区,栽培阿尔泰银莲花是将根茎剪成3~5 cm小段,按行株间距开沟、平栽、覆土,植株栽植密度设置为30 cm,种植密度较稀疏。栽培阿尔泰银莲花取样地为林下人工管理种质资源圃,环境无阳光暴晒,阴暗潮湿,一般不需要浇水。人工栽培生境与野生环境相仿,阿尔泰银莲花均生长于优势种锐齿槲栎林下,土壤养分状况基本一致。栽培阿尔泰银莲花与野生阿尔泰银莲花的距离大约为2 km,其生长年限为2~3年,栽培面积大约为1 hm2

  • 2021年5月,分别采集野生和栽培阿尔泰银莲花根际土壤,根际土壤定义为轻轻摇动附着在植物根部(包括侧根)的土壤。随机设置了3个20 m × 20 m的重复样方,每两个样方之间的间隔超过30 m。在每个样方内利用五点采样法,随机选取每个点附近5株以上的阿尔泰银莲花,使用无菌刷子将与根系紧密附着的根际土壤刷掉,最后将每个样方5个采样点的土壤均匀混合为一个样品。野生和栽培阿尔泰银莲花根际土壤样品各3份。从采集的土壤中去除残留的根系和碎石。随后将土壤样品分为两份,一份装入无菌5 mL的离心管,将其带回实验室保存在-80℃冰箱中,用于后期提取土壤微生物总DNA;另一份土壤过2 mm筛去除杂质后并风干,用于测定土壤的理化性质。

  • 1.2 土壤理化性质测定

  • 参照《土壤农化分析》土壤理化性质的常规方法测定有机质、pH、有效磷、碱解氮(鲍士旦,2010)。土壤pH采用玻璃复合电极pH计测定;有机质采用重铬酸钾容量法测定;碱解氮采用培养皿扩散法测定;有效磷采用NaHCO3浸提—钼蓝比色法测定(张彧娜等,2022)。

  • 1.3 土壤微生物总DNA提取、PCR扩增及高通量测序

  • 根据FastDNA®SPIN Kit for Soil试剂盒(MP Biomedicals,Norcross,GA,U.S.)的操作说明,从0.5 g冷冻土壤样品中提取总DNA。引物对应区域:细菌16S rRNA基因的扩增引物为515F(5′-GTGCCAGCMGCCGCGGTAA-3′)和806R(5′-GGACT ACHVGGGGTWTCTAAT-3′);真菌ITS区域的扩增引物为ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′) 和ITS2R(5′-GCTGCGTTCTTCATCGATGC-3′)(Jin et al.,2022)。PCR扩增程序如下:95℃预变性5 min,95℃变性30 s,55℃退火30 s,72℃延伸30 s,共循环27次;最后在72℃下延伸10 min(严少娟等,2022; 汪汉成等,2022)。将分离纯化后的PCR产物进行DNA文库的构建,并利用上海美吉生物医药科技有限公司的Illumina MiSeq平台进行高通量测序。

  • 1.4 数据处理与分析

  • 基于Qiime2(https://qiime2.org)分析平台对原始数据进行区分并归类,去除嵌合体,根据序列相似度(97%)构建操作分类单元(OTUs)(Yang et al.,2018)。为了分析野生和栽培阿尔泰银莲花根际微生物群落的差异性,绘制稀释曲线探究取样数据的合理性,并通过韦恩图、NMDS分析方法和Alpha多样性指数分析土壤微生物群落结构的差异。

  • 为了探究野生和栽培阿尔泰银莲花根际土壤微生物群落组成,采用Circos图和物种丰度堆积柱状图对微生物群落组成进行可视化分析,并利用STAMP软件中的t-test检验分析各组间样本差异物种。

  • 为了进一步研究野生和栽培阿尔泰银莲花根际土壤微生物群落结构与环境因子的关系,利用RDA探究土壤理化因子对野生和栽培阿尔泰银莲花根际土壤微生物群落结构的影响。使用R语言软件中的ANOVA函数来检验每个环境因子对土壤微生物群落分布影响的显著性。

  • 2 结果与分析

  • 2.1 土壤理化性质

  • 从表1可以看出,野生阿尔泰银莲花根际土壤pH和碱解氮的含量均显著高于栽培阿尔泰银莲花根际土壤。

  • 表1 野生和栽培阿尔泰银莲花根际土壤理化性质

  • Table1 Physicochemical properties of rhizosphere soils of wild and cultivated Anemone altaica

  • 注: A. 野生组; B. 栽培组。不同小写字母表示显著差异(P<0.05)。下同。

  • Note: A. Wild group; B. Cultivated group. Different lowercases indicate significant differences (P<0.05) . The same below.

  • 2.2 阿尔泰银莲花根际土壤微生物多样性

  • 对土壤样品16S rRNA和ITS进行测序及OTU聚类,共得到9 566个细菌OTUs和2 670个真菌OTUs。物种注释显示,细菌OTUs分属39门127纲315目500科886属,真菌OTUs分属15门57纲138目293科597属。由图1可知,根据稀释曲线,随着序列数量的增加,物种丰富度增加逐渐较少,显示了样本的物种丰富度随序列数增加的一系列变化趋势;之后随着测序数量的增加,各个样本的物种丰富度指数均趋于平缓,表明抽平后的序列数据量趋近饱和,表明取样数据的合理性,能够较真实地反映阿尔泰银莲花根际土壤微生物群落变化特征。

  • OTU比较分析结果(图2)显示,野生和栽培阿尔泰银莲花根际土壤样本中共有的细菌OTU数为5 332,占细菌OTU总数的55.74%;共有真菌OTU数为740,占真菌OTU总数的27.72%。野生和栽培阿尔泰银莲花根际土壤特有的细菌OTU数分别为2 296个和1 938个,特有的真菌OTU数分别为1 207个和723个。

  • NMDS分析结果(图3)进一步显示野生和栽培阿尔泰银莲花根际土壤细菌和真菌群落组成均存在显著差异。Alpha多样性指数分析结果(表2)显示,野生和栽培阿尔泰银莲花根际土壤细菌群落多样性差异不显著(P>0.05),而真菌群落多样性存在显著差异(P<0.05),且野生阿尔泰银莲花根际土壤细菌群落和真菌群落的多样性均高于栽培条件下的。

  • 2.3 不同栽培模式下土壤微生物群落结构分析

  • 筛选出贡献率前1%的所有OTU构建Circos图(图4),细菌共筛选出97个OTUs,真菌共筛选出27个OTUs。大多数具有代表性的序列在野生和栽培阿尔泰银莲花根际土壤中均被检测到,如细菌中的慢生根瘤菌属(Bradyrhizobium)(OTU106)、Candidatus_Udaeobacter(OTU84)、未定名的黄色杆菌(norank_f_Xanthobacteraceae)(OTU7178)和真菌中的被孢霉属(Mortierella)(OTU5055、OTU1740、OTU7098)在两种生长方式中均有很丰富的存在。而真菌中的unclassified_f_Hyaloscyphaceae(OTU6763)和蜡壳耳属(Sebacina)(OTU32)仅在栽培的阿尔泰银莲花中广泛存在。

  • 在门分类水平上,6份土壤样品共有细菌39门,真菌15门(图5)。野生和栽培阿尔泰银莲花根际土壤细菌群落优势门依次为变形菌门(Proteobacteria)(21.50%~28.18%)、酸杆菌门(Acidobacteria)(14.76%~18.42%)、放线菌门(Actinobacteria)(11.68%~14.69%)、疣微菌门(Verrucomicrobia)(10.61%~15.40%)、绿弯菌门(Chloroflexi)(6.44%~7.43%)、浮霉菌门(Planctomycetes)(5.09%~6.83%)、甲基单胞菌门(Methylomirabilota)(4.20%~5.12%),约为总群落的85%。野生阿尔泰银莲花土壤中变形菌门和放线菌门相对丰度较高,而栽培阿尔泰银莲花土壤中酸杆菌门和疣微菌门相对丰度较高。真菌群落以担子菌门(Basidiomycota)(27.94%~44.94%)、子囊菌门 (Ascomycota) (27.51%~28.70%)、被孢霉门(Mortierellomycota)(16.50%~34.83%)、罗兹菌门(Rozellomycota)(5.20%~9.48%)为优势门,约为总群落的98%。其中,野生阿尔泰银莲花根际土壤中的被孢霉门丰富度显著高于栽培组,而担子菌门相对丰度显著低于栽培组。

  • 图1 根际土壤微生物群落物种丰富度指数稀释曲线

  • Fig.1 Rarefaction curve of species richness index of rhizosphere soil microbial communities

  • 图2 阿尔泰银莲花根际土壤微生物OTU韦恩图

  • Fig.2 OTU Venn diagram of rhizosphere soil microbial communities of Anemone altaica

  • 在属分类水平上(表3),野生阿尔泰银莲花根际土壤细菌优势属为Candidatus_Udaeobacter、未定名的黄色杆菌(norank_f_Xanthobacteraceae)、罗库菌属(Rokubacteriales);栽培阿尔泰银莲花根际细菌优势属为Candidatus_UdaeobacterVicinamibacter、罗库菌属(Rokubacteriales)。野生阿尔泰银莲花根际真菌优势属为被孢霉属、蜡壳耳属、红菇属(Russula);栽培阿尔泰银莲花根际真菌优势属为蜡壳耳属、被孢霉属、unclassified_f_Hyaloscyphaceae。

  • 图3 根际土壤微生物群落NMDS分析

  • Fig.3 NMDS analysis of rhizosphere soil microbial communities

  • 在各个水平上,对数据进行差异显著性检验,筛选出丰度在不同组间具有显著差异的微生物类群(具有显著性差异的丰度前10的类群)(图6),细菌微生物中的迷踪菌纲(Elusimicrobia)、norank_o_lineage_IV、norank_f_norank_o_lineage_IV、lineage_IV、迷踪菌门(Elusimicrobiota)在野生阿尔泰银莲花根际土壤中丰度占比较大,并在组间均达到显著差异水平(P<0.05);真菌微生物中的被孢霉目(Mortierellales)、被孢霉属、被孢霉门、被孢霉科(Mortierellaceae)、被孢霉纲(Mortierellomycetes)等在组间丰度差异均达到显著水平。

  • 2.4 土壤环境因子RDA分析

  • RDA分析结果(图7)显示,4种环境因子对细菌微生物群落总解释率为82.45%,对真菌微生物群落总解释率为77.59%。碱解氮、pH和有效磷之间夹角为锐角,呈正相关。土壤有机质能够显著影响阿尔泰银莲花根际土壤细菌群落结构(P<0.05)(表4),土壤pH、碱解氮、有效磷对阿尔泰银莲花根际土壤真菌群落结构均具有显著影响(P<0.05)。

  • 3 讨论与结论

  • 阿尔泰银莲花的栽培可能对土壤养分和理化性质产生影响。本研究前期栽培生境与野生生境相仿且土壤养分状况一致,后期发现栽培阿尔泰银莲花根际土壤pH和碱解氮含量均显著低于野生阿尔泰银莲花根际,表明阿尔泰银莲花栽培后会吸收利用土壤中的养分,可能会引起有机碳含量下降、重要的氮磷等营养元素失衡,导致阿尔泰银莲花的土壤出现酸化趋势。栽培阿尔泰银莲花的根系会产生大量有机酸,并且根系微生物的代谢活动也会引起土壤酸化(张亚玉等,2008)。

  • 本研究基于高通量测序技术,对野生和栽培阿尔泰银莲花根际土壤微生物群落多样性进行研究。本研究结果表明,生长方式没有显著影响阿尔泰银莲花根际土壤细菌多样性(P>0.05),原因可能是研究区均在洛阳白云山内,地理位置、大气候和生态环境具有一定的相似性。然而,野生阿尔泰银莲花根际真菌多样性显著高于栽培,可能是因为土壤pH<5.0会对耐酸性较弱的真菌的生长繁殖产生不利影响(魏志文,2019; 万人源等,2021)。此外,栽培阿尔泰银莲花的过程可能会破坏土壤的物理化学结构,降低了土壤养分含量以及土壤健康程度,这些影响可能抑制了某些根际微生物的繁殖,导致栽培阿尔泰银莲花根际土壤真菌多样性较低(Himadri &Pranab,2016)。除此之外,氮素含量的变化也会显著影响栽培阿尔泰银莲花根际土壤真菌的群落结构(Dong et al.,2021)。Wang等(2018)发现,真菌群落多样性可能比细菌群落多样性更容易受土壤养分的影响;Fang等(2022)还发现,真菌群落比细菌群落受人参生长方式影响更大。这些研究均表明,真菌群落比细菌群落受影响更大,这与本研究结果一致。因此,野生阿尔泰银莲花根际土壤真菌多样性差异显著可能是更容易受到土壤养分影响的原因。

  • 表2 Alpha多样性分析

  • Table2 Alpha diversity analysis

  • 图4 根际土壤微生物群落的优势OTU

  • Fig.4 Dominance OTU of rhizosphere soil microbial communities

  • 图5 根际土壤微生物在门水平上的丰度

  • Fig.5 Abundance of rhizosphere soil microorganisms at phylum level

  • 表3 根际土壤微生物在属水平上的组成(前10个属)

  • Table3 Composition of rhizosphere soil microorganisms at genus level (Top 10 genera)

  • 图6 根际土壤微生物显著差异性类群分析

  • Fig.6 Analysis of significant difference of rhizosphere soil microbial taxas

  • 本研究首次关注野生和栽培阿尔泰银莲花根际土壤微生物群落组成,结果表明,在细菌群落组成方面,变形菌门、酸杆菌门、放线菌门是阿尔泰银莲花根际土壤中的优势种群,这与之前的研究结果一致(Nie et al.,2018; 董青青等,2022)。变形菌门是反映土壤营养状况的重要指标之一,在营养丰富的野生阿尔泰银莲花根际土壤中相对丰度较高,且被视为凋落物分解转化的主要功能细菌(Wang et al.,2022)。酸杆菌门通常是寡养和嗜酸性细菌门,适宜生长于低营养和偏酸性的土壤(Wang et al.,2022),这和本研究酸杆菌门在栽培土壤丰度较高研究结果一致。在真菌群落组成中,担子菌门、子囊菌门和被孢霉门均为野生和栽培土壤的优势真菌门,但其相对丰度存在差异,这与前人的研究结果一致(Liu et al.,2020; 童玲等,2022)。担子菌门在降解凋落物中复杂木质纤维素组分和土壤养分循环中发挥着重要作用(Lundell et al.,2010)。子囊菌门以腐生营养型的真菌为主,一般存在于较高pH的土壤中,对环境压力具有较好的抵御能力(Yuan et al.,2017; 李德会等,2022),这与本研究结果一致。此外,细菌类群下的迷踪菌属、lineage_IV、norank_f_Xanthobacteraceae和真菌类群下的被孢霉属、铜绿梭菌等在野生阿尔泰银莲花根际土壤占优势,这些菌属可能在促进土壤养分循环和阿尔泰银莲花的生长中发挥着重要作用(Ullah et al.,2019)。野生和栽培阿尔泰银莲花根际土壤微生物的组成及物种丰度存在差异,表明不同生长方式下根际主要微生物类群的生态策略是不同的。

  • 图7 土壤微生物群落与环境因子的RDA分析

  • Fig.7 RDA analysis of rhizosphere soil microbial community and environmental factors

  • 表4 土壤理化因子的显著性检验

  • Table4 Significance test of soil physicochemical factors

  • 注:*代表显著相关(P<0.05);**代表极显著相关(P<0.01)。

  • Note: *represents significant correlation (P<0.05); ** represents extremely significant correlation (P<0.01) .

  • 土壤特性是影响植物根际土壤微生物群落结构的重要因素。在本研究中,土壤有机质的含量是影响细菌群落结构的最显著因素,与朱平等(2017)的研究结果一致。土壤pH、碱解氮和有效磷是影响真菌群落结构的主要环境因子,这与刘红梅等(2019)的研究结果一致。土壤pH通过影响酶的形成、活力或者细胞膜的通透性等重要的生理生化活动来影响微生物群落的多样性。李敏和高秀宏(2021)发现氮和磷含量能够显著影响根际土壤真菌群落,氮元素的转化和循环与土壤真菌有着密切的关系,磷元素在真菌的繁殖和生长中也发挥了重要的作用。因此,影响阿尔泰银莲花根际土壤细菌和真菌的主要驱动因素是存在差异的。

  • 本研究系统地分析了野生和栽培阿尔泰银莲花的根际土壤微生物群落结构的差异,揭示了不同种植方式对阿尔泰银莲花根际微生物群落多样性的影响。本研究结果发现,与野生阿尔泰银莲花相比,栽培阿尔泰银莲花根际土壤细菌和真菌多样性较低。野生阿尔泰银莲花中酸杆菌门、放线菌门和被孢霉门的相对丰度明显高于栽培阿尔泰银莲花。环境因子关联分析进一步显示,土壤有机质是影响土壤细菌群落的主要因子,而土壤pH、碱解氮和有效磷是影响真菌群落的主要因子。本研究结果可为阿尔泰银莲花的科学种植以及土壤改良提供理论依据和指导。

  • 参考文献

    • BAO SD, 2010. Soil agronomic analysis [M]. 3rd ed. Beijing: China Agricultural Press: 22-114. [鲍士旦, 2010. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社: 22-114. ]

    • CHEN GD, LI W, ZHOU YQ, et al. , 2020. Technology of interplanting Anemone altaica under oak forest in Funiu mountain area [J]. J Henan For Sci Technol, 40(1): 54-56. [陈国典, 李伟, 周永强, 等, 2020. 伏牛山区栎类林下套种九节菖蒲技术 [J]. 河南林业科技, 40(1): 54-56. ]

    • CLAUDINE F, KRISTINA L, CLAUDINE E, 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants [J]. Plant Soil, 321(1/2): 35-59.

    • DONG QQ, ZHANG KP, HE MY, et al. , 2022. Plant competition and insect herbivory mediate the impact of invasive plants on soil bacterial community and function [J]. Plant Sci J, 40(2): 155-168. [董青青, 张考萍, 何敏艳, 等, 2022. 植物竞争和昆虫取食调节入侵植物对土壤细菌群落和功能的影响 [J]. 植物科学学报, 40(2): 155-168. ]

    • DONG ZY, RAO MPN, LIAO TJ, et al. , 2021. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions [J]. Arch Microbiol, 203(6): 3657-3665.

    • EDWARDS J, JOHNSON C, SANTOS-MEDELLN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci USA, 112(8): E911-E920.

    • FANG XX, WANG HY, ZHAO L, et al. , 2022. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng [J]. BMC Microbiol, 22(1): 2-11.

    • FIERER N, LAUBER CL, RAMIREZ KS, et al. , 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients [J]. ISME J, 6(5): 1007-1017.

    • HIMADRI K, PRANAB D, 2016. Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea [J]. Res Crops, 17(2): 375-387.

    • HOU Q, WANG WX, YANG Y, et al. , 2020. Rhizosphere microbial diversity and community dynamics during potato cultivation [J]. Eur J Soil Biol, 98(C): 103176.

    • JIN Q, ZHANG YY, WANG QX, et al. , 2022. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng [J]. Microbiol Res, 254(2): 126914.

    • LIU X, WANG YZ, LIU YH, et al. , 2020. Response of bacterial and fungal soil communities to Chinese fir (Cunninghamia lanceolate) long-term monoculture plantations [J]. Front Microbiol, 11(1): 181.

    • LI M, GAO XH, 2021. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain [J]. Chin J Ecol, 40(5): 1244-1252. [李敏, 高秀宏, 2021. 大青山白桦根围外生菌根真菌群落结构及其驱动因素 [J]. 生态学杂志, 40(5): 1244-1252. ]

    • LI DH, LI XJ, WU QG, et al. , 2022. Effects of gap locations on the decomposition of fine root of Toona sinensis and soil fungal community diversity in cypress plantation forest [J]. Acta Ecol Sin, 42(7): 1-14. [李德会, 李相君, 吴庆贵, 等, 2022. 柏木人工林林窗位置对香椿细根分解及土壤真菌群落多样性的影响 [J]. 生态学报, 42 (7): 1-14. ]

    • LIU HM, ZHANG HF, QIN J, et al. , 2019. Effects of nitrogen deposition on soil fungi community structure in Stipa baicalensis Steppe [J]. Acta Agr Sin, 27(1): 63-70. [刘红梅, 张海芳, 秦洁, 等, 2019. 氮沉降对贝加尔针茅草原土壤真菌群落结构的影响 [J]. 草地学报, 27(1): 63-70. ]

    • LUNDELL TK, MKEL MR, KRISTIINA H, 2010. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review [J]. J Basic Microb, 50(1): 5-20.

    • MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.

    • NIE YX, WANG MC, ZHANG W, et al. , 2018. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment [J]. Sci Total Environ, 624(1): 407-415.

    • SHI YC, ZOU R, TANG JM, et al. , 2018. Structural and functional diversity of rhizosphere microbial community of Heteroplex [J]. Guihaia, 38(1): 1-10. [史艳财, 邹蓉, 唐健民, 等, 2018. 异裂菊属根际微生物群落结构及功能多样性 [J]. 广西植物, 38(1): 1-10.

    • TONG L, LEI FW, WU YM, et al. , 2022. Study on rhizosphere microorganism diversity of a myco-heterotrophic Orchid endemic to North China, Holopogon pekinensis X. Y. Mu & Bing Liu [J]. Plant Sci J, 40(3): 324-333. [童玲, 雷丰玮, 吴远密, 等, 2022. 华北特有腐生型兰科植物北京无喙兰根际土壤微生物多样性研究 [J]. 植物科学学报, 40(3): 324-333. ]

    • ULLAH A, AKBAR A, LUO QQ, et al. , 2019. Microbiome diversity in cotton rhizosphere under normal and drought conditions [J]. Microb Ecol, 77(2): 429-439.

    • WAN RY, MA HJ, JIANG B, et al. , 2021. The fungi community structure and influencing factors in tea gardens soil [J]. Chin Agric Sci Bull, 37(33): 88-97. [万人源, 马会杰, 蒋宾, 等, 2021. 茶园土壤真菌群落组成及影响因素研究 [J]. 中国农学通报, 37(33): 88-97. ]

    • WANG HC, XIANG LG, ZHENG P, et al. , 2022. Micbial communily stucture and diversity of tobacco stem tissue in the mixture occurences of bacterial wilt and black shank [J]. Guihaia, 42(2): 228-239. [汪汉成, 向立刚, 郑苹, 等, 2022. 青枯病与黑胫病混发烟株发病茎秆组织微生物群落结构与多样性 [J]. 广西植物, 42(2): 228-239. ]

    • WANG YZ, JIAO PY, GUO W, et al. , 2022. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China [J]. Front Microbiol, 12: 777862.

    • WANG XL, WANG ZK, JIANG P, et al. , 2018. Bacterial diversity and community structure in the rhizosphere of four Ferula species [J]. Sci Rep, 8(1): 5345.

    • WEI ZW, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan [D]. Wuxi: Jiangnan University. [魏志文, 2019. 赣南稀土尾矿修复区细菌多样性研究 [D]. 无锡: 江南大学. ]

    • YAN SJ, LIU YM, SUN YL, et al. , 2022. Analysis of microbial diversities and enzyme activities of rhizosphere soil of Pennisetum giganteum (giant juncao) under different degrees of saline-alkali stress [J]. Guihaia, 42(3): 491-500. [严少娟, 刘怡萌, 孙艳丽, 等, 2022. 盐碱胁迫对巨菌草根际土壤微生物多样性及酶活性的影响 [J]. 广西植物, 42(3): 491-500. ]

    • YANG XD, LI FB, MEI J, et al. , 2017. Study on the extraction technology of phenolic acids from Anemone altica [J]. Chin Pharm, 28(13): 1848-1851. [杨晓东, 李福兵, 梅娇, 等, 2017. 九节菖蒲中酚酸类成分的提取工艺研究 [J]. 中国药房, 28(13): 1848-1851. ]

    • YANG L, SUI X, ZHANG T, et al. , 2018. Soil bacterial community structure and diversity of brown coniferous forest in Daxing' Anling Mountain, China [J]. Bangl J Bot, 47(3): 677-688.

    • YUAN J, ZHENG XF, CHENG F, et al. , 2017. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China [J]. Sci Rep, 7(1): 13866.

    • ZHANG LF, HU HL, GUI TR, et al. , 2023. Diversity of endophytic bacterial community in different Pyracantha fortuneana tissues [J]. Guihaia, 43(7): 1193-1200. [张丽芳, 胡海林, 桂腾茸, 等, 2023. 火棘不同组织内生细菌群落多样性 [J]. 广西植物, 43(7): 1193-1200. ]

    • ZHANG YY, SONG XX, SUN H, et al. , 2008. Studies on the changes of pH and enzyme activities in soils in different years of Panax Ginseng C. A. Mey cropping [J]. Special Wild Econ Animal Plant Res, 30(4): 34-36. [张亚玉, 宋晓霞, 孙海, 等, 2008. 栽培人参、西洋参不同年限土壤酸碱度和酶活性的变化 [J]. 特产研究, 30(4): 34-36. ]

    • ZHANG YN, ZHOU XG, WEN YG, et al. , 2022. Characteristics of soil microbial community structure of three plantations in a karst region [J]. Guihaia, 42(6): 938-950. [张彧娜, 周晓果, 温远光, 等, 2022. 喀斯特地区三种人工林土壤微生物群落结构特征 [J]. 广西植物, 42(6): 938-950. ]

    • ZHU P, CHEN RS, SONG YX, et al. , 2017. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China [J]. Acta Ecol Sin, 37(10): 3505-3514. [朱平, 陈仁升, 宋耀选, 等, 2017. 祁连山中部4种典型植被类型土壤细菌群落结构差异 [J]. 生态学报, 37(10): 3505-3514. ]

    • ZHU P, LIU XS, WANG HL, et al. , 2021. Progress in comparative research on three kinds of Calamus [J]. Chin J Ethnomed Ethnopharm, 30(2): 59-62. [朱平, 刘效栓, 王红丽, 等, 2021. 三种菖蒲的比较研究进展 [J]. 中国民族民间医药, 30(2): 59-62. ]

  • 参考文献

    • BAO SD, 2010. Soil agronomic analysis [M]. 3rd ed. Beijing: China Agricultural Press: 22-114. [鲍士旦, 2010. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社: 22-114. ]

    • CHEN GD, LI W, ZHOU YQ, et al. , 2020. Technology of interplanting Anemone altaica under oak forest in Funiu mountain area [J]. J Henan For Sci Technol, 40(1): 54-56. [陈国典, 李伟, 周永强, 等, 2020. 伏牛山区栎类林下套种九节菖蒲技术 [J]. 河南林业科技, 40(1): 54-56. ]

    • CLAUDINE F, KRISTINA L, CLAUDINE E, 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants [J]. Plant Soil, 321(1/2): 35-59.

    • DONG QQ, ZHANG KP, HE MY, et al. , 2022. Plant competition and insect herbivory mediate the impact of invasive plants on soil bacterial community and function [J]. Plant Sci J, 40(2): 155-168. [董青青, 张考萍, 何敏艳, 等, 2022. 植物竞争和昆虫取食调节入侵植物对土壤细菌群落和功能的影响 [J]. 植物科学学报, 40(2): 155-168. ]

    • DONG ZY, RAO MPN, LIAO TJ, et al. , 2021. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions [J]. Arch Microbiol, 203(6): 3657-3665.

    • EDWARDS J, JOHNSON C, SANTOS-MEDELLN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci USA, 112(8): E911-E920.

    • FANG XX, WANG HY, ZHAO L, et al. , 2022. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng [J]. BMC Microbiol, 22(1): 2-11.

    • FIERER N, LAUBER CL, RAMIREZ KS, et al. , 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients [J]. ISME J, 6(5): 1007-1017.

    • HIMADRI K, PRANAB D, 2016. Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea [J]. Res Crops, 17(2): 375-387.

    • HOU Q, WANG WX, YANG Y, et al. , 2020. Rhizosphere microbial diversity and community dynamics during potato cultivation [J]. Eur J Soil Biol, 98(C): 103176.

    • JIN Q, ZHANG YY, WANG QX, et al. , 2022. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng [J]. Microbiol Res, 254(2): 126914.

    • LIU X, WANG YZ, LIU YH, et al. , 2020. Response of bacterial and fungal soil communities to Chinese fir (Cunninghamia lanceolate) long-term monoculture plantations [J]. Front Microbiol, 11(1): 181.

    • LI M, GAO XH, 2021. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain [J]. Chin J Ecol, 40(5): 1244-1252. [李敏, 高秀宏, 2021. 大青山白桦根围外生菌根真菌群落结构及其驱动因素 [J]. 生态学杂志, 40(5): 1244-1252. ]

    • LI DH, LI XJ, WU QG, et al. , 2022. Effects of gap locations on the decomposition of fine root of Toona sinensis and soil fungal community diversity in cypress plantation forest [J]. Acta Ecol Sin, 42(7): 1-14. [李德会, 李相君, 吴庆贵, 等, 2022. 柏木人工林林窗位置对香椿细根分解及土壤真菌群落多样性的影响 [J]. 生态学报, 42 (7): 1-14. ]

    • LIU HM, ZHANG HF, QIN J, et al. , 2019. Effects of nitrogen deposition on soil fungi community structure in Stipa baicalensis Steppe [J]. Acta Agr Sin, 27(1): 63-70. [刘红梅, 张海芳, 秦洁, 等, 2019. 氮沉降对贝加尔针茅草原土壤真菌群落结构的影响 [J]. 草地学报, 27(1): 63-70. ]

    • LUNDELL TK, MKEL MR, KRISTIINA H, 2010. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review [J]. J Basic Microb, 50(1): 5-20.

    • MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.

    • NIE YX, WANG MC, ZHANG W, et al. , 2018. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment [J]. Sci Total Environ, 624(1): 407-415.

    • SHI YC, ZOU R, TANG JM, et al. , 2018. Structural and functional diversity of rhizosphere microbial community of Heteroplex [J]. Guihaia, 38(1): 1-10. [史艳财, 邹蓉, 唐健民, 等, 2018. 异裂菊属根际微生物群落结构及功能多样性 [J]. 广西植物, 38(1): 1-10.

    • TONG L, LEI FW, WU YM, et al. , 2022. Study on rhizosphere microorganism diversity of a myco-heterotrophic Orchid endemic to North China, Holopogon pekinensis X. Y. Mu & Bing Liu [J]. Plant Sci J, 40(3): 324-333. [童玲, 雷丰玮, 吴远密, 等, 2022. 华北特有腐生型兰科植物北京无喙兰根际土壤微生物多样性研究 [J]. 植物科学学报, 40(3): 324-333. ]

    • ULLAH A, AKBAR A, LUO QQ, et al. , 2019. Microbiome diversity in cotton rhizosphere under normal and drought conditions [J]. Microb Ecol, 77(2): 429-439.

    • WAN RY, MA HJ, JIANG B, et al. , 2021. The fungi community structure and influencing factors in tea gardens soil [J]. Chin Agric Sci Bull, 37(33): 88-97. [万人源, 马会杰, 蒋宾, 等, 2021. 茶园土壤真菌群落组成及影响因素研究 [J]. 中国农学通报, 37(33): 88-97. ]

    • WANG HC, XIANG LG, ZHENG P, et al. , 2022. Micbial communily stucture and diversity of tobacco stem tissue in the mixture occurences of bacterial wilt and black shank [J]. Guihaia, 42(2): 228-239. [汪汉成, 向立刚, 郑苹, 等, 2022. 青枯病与黑胫病混发烟株发病茎秆组织微生物群落结构与多样性 [J]. 广西植物, 42(2): 228-239. ]

    • WANG YZ, JIAO PY, GUO W, et al. , 2022. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China [J]. Front Microbiol, 12: 777862.

    • WANG XL, WANG ZK, JIANG P, et al. , 2018. Bacterial diversity and community structure in the rhizosphere of four Ferula species [J]. Sci Rep, 8(1): 5345.

    • WEI ZW, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan [D]. Wuxi: Jiangnan University. [魏志文, 2019. 赣南稀土尾矿修复区细菌多样性研究 [D]. 无锡: 江南大学. ]

    • YAN SJ, LIU YM, SUN YL, et al. , 2022. Analysis of microbial diversities and enzyme activities of rhizosphere soil of Pennisetum giganteum (giant juncao) under different degrees of saline-alkali stress [J]. Guihaia, 42(3): 491-500. [严少娟, 刘怡萌, 孙艳丽, 等, 2022. 盐碱胁迫对巨菌草根际土壤微生物多样性及酶活性的影响 [J]. 广西植物, 42(3): 491-500. ]

    • YANG XD, LI FB, MEI J, et al. , 2017. Study on the extraction technology of phenolic acids from Anemone altica [J]. Chin Pharm, 28(13): 1848-1851. [杨晓东, 李福兵, 梅娇, 等, 2017. 九节菖蒲中酚酸类成分的提取工艺研究 [J]. 中国药房, 28(13): 1848-1851. ]

    • YANG L, SUI X, ZHANG T, et al. , 2018. Soil bacterial community structure and diversity of brown coniferous forest in Daxing' Anling Mountain, China [J]. Bangl J Bot, 47(3): 677-688.

    • YUAN J, ZHENG XF, CHENG F, et al. , 2017. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China [J]. Sci Rep, 7(1): 13866.

    • ZHANG LF, HU HL, GUI TR, et al. , 2023. Diversity of endophytic bacterial community in different Pyracantha fortuneana tissues [J]. Guihaia, 43(7): 1193-1200. [张丽芳, 胡海林, 桂腾茸, 等, 2023. 火棘不同组织内生细菌群落多样性 [J]. 广西植物, 43(7): 1193-1200. ]

    • ZHANG YY, SONG XX, SUN H, et al. , 2008. Studies on the changes of pH and enzyme activities in soils in different years of Panax Ginseng C. A. Mey cropping [J]. Special Wild Econ Animal Plant Res, 30(4): 34-36. [张亚玉, 宋晓霞, 孙海, 等, 2008. 栽培人参、西洋参不同年限土壤酸碱度和酶活性的变化 [J]. 特产研究, 30(4): 34-36. ]

    • ZHANG YN, ZHOU XG, WEN YG, et al. , 2022. Characteristics of soil microbial community structure of three plantations in a karst region [J]. Guihaia, 42(6): 938-950. [张彧娜, 周晓果, 温远光, 等, 2022. 喀斯特地区三种人工林土壤微生物群落结构特征 [J]. 广西植物, 42(6): 938-950. ]

    • ZHU P, CHEN RS, SONG YX, et al. , 2017. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China [J]. Acta Ecol Sin, 37(10): 3505-3514. [朱平, 陈仁升, 宋耀选, 等, 2017. 祁连山中部4种典型植被类型土壤细菌群落结构差异 [J]. 生态学报, 37(10): 3505-3514. ]

    • ZHU P, LIU XS, WANG HL, et al. , 2021. Progress in comparative research on three kinds of Calamus [J]. Chin J Ethnomed Ethnopharm, 30(2): 59-62. [朱平, 刘效栓, 王红丽, 等, 2021. 三种菖蒲的比较研究进展 [J]. 中国民族民间医药, 30(2): 59-62. ]