en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周友秀(1997-),硕士研究生,研究方向为植物生态学,(E-mail)2350308920@qq.com。

通讯作者:

黄柳菁,博士,副教授,研究方向为植物生态学,(E-mail)362580284@qq.com。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2023)11-1975-11

DOI:10.11931/guihaia.gxzw202211007

参考文献
CAMPETELLA G, CHELLI S, SIMONETTI E, et al. , 2020. Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests [J]. Sci Rep, 10(1): 19253.
参考文献
CASTELLANOS AE, LLANO-SOTELO JM, MACHADO-ENCINAS LI, et al. , 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert [J]. Plant Ecol, 219(7) : 775-788.
参考文献
CHANG LL, CAI JY, WU Q, et al. , 2017. Leaf traits of Vitex rotundifolia along desertification gradient in a sandy hill of the Poyang Lake [J]. J Desert Res, 37(1) : 81-85. [常玲玲, 蔡家艳, 吴琴, 等, 2017. 鄱阳湖沙山单叶蔓荆(Vitex rotundifolia)叶性状沿沙化梯度变化特征 [J]. 中国沙漠, 37(1): 81-85. ]
参考文献
CHEN GJ, ZHANG Q, ZHANG JL, et al. , 2022. Vegetation resources and floristic characteristics of sand seed plants in Pingtan Island, Fujian Province [J]. Chin J Tropl Crops, 43(2): 399-408. [陈国杰, 张群, 张嘉灵, 等, 2022. 福建平潭岛滨海砂生种子植物植被资源及其区系特征分析 [J]. 热带作物学报, 43(2): 399-408. ]
参考文献
CHEN JY, ZHANG J, LI SH, et al. , 2020. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats [J]. Plant Sci J, 38(6): 762-772. [陈金艺, 张静, 李素慧, 等, 2020. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策 [J]. 植物科学学报, 38(6): 762-772. ]
参考文献
CHEN YF, LIN CL, ZHANG S, et al. , 2022. Functional characteristics of Castanopsis fargesii fine roots and their relationship with soil factors at different elevations in Guoyan Mountain [J]. J Trop Subtrop Bot, 30(3): 413-422. [陈逸飞, 林晨蕾, 张硕, 等, 2022. 郭岩山不同海拔丝栗栲细根功能性状及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(3): 413-422. ]
参考文献
CHENG JJ, ZHANG XN, ZHANG ZY, et al. , 2022. Analysis on differences in leaf functional traits of desert plants under interspecific association pattern in different water-salt environments of Ebinur Lake [J]. J Plant Resour Environ, 31(3): 18-25. [程久菊, 张雪妮, 张子洋, 等, 2022. 艾比湖不同水盐环境荒漠植物种间关联格局下的叶片功能性状差异分析 [J]. 植物资源与环境学报, 31(3): 18-25. ]
参考文献
CHU DS, ZHENG X, QIN SH, et al. , 2020. Characteristics of soil salinity and its effects on poplar growth in a silting coastal area of Northern Jiangsu Province [J]. J Nanjing For Univ (Nat Sci Ed), 44(6): 140-146. [储冬生, 郑旭, 秦盛华, 等, 2020. 苏北淤泥质海岸土壤盐分特征及其对杨树生长的影响 [J]. 南京林业大学学报(自然科学版), 44(6): 140-146. ]
参考文献
DIJKSTRA P, LAMBERS H, 1989. Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate [J]. New Phytol, 113(3): 283-290.
参考文献
EISSENSTAT DM, WELLS CE, YANAI RD, et al. 2000. Building roots in a changing environment: implications for root longevity [J]. New Phytol, 147(1): 33-42.
参考文献
FAN BL, LU J, QIAN T, et al. , 2022. Effects of climate and soil on leaf acquisition and utilization of carbon and water resources in different grasslands [J]. Chin J Ecol, 41(4): 625-632. [樊宝丽, 卢晶, 钱婷, 等, 2022. 不同草原类型下气候和土壤对植物叶片碳水资源获取和利用性状的影响 [J]. 生态学杂志, 41(4): 625-632. ]
参考文献
GAO T, CHEN M, DANG CQ, et al. , 2017. Functional traits of major herbaceous plants in the hydro-fluctuation belt of the Three Gorges Reservoir [J]. Pratac Sci, 34(12): 2493-2503. [高婷, 陈淼, 党成强, 等, 2017. 三峡库区消落带主要草本植物功能性状特征 [J]. 草业科学, 34(12): 2493-2503. ]
参考文献
GUO DL, ROBERT JM, JOSEPH JH, 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest [J]. Oecologia, 140(3): 450-457.
参考文献
HE Y, YAO YP, YAO YP, et al. , 2021. Interspecific and intraspecific variation of functional traits of woody species in the dominant Cyclobalanopsis glauca community in the karst area of Guillin City, Southwest China [J]. Acta Ecol Sin, 41(20): 8237-8245. [何雁, 姚玉萍, 姚义鹏, 等, 2021. 桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究 [J]. 生态学报, 41(20): 8237-8245. ]
参考文献
HE YQ, SHI XJ, CHEN GJ, et al. , 2022. Response and adaptation of leaf functional traits of Eurya emarginata to environmental factors [J]. Acta Ecol Sin, 42(6): 2418-2429. [何雅琴, 史晓洁, 陈国杰, 等, 2022. 滨柃叶功能性状对环境因子的响应 [J]. 生态学报, 42(6): 2418-2429. ]
参考文献
HOU ZA, LI PF, GONG YS, et al. , 2001. Effect of salt stress on growth and nutrient absorptionin Leymus chinesis under salinity soil [J]. J Shihezi Univ (Nat Sci Ed), 5(1): 6-10. [侯振安, 李品芳, 龚元石, 2001. 盐渍土壤环境对羊草生长与养分吸收的效应 [J]. 石河子大学学报(自然科学版), 5(1): 6-10. ]
参考文献
HUANG AM, FANG Y, SUN J, et al. , 2023. Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain [J]. Acta Ecol Sin, 43(1): 398-407. [黄爱梅, 方毅, 孙俊, 等, 2023. 武夷山不同海拔毛竹细根功能性状 [J]. 生态学报, 43(1): 398-407. ]
参考文献
KLEIMAN D, AARSSEN LW, 2007. The leaf size/number trade-off in trees [J]. J Ecol, 95(2) : 376-382.
参考文献
KRAMER-WALTER KR, BELLINGHAM PJ, MILLAR TR, et al. , 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum [J]. J Ecol, 104(5): 1299-1310.
参考文献
LAURE G, DAMARIS Z, NIKLAUS EZ, 2018. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. [J]. Ecol Evol, 8(4) : 2171-2181.
参考文献
LI H, YUAN L, ZHANG LQ, et al. , 2017. Alternative stable states in coastal intertidal wetland ecosystems of Yangtze estuary, China [J]. Chin J Appl Ecol, 28(1): 327-336. [李蕙, 袁琳, 张利权, 等, 2017. 长江口滨海湿地潮间带生态系统的多稳态特征 [J]. 应用生态学报, 28(1): 327-336. ]
参考文献
LI L, ZHANG M, ZHENG JM, et al. , 2022. Functional traits of branches and leaves of 8 bamboo species in the coastal sandy land [J]. J For Environ, 42(4): 354-363. [李磊, 张盟, 郑俊鸣, 等, 2022. 滨海沙地8个竹种枝叶功能性状特征 [J]. 森林与环境学报, 42(4): 354-363. ]
参考文献
LI YT, YANG QS, WANG LL, et al. , 2020. Root distribution and soil properties of Fraxinus chinensis plantations with different forest stand ages in the coastal saline-alkali land [J]. J NE For Univ, 48(8): 50-54. [李永涛, 杨庆山, 王莉莉, 等, 2020. 滨海盐碱地不同林龄白蜡人工林根系分布及土壤特性变化 [J]. 东北林业大学学报, 48(8): 50-54. ]
参考文献
LIU D, ZHANG J, ASIM B, et al. , 2020. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China [J]. Plants (Basel, Switzerland), 9(10): 1323-1323.
参考文献
LIU YZ, XU X, LIU H, et al. , 2020. Latitude gradient variations of leaf functional traits of Spartina alterniflora and Phragmites australis along the coastal saltmarshes of China [J]. J Fudan Univ (Nat Sci Ed), 59(4): 381-389. [刘远瞻, 徐晓, 刘浩, 等, 2020. 中国滨海盐沼互花米草和芦苇叶片功能性状的纬度梯度变异 [J]. 复旦学报(自然科学版), 59(4): 381-389. ]
参考文献
MAO W, LI YL, ZHANG TH, et al. , 2012. Research advances of plant leaf traits at different ecology scales [J]. J Desert Res, 32(1): 33-41. [毛伟, 李玉霖, 张铜会, 等, 2012. 不同尺度生态学中植物叶性状研究概述 [J]. 中国沙漠, 32(1): 33-41. ]
参考文献
MAY F, GRIMM V, JELTSCH F, 2009. Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry [J]. 0ikos, 118(12): 1830-1843.
参考文献
MCCORMACK ML, DICKIE A, EISSENSTAT DM, et al. , 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New phytol, 207(3) : 505-518.
参考文献
MELISSA MJ, RICHARDSON SJ, BELLINGHAM PJ, et al. , 2015. Soil fertility induces coordinated responses of multiple independent functional traits [J]. J Ecol, 103(2): 374-385.
参考文献
QI DH, WEN ZM, YANG SJ, et al. , 2015. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes [J]. Chin J Appl Ecol, 26(7): 1921-1927. [戚德辉, 温仲明, 杨士梭, 等, 2015. 基于功能性状的铁杆蒿对环境变化的响应与适应 [J]. 应用生态学报, 26(7): 1921-1927. ]
参考文献
QIU J, GU JC, JIANG HY, et al. , 2010. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica [J]. Chin J Plant Ecol, 34(9): 1066-1074. [邱俊, 谷加存, 姜红英, 等. 樟子松人工林细根寿命估计及影响因子研究 [J]. 植物生态学报, 34(9): 1066-1074. ]
参考文献
SHANG YQ, CHEN ZQ, CHEN ZB, et al. , 2022. Responses of Dicranopteris pedata leaves to micro-topography in red soil erosion region of South China [J]. Guihaia, 42(7): 1088-1095. [尚艳琼, 陈志强, 陈志彪, 等, 2022. 南方红壤侵蚀区芒萁叶片对微地形的响应 [J]. 广西植物, 42(7): 1088-1095. ]
参考文献
SHUI W, GUO PP, ZHU SF, et al. , 2022. Variation of plant functional traits and adaptive strategy of woody species in degraded karst Tiankeng of Yunnan Province [J]. Sci Geogr Sin, 42(7): 1295-1306. [税伟, 郭平平, 朱粟锋, 等, 2022. 云南喀斯特退化天坑木本植物功能性状变异特征及适应策略 [J]. 地理科学, 42(7): 1295-1306. ]
参考文献
SUN J, XIA BJ, DONG BT, et al. , 2021. Root morphology and growth characteristics of Tamarix chinensis with different densities on the beach of the Yellow River Delta [J]. Acta Ecol Sin, 41(10): 3775-3783. [孙佳, 夏江宝, 董波涛, 等, 2021. 黄河三角洲滨海滩涂不同密度柽柳林的根系形态及生长特征 [J]. 生态学报, 41(10): 3775-3783. ]
参考文献
SUN P, WEI X, YE WH, et al. , 2022. Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest [J]. Guihaia, 42(3): 510-519. [孙鹏, 韦霄, 叶万辉, 等, 2022. 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异 [J]. 广西植物, 42(3): 510-519. ]
参考文献
WANG C, LU J, ZHOU CN, et al. , 2021. Altitude distribution of leaf functional traits of Quercus aquifolioides in southeastern Tibet [J]. J For Environ, 41(4): 366-372. [王超, 卢杰, 周晨霓, 等, 2021. 藏东南川滇高山栎叶功能性状海拔分布特征 [J]. 森林与环境学报, 41(4): 366-372. ]
参考文献
WANG GX, LI CR, XU JW, et al. , 2005. Soil properties and water conservation function of 5 types of vegetation on sandy coast [J]. J Soil Water Conserv, 37(2): 142-146. [王贵霞, 李传荣, 许景伟, 等, 2005. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能 [J]. 水土保持学报, 37(2): 142-146. ]
参考文献
WANG HY, TONG C, HUANG JF, et al. , 2022. Latitude gradient variations of seed functional traits of Phragmites australis in Chinese coastal marsh [J]. Chin J Appl Ecol, 33(12): 3294-3302. [王昊羽, 仝川, 黄佳芳, 等, 2022. 中国滨海沼泽湿地芦苇种子功能性状的纬度梯度变异 [J]. 应用生态学报, 33(12): 3294-3302. ]
参考文献
WANG X, LIU JK, LUO SX, et al. , 2022. Difference of leaf functional traits of coastal psammophytes in Hainan Island and its relationship with soil chemical properties [J]. J Trop Subtrop Bot, 30(5): 708-717. [王旭, 刘敬坤, 罗水星, 等, 2022. 海南岛滨海沙生植物叶片功能性状分异及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(5): 708-717. ]
参考文献
WANG ZY, CHEN XP, CHENG Y, et al. , 2021. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 45(3): 242-252. [王钊颖, 陈晓萍, 程英, 等, 2021. 武夷山49种木本植物叶片与细根经济谱 [J]. 植物生态学报, 45(3): 242-252. ]
参考文献
WRIGHT IJ, ACKERLY DD, FRANS B, et al. , 2007. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests [J]. Ann Bot, 99(5): 1003-1015.
参考文献
WU XD, JI B, HE JL, et al. , 2021. The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe [J]. Acta Ecol Sin, 41(7): 2719-2727. [吴旭东, 季波, 何建龙, 等, 2021. 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响 [J]. 生态学报, 41(7): 2719-2727. ]
参考文献
WU YH, WANG WY, GUAN SM, et al. , 2021. Shrub-grassland traits among three habitat types on Pingtan Island [J]. J For Environ, 41(1): 35-43. [吴雅华, 王伟耀, 管诗敏, 等, 2021. 平潭岛3种生境类型灌草丛植物性状特征 [J]. 森林与环境学报, 41(1): 35-43. ]
参考文献
WU YH, WANG WY, ZHANG ZK, et al. , 2022. Research progress on the response of plant functional traits to climate change based on Cite Space analysis [J]. Chin J Appl Environ Biol, 28(1): 254-266. [吴雅华, 王伟耀, 张增可, 等, 2022. 基于Cite Space分析植物功能性状对气候变化的响应研究进展 [J]. 应用与环境生物学报, 28(1): 254-266. ]
参考文献
XU B, CHENG YX, GAN HJ, et al. , 2010. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Chin J Plant Ecol, 34(1): 29-38. [徐冰, 程雨曦, 甘慧洁, 等, 2010. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联 [J]. 植物生态学报, 34(1): 29-38. ]
参考文献
XU MQ, GAO YJ, ZHANG ZH, et al. , 2021. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress [J]. Pratac Sci, 38(8): 1559-1569. [徐梦琦, 高艳菊, 张志浩, 等, 2021. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应 [J]. 草业科学, 38(8): 1559-1569. ]
参考文献
YU H, GAO RY, YANG WJ, et al. , 2022. Carbon, nitrogen, and phosphorus contents of leaf, root, and soil and their relationships in dominant herbaceous plants in dry-hot valley [J]. Chin J Appl Environ Biol, 28(3): 727-735. [余杭, 高若允, 杨文嘉, 等, 2022. 干热河谷优势草本植物叶片、根系与土壤碳氮磷含量及其关系 [J]. 应用与环境生物学报, 28(3): 727-735. ]
参考文献
YUAN F, WANG YY, LIU HN, et al. , 2020. Responses of litter production and its quality in a Casuarina equisetifolia plantation to the distance from the coastline [J]. J Ecol Rural Environ, 36(9): 1154-1160. [袁锋, 王艳艳, 刘贺娜, 等, 2020. 木麻黄凋落叶量及基质质量对离海距离的响应 [J]. 生态与农村环境学报, 36(9): 1154-1160. ]
参考文献
ZHANG JH, WANG Z, HUANG YM, et al. , 2021. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical [J]. Chin J Plant Ecol, 45(8): 818-833. [张景慧, 王铮, 黄永梅, 等, 2021. 草地利用方式对温性典型草原优势种植物功能性状的影响 [J]. 植物生态学报, 45(8): 818-833. ]
参考文献
ZHANG L, LUO TX, 2004. Advances in ecological studies on leaf lifespan and associated leaf traits [J]. Chin J Plant Ecol, 28(6): 844-852. [张林, 罗天祥, 2004. 植物叶寿命及其相关叶性状的生态学研究进展 [J]. 植物生态学报, 28(6): 844-852. ]
参考文献
ZHANG LM, TAN X, DONG Z, et al. , 2023. The relationship between plant functional traits and soil physicochemical properties in the riparian zones of downtown Chongqing [J]. Acta Ecol Sin, 43(5): 1892-1901. [张丽苗, 谭雪, 董智, 等, 2023. 重庆主城河岸带植物群落功能性状与土壤理化性质的关系 [J]. 生态学报, 43(5): 1892-1901. ]
参考文献
ZHANG Q, GUO CW, YAO MM, et al. , 2022. Effects of grazing intensities on functional traits of the dominant plant leymus secalinus in semi-arid grassland [J]. Acta Agr Sin, 30(8): 2108-2117. [张琦, 郭琛文, 姚蒙蒙, 等, 2022. 放牧强度对半干旱草地优势植物赖草功能性状的影响 [J]. 草地学报, 30(8): 2108-2117. ]
参考文献
ZHANG XF, MU ZB, LIN MJ, et al. , 2020. Functional traits of leaves of four dominant plants on Langqi Island, Fuzhou, and factors influencing these traits [J]. Chin J Appl Environ Biol, 26(3): 667-673. [张秀芳, 穆振北, 林美娇, 等, 2020. 琅岐岛4种优势植物叶功能性状及其影响因子 [J]. 应用与环境生物学报, 26(3): 667-673. ]
参考文献
ZHANG YQ, 2014. Effects of environmental factors on plant functional traits and the relationship between functional traits in Taishan woody plants [D]. Jinan: Shandong University: 37-51. [张月强, 2014. 探究泰山木本植物功能性状间的关系及对环境因子的响应 [D]. 济南: 山东大学: 37-51. ]
参考文献
ZHANG ZK, WU YH, WANG Q, et al. , 2020. Effects of environmental factors on stem and leaf functional traits of island plants [J]. Guihaia, 40(3): 433-442. [张增可, 吴雅华, 王齐, 等, 2020. 环境因子对海岛植物茎、叶功能性状的影响 [J]. 广西植物, 40(3): 433-442. ]
参考文献
ZHAO GS, LIU M, SHI PL, et al. , 2020. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau [J]. Acta Ecol Sin, 40(1): 295-309. [赵广帅, 刘珉, 石培礼, 等, 2020. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策 [J]. 生态学报, 40(1): 295-309. ]
参考文献
ZHAO WX, 2016. Research for leaf, stem and root functional traits for common tree species in subtropical evergreen broad-leaved forest [D]. Beijing: Beijing Forestry University: 26-29. [赵文霞, 2016. 亚热带常绿阔叶林常见树种根茎叶功能性状研究 [D]. 北京: 北京林业大学: 26-29. ]
参考文献
ZHENG LT, SU T, LIU XY, et al. , 2018. Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China [J]. Chin J Appl Ecol, 29(2): 343-351. [郑丽婷, 苏田, 刘翔宇, 等, 2018. 庙岛群岛典型植物群落物种、功能、结构多样性及其对环境因子的响应 [J]. 应用生态学报, 29(2): 343-351. ]
参考文献
ZHONG QL, LIU LB, XU X, et al. , 2018. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plant Ecol, 42(5): 562-572. [钟巧连, 刘立斌, 许鑫, 等, 2018. 黔中喀斯特木本植物功能性状变异及其适应策略 [J]. 植物生态学报, 42(5): 562-572. ]
参考文献
ZHOU LL, QIAN RL, LI SB, et al. , 2019. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site [J]. Chin J Appl Ecol, 30(7): 2320-2328. [周丽丽, 钱瑞玲, 李树斌, 等, 2019. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征 [J]. 应用生态学报, 30(7): 2320-2328. ]
参考文献
ZHOU P, GENG Y, MA WH, et al. , 2010. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 34(1): 7-16. [周鹏, 耿燕, 马文红, 等, 2010. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 34(1): 7-16. ]
目录contents

    摘要

    植物根、叶是对环境敏感性最高的器官,探究根叶功能性状之间的相互关系以及对环境因子的响应,有助于揭示植物对资源的利用状况及其对环境的适生策略。为探讨沿海植物的适应策略,该文以平潭岛砂质海岸草本植物为研究对象,由海及陆设置了3个距离梯度,选取6个叶功能性状和5个细根功能性状指标,分析海岸植物叶片与细根功能性状及其对土壤因子的响应。结果表明:(1)根、叶功能性状变异系数幅度在潮间带最小,在距高海潮线30~60 m的梯度上最大。单叶面积、叶磷含量、根平均直径、根组织密度、根磷含量随着由海到陆的距离增加呈上升趋势;叶干物质含量、叶组织密度、比根长、比根面积呈下降趋势。(2)植物通过性状组合,在生长与防御间进行资源分配的权衡,表现在叶性状间、根性状间以及根-叶性状间具不同程度的相关性。其中,在地上-地下对应性状中,叶厚与根平均直径、叶磷含量与根磷含量呈极显著正相关;而比叶面积与比根面积、比根长,叶组织密度与根组织密度均未表现出显著的相关性。(3)土壤因子对海岸植物功能性状变化的解释度为52.05%,其中土壤含盐量的影响最大,其次是土壤含水量、电导率、pH值。总体而言,在恶劣的海岸环境下,由海向陆土壤含盐量、电导率、含水量及pH值逐渐下降,整体为低磷高盐碱,植物表现为不同的生存策略:距海近的植物采取“叶片资源保守型、根系资源获取型”策略;距海远的植物则采取“叶片资源获取型、根系资源保守型”。该研究结果为海岸草本植物对环境梯度变化的响应机制和适应性提供了一定参考价值,同时也利于通过分析土壤等环境特性按梯度筛选栽种适宜的物种,促进海岸植物的恢复和保护。

    Abstract

    Leaf and root are the most sensitive organs to environment, exploring the relationship between root and leaf functional traits and their responses to environmental factors is helpful to reveal the utilization of resources by plants and their adaption trategies to environment. In order to explore the adaptive strategies of coastal plants, the sandy coastal herbaceous plants in Pingtan Island were taken as the research objects. Three distance gradients were set up from sea and land. Six leaf function traits, leaf thickness, individual leaf area, leaf dry matter content, specific leaf area, leaf tissue density, leaf phosphorus content, and five fine root function traits, root average diameter, root tissue density, specific root length, specific root area, root phosphorus content, were measured to analyze the function traits of leaf and root of coastal plants and their responses to soil factors. The results were as follows: (1) The variation coefficient amplitude of root and leaf function traits in intertidal zone was the smallest, and it was the largest on the gradient 30-60 m away from the high tide line. The individual leaf area, leaf phosphorus content, root average diameter, root tissue density, and root phosphorus content increased with the distance from sea to land; the leaf dry matter content, leaf tissue density, specific root length and specific root area decreased. (2) Plants balanced resource allocation between growth and defense through trait combinations, which showed that there were different degrees of correlation among leaf traits, root traits and root-leaf traits. Among the aboveground and underground corresponding traits, leaf thickness-root average diameter, leaf-root phosphorus content were significantly positively correlated. Specific leaf area with specific root length, specific root area, leaf tissue density-root tissue density had no significant correlation. (3) The interpretation degree of soil factors to the changes of coastal plant functional properties was 52.05%, of which the soil salt content had the greatest impact, followed by soil water content, soil electrical conductivity and soil pH value. In conclusion, in the harsh coastal environment, the soil salt content, soil electrical conductivity, soil water content and soil pH value decrease gradually from sea to land, and the overall environment is low in phosphorus and high in salinity. The plants have shown different survival strategies: the plants closer to the sea adopted the strategy of leaf resource conservation type and root resource acquisition type; the plants farther away from the sea, the strategy of leaf resource acquisition type and root resource conservation type is adopted. The results of this study provide a certain reference value for understanding the response mechanism and adaptability of coastal herbs to environmental gradient changes, which is conducive to the analysis of soil and other environmental characteristics to screen and plant suitable species according to gradient, and promote the restoration and protection of coastal plants.

  • 对于脆弱的海岛生态系统来说,海岸起到生态屏障的作用,海岸植被处于海陆过渡区,对海潮冲刷、风沙入侵等具一定缓冲作用(王贵霞等,2005),具有重要的生态价值。但是,海岸前沿沙地长期受到海风、浪潮、强光高温以及人为干扰的影响,适生植物少,植物群落物种类型趋于单一(吴雅华等,2021),极具脆弱性,一旦被破坏或演替退化便很难自行恢复。植物在生长过程中会响应各种环境因子变化而采取合适的生存策略,具体会体现在功能性状上的变化(赵广帅等,2020)。目前,关于植物功能性状及其与环境的关系的研究较多集中在内陆森林和草地(张景慧等,2021;吴旭东等,2021;孙鹏等,2022),而针对海岸植物的研究相对较少,并且大部分集中在叶功能性状研究(刘远瞻等,2020;张秀芳等,2020;王旭等,2022;何雅琴等,2022)。例如,滨海竹类通过增加比叶面积和叶面积以提高对光资源的捕获及利用效率(李磊等,2022);乔木如木麻黄、湿地松等则减小比叶面积和叶面积、增加叶厚和叶干物质含量以维持高养分重吸收效率(周丽丽等,2019)等方面的研究。虽然有一些关于根系结构、形态及分布特征等研究,但是多集中在单一器官的功能性状。例如,孙佳等(2021)探讨滨海滩涂不同种群密度对植物根系形态及生长特征的影响;李永涛等(2020)研究分析海岸盐碱地不同林龄植物根系分布与土壤的交互影响等。

  • 叶是植株地上部分对环境变化最灵敏且可塑性最大的器官,其性状特征对光合、呼吸、蒸腾等生理过程有直接影响(张林和罗天祥,2004;毛伟等,2012)。根系作为植物地下部分与土壤因子相互作用的重要器官(徐冰等,2010),细根(一般直径<2 mm)对土壤环境变化十分敏感(Mccormack et al.,2015),是吸收水分、养分的主要部位。环境因子如气候(樊宝丽等,2022;吴雅华等,2022)、纬度(王昊羽等,2022)、地形(尚艳琼等,2022)、土壤(张丽苗等,2023)、放牧(张琦等,2022)等都是塑造植物功能性状的重要影响因素。植物功能性状会随环境变化而发生变化(税伟等,2022),随着海拔的升高,叶干物质含量、叶片厚度、叶组织密度、叶相对含水量均显著增加(王超等,2021),细根平均直径、比根长、比根面积值逐渐增大(黄爱梅等,2023)。在喀斯特地区木本植物的枝-叶性状间大多具有相关性(钟巧连等,2018)。研究表明,当植物在适宜的环境条件下不同器官性状间更多地选择协同进化(赵文霞,2016;陈金艺等,2020;王钊颖等,2021),而当受到严重胁迫或处于极端环境下时则采取更强的权衡策略(高婷等,2017),如在水分胁迫下,骆驼刺苗的叶面积与比根长、比叶面积与根长、根组织密度呈极显著负相关(徐梦琦等,2021)。可见,植物功能性状对外界环境因子变化的响应机制并不是独立发挥,而是在同一器官性状间、不同器官性状间都存在一定联系。在海岸距离梯度下(由海向内陆延伸所形成的环境梯度),大风、水盐入侵影响逐渐减弱,各种环境因子(土壤质地、水盐及养分含量等)可能存在差异。在此条件下,植物的根、叶在各自器官性状间以及在不同器官功能性状间是否具有相关性,以及其对环境具有何响应机制尚不清楚。本文以福建平潭岛大福湾砂质海岸为研究区,由海及陆设置3个梯度,选取6个叶功能性状和5个细根功能性状指标,采用单因素方差分析和相关性分析等方法,拟探讨以下问题:(1)海岸3个梯度下植物功能性状间存在何种差异;(2)根叶功能性状间是否具有相关性,及其对土壤环境具有何响应机制。本研究旨在揭示海岸植物的适生策略,为海岸带植被的保护和修复提供一定的理论基础。

  • 1 材料与方法

  • 1.1 研究区域概况

  • 平潭岛(119°32′—120°10′ E、25°15′—25°45′ N)位于福建省东部海域,其主岛海坛岛是福建省第一大岛。属于南亚热带海洋性季风气候,年均降水在900~2 100 mm之间,多集中在春夏季,年均蒸发量较高,约1 900 mm。研究区大福湾位于平潭岛东南,砂质海岸低平,灌木草本植物居多(陈国杰等,2022)。

  • 1.2 研究方法

  • 1.2.1 样方设置和群落调查

  • 在2022年6月实地调研,按照由海及陆设置3个梯度(表1),即T1、T2、T3平均海拔分别约为3、7、11 m,梯度内环境因子基本相似。每个梯度内设置3个10 m × 10 m的样地,每块样地中随机选择3个2 m × 2 m的样方,共计27个样方,记录样方内所有草本物种、株数、高度、盖度。

  • 表1 梯度概况和植被特征

  • Table1 Gradient profile and vegetation characteristics

  • 1.2.2 样品处理和测定

  • 植物样品采集:在样方内,对每种优势种(重要值>0.1)随机选择3~5株摘取鲜重约为 20 g的生长成熟且健康叶片;至少采集3株根系样本,带回实验室。

  • 植物样品处理:使用精度为0.001 g的电子天平测取叶片鲜重,再使用Image J(64 位)软件分析叶面积扫描图计算获得单叶面积(individual leaf area,ILA)。选用精度为 0.01 mm 游标卡尺测取叶厚度(leaf thickness,LT)。将叶片放入 80℃箱内烘 48 h 至恒重后取出称取干重,用以计算比叶面积(specific leaf area,SLA)、叶组织密度(leaf tissue density,LTD),叶干物质含量(leaf dry matter content,LDMC)。用去离子水洗净根表面附着土壤和杂质,选择未损坏的活根(细根,直径<2 mm)。使用精度为0.001 g的电子天平测取根系鲜重,用根系扫描仪(WinRHIZO Pro 2009b)分析得出根长、平均直径(root average diameter,RAD)、根表面积、根体积。在80℃箱内烘 48 h 取出称干重,计算计算比根长(specific root length,SRL),比根面积(specific root area,SRA),根组织密度(root tissue density,RTD)。将烘干至恒重的根、叶样品研磨成粉末过0.149 mm筛,采用酸溶-钼锑抗比色法测定叶磷含量(leaf phosphorus content,LPC)和根磷含量(root phosphorus content,RPC)。

  • 土壤样品采集:使用土壤检测仪现场检测土壤含盐量(soil salt content,SSC)、土壤电导率(soil electrical conductivity,SEC);用50.00 mm × 50.46 mm的环刀在各样方重复采集0~20 cm土层样品3个,用于测定土壤容重(soil bulk density,SBD)和土壤含水量(soil water content,SWC);另使用同规格环刀重复采集0~20 cm土壤5次(梅花型)并混合均匀,并经过去除杂质、风干,电位法测定土壤 pH值(pH value,pH);一部分过0.149 mm筛,采用酸溶-钼锑抗比色法测定土壤全磷含量(soil total phosphorus,STP)。

  • 1.3 数据处理

  • 对不同梯度的土壤因子、植物叶、根功能性状采用单因素方差分析法(ANOVA)进行差异性分析,用均值和标准差表示测定结果,若方差齐性检验为齐性多重比较用 LSD 法,若不齐用 Dunnet's T3(徐梦琦等,2021);采用Pearson相关性分析方法对植物功能性状间相关性进行分析;采用冗余排序(redundancy analysis,RDA)方法分析根、叶功能性状与土壤因子的关系。

  • 用Microsoft Excel 2013、SPSS 26和CANOCO 5软件对全部数据进行处理、统计分析、绘图。

  • 2 结果与分析

  • 2.1 不同海岸距离的植物根、叶功能性状

  • 2.1.1 叶片功能性状

  • 由表2可知,植物单叶面积和叶磷含量由海到陆增大,叶厚表现为T1<T3<T2,比叶面积表现为T2<T1<T3;叶干物质含量和叶组织密度由海到陆逐渐减小。各梯度叶功能性状变异范围分别为10.98%~63.08%、24.32%~134.52%、30.54%~88.48%。LPC在3个梯度间存在显著差异(P<0.05)。

  • 2.1.2 细根功能性状

  • 由表3可知,细根平均直径、根组织密度和根磷含量由海及陆逐渐增大;比根长和比根面积由海及陆逐渐减小。各梯度根功能性状变异范围分别为14.72%~91.85%、32.41%~136.24%、34.00%~133.44%。

  • 2.2 功能性状相关性分析

  • 由表4可知,研究区植物各叶片功能性状间存在相关关系。其中,叶厚与叶干物质含量、比叶面积、叶组织密度,叶组织密度与叶磷含量均呈极显著负相关,叶干物质含量与叶磷含量呈显著负相关;叶干物质含量与叶组织密度,比叶面积与叶磷含量均呈极显著正相关。

  • 细根功能性状根平均直径、根磷含量与比根长、比根面积,根组织密度与比根面积均呈极显著负相关;比根长与比根面积呈极显著正相关。

  • 叶片和细根功能性状间也存在不同程度的相关性。其中,叶厚与根平均直径,叶干物质含量与比根长、比根面积,比根面积与根磷含量,叶组织密度与根组织密度、比根长,叶磷含量与根组织密度、根磷含量均呈极显著正相关;比叶面积与根组织密度,单叶面积与根磷含量均呈显著正相关;而叶厚与比根长,叶干物质含量与根平均直径、根磷含量,叶组织密度与比根面积、根磷含量,叶磷含量与比根面积均呈极显著负相关;叶厚与比根面积、根磷含量,叶磷含量与比根长均呈显著负相关。

  • 2.3 植物根、叶功能性状与土壤因子间的关系

  • 2.3.1 不同海岸距离土壤环境因子特征

  • 由表5可知,从海岸向内陆土壤容重、含水量、含盐量、电导率、pH值逐渐减小;土壤全磷含量先降低后上升,且其值远低于全国平均水平(0.56 g·kg-1)(张增可等,2020),土壤含水量在3个梯度间存在显著差异(P<0.05),土壤容重、含水量、电导率、pH值在T1与T3间存在显著差异。

  • 表2 不同海岸距离植物叶片功能性状特征及相关性

  • Table2 Characteristics and correlation of plant leaf function trait characters in different coastal distances

  • 注: T1. 潮间带,即海水高潮线与低潮线之间的区域; T2. 距高海潮线30~60 m; T3. 距高海潮线90~120 m。不同小写字母表示梯度间差异显著(P<0.05)。CV. 变异系数,平均值/标准差×100%。下同。

  • Note: T1. Intertidal zone, the area between the high tide line and the low tide line of seawater; T2.30-60 m from the high tide line; T3.90-120 m from the high tide line. Different lowercase letters indicate significant differences in gradient (P<0.05) . CV. Coefficient of variation, mean/standard deviation × 100%. The same below.

  • 表3 不同海岸距离植物细根功能性状特征及相关性

  • Table3 Characteristics and correlation of plant fine root function trait characters in different coastal distances

  • 表4 植物根-叶功能性状相关性分析

  • Table4 Correlation analysis of plant root-leaf functional traits

  • 注: **表示在 P<0. 01 级别(双尾),相关性显著。*表示在 P<0. 05 级别(双尾),相关性显著。 LT. 叶厚; ILA. 单叶面积; LDMC. 叶干物质含量; SLA. 比叶面积; LTD. 叶组织密度; LPC. 叶磷含量; RAD. 根平均直径; RTD. 根组织密度; RSL. 比根长; SRA. 比根面积; RPC. 根磷含量。

  • Note: ** means significant correlations at the P<0.01 level (both sides) . * means significant correlations at the P<0.05 level (both sides) . LT. Leaf thickness; ILA. Individual leaf area; LDMC. Leaf dry matter content; SLA. Specific leaf area; LTD. Leaf tissue density; LPC. Leaf phosphorus content; RAD. Root average diameter; RTD. Root tissue density; SRL. Specific root length; SRA. Specific root area; RPC. Root phosphorus content.

  • 表5 不同海岸距离土壤因子及差异性

  • Table5 Soil factors and differences in different coastal distances

  • 图1 植物根、叶功能性状与土壤因子间的RDA分析

  • Fig.1 Redundancy analysis (RDA) between plant root and leaf functional traits and soil factors

  • 2.3.2 植物根、叶功能性状与土壤因子间的关系

  • 通过RAD排序,分析植物功能性状对土壤因子的响应情况。由图1可知,土壤因子的解释量为52.05%。其中,含盐量的影响最大,其他依次是土壤含水量、电导率、pH值、土壤容重、土壤全磷含量。土壤电导率、含盐量、含水量、pH值与叶干物质含量、叶组织密度、比根长、比根面积均呈正相关,与根组织密度、叶厚、单叶面积、比叶面积、叶磷含量、根磷含量、根平均直径均呈负相关;土壤容重与比叶面积呈负相关;土壤全磷含量与细根、叶片的磷含量均呈正相关,但相关性较弱。

  • 3 讨论

  • 3.1 植物叶、根功能性状及性状间的关系

  • 植物功能性状的变异程度通常受到生境和物种的共同影响(Campetella et al.,2020)。研究结果显示,在潮间带根、叶功能性状变异系数幅度最小,距高海潮线30~60 m的梯度上在最大。潮间带受水盐胁迫严重,生存物种极少,主要为香附子和盐地鼠尾栗2种,环境过滤使共存于局域生境中的植物性状变化表现趋同(何雁等,2021),也就意味着在恶劣极端环境中植物通常采取性状相似以维持互利共存关系(Laure et al.,2018; 程久菊等,2022),因此变异程度较低。在距高海潮线30~60 m的梯度上,优势种数增多,种间形态特征“各有所长”形成生存优势。例如,该梯度厚藤较大的叶面积使得地上竞争优势明显;狗牙根更大的比根长使其对地下资源获取能力更强,从而导致功能性状变异程度较高。

  • 梯度下叶功能性状的差异变化显示,叶厚表现为T1<T3<T2,比叶面积表现为T2<T1<T3;单叶面积和叶磷含量由海到陆增大,而叶干物质含量和叶组织密度由到陆逐渐减小。比叶面积反映植物利用光资源的能力,叶厚与植物获取资源、保水能力密切相关。T2距高海潮线30~60 m,多数为半流动沙地,受海风影响,沙埋严重且土壤贫瘠。植物有较厚的叶、低比叶面积,使得更多的光合同化产物用于增加叶肉密度和构建保卫组织,提高储存水分和养分的能力(Kleiman&Aarssen,2007)。在T3距高海潮线90~120 m梯度上,由于靠近以木麻黄为主的海岸基干林带,环境胁迫相对减小,同时木麻黄凋落物能改善土壤性质,增加土壤养分。植物地上部分对养分、水分储存需求小,降低防御组织的投入,增大叶面积来充分捕获和利用光资源(袁锋等,2020)。梯度下细根功能性状的差异变化显示,细根平均直径、组织密度、磷含量由海及陆逐渐增大;比根长、比根面积由海及陆逐渐减小。一般认为植物在干旱贫瘠环境下有较大的比根长(Kramer-walter et al.,2016)和较小的组织密度,促进根系延长生长和加快周转速率,提高汲取土壤水分和养分的能力(Melissa et al.,2015)。在本研究中,植物在潮间带拥有最大的比根长、比根面积,最低的细根直径和细根组织密度。一方面,可能是因为该梯度土壤为海滩沉积的砂质潮土,通透性差,根组织密度较小利于提高传输效率;另一方面,主要植物香附子和盐地鼠尾栗属于浅根系,为了在短期内尽可能获取较多的资源选择将有限的资源来增大比根长和比根面积。另外,叶磷含量高于根,可能是因为海岸植物受较严重的盐胁迫,植物通过给叶片分配更多的养分以提高合成额外光合储存产物,有利于植物提高渗透调节和自我保护能力(Castellanos et al.,2018; Liu et al.,2020)。

  • 在不同的生长环境下植物会通过功能性状间的相互制衡来进行资源的获取与合理分配,最终形成适应环境的最优组合的功能性状(Wright et al.,2007)。在本研究中,植物叶性状间、根性状间以及根-叶性状间具有不同程度的相关性。其中,叶干物质含量与叶组织密度呈极显著正相关,叶厚与比叶面积、叶干物质含量、叶组织密度呈极显著负相关,意味着植物减小叶面积而增加叶肉密度,同时将叶片光合产物用来积累干物质,提高规避风险的能力(钟巧连等,2018)。叶磷含量与叶干物质含量、叶组织密度呈负相关,高磷含量利于植物光合作用,促进其生长;而高干物质含量、组织密度的植物周转生长速率慢,促进碳积累以抵御环境胁迫(Dijkstra &Lambers,1989),说明植物在生长与防御间的资源分配的权衡,有较强的适应性。细根功能性状与前人研究结果相似(陈逸飞等,2022),细根的比根长与比根面积的大小能反映植物对土壤资源的利用效率,二者呈极显著正相关。随着比根长增加,比根面积也不断增大,能有效拓展根系在土壤中的资源可利用空间。通常根组织密度越大根系抵抗物理伤害能力和机械性越强,在自然环境中比根面积与其通常呈负相关,可在一定程度上反映植物在不同环境中对资源的分配策略(张月强,2014)。细根磷含量、平均直径与比根长、比根面积呈极显著负相关。通常根直径越小,根系呼吸速率越高,代谢活动越强,寿命也就越短,表明比根长、比根面积与不仅与根系的养分吸收有关,还与根的寿命有着密切联系(邱俊等,2010; Eissenstat et al.,2000)。

  • 生境条件的差异会引起植物在成对性状间的权衡具有差异性(May et al.,2009)。表征抗逆能力的性状叶干物质含量、叶组织密度与获取资源的性状比根长、比根面积正相关,说明植物通过地下根系获取的水分和养分用于提高地上叶片的防御建造。本研究发现地上地下对应性状中,叶厚与细根直径、叶磷含量与根磷含量均呈正相关;而比叶面积与比根面积、比根长,叶和根的组织密度均无显著相关性,这与温带草地植物研究结果相似(周鹏等,2010)。这可能是因为根系结构复杂,多级分支的根系各有其用,具有不确定性(Guo et al.,2004),受到细根取样和处理方法的影响(戚德辉等,2015)。

  • 3.2 土壤对植物根、叶功能性状的影响

  • 土壤对植物功能性状的形成和塑造起着十分重要的作用。土壤因子与植物叶片、根系功能性状的冗余分析结果表明,土壤含盐量、含水量、电导率、pH值是影响海岸草本植物功能性状的主要因素,说明植物对土壤水盐变化敏感。不同海岸距离土壤因子结果分析表明,从海岸向内陆土壤含盐量、含水量、电导率、pH值等逐渐减小,土壤全磷含量整体较低。植物功能性状与土壤因子间的相关性研究结果表明,土壤含盐量、含水量、电导率、pH与叶干物质含量、叶组织密度、比根长、比根面积均呈正相关,与叶厚、单叶面积、比叶面积、叶磷含量、细根平均直径、细根组织密度均呈负相关。综上表明,距海近,植物叶干物质含量、叶组织密度、比根长、比根面积越大,表现为表现为叶“高投入、低收益”保存型、根“低投入、高收益”资源获取型策略;而距海远,植物叶面积、比叶面积、细根直径、细根组织密度越大,表现为叶片资源获取、根资源保存型策略。

  • 通常土壤盐含量越高,土壤电导率、pH值也越高,三者均能反映土壤的盐碱程度(储冬生等,2020)。较高的盐含量、电导率、pH值说明土壤盐渍化程度高,可能存在盐胁迫。该海岸为砂质海岸,植被覆盖率低,地表升温快、蒸发强,再加上沙地保水保肥能力差,使水分成为限制沙化区植物生长的重要影响因子之一(常玲玲等,2017)。土壤含盐量、电导率、pH值及含水量由海向陆降低,距海越近植物叶面积、比叶面积越小,有利于降低水分蒸发维持体内离子平衡,防止出现生理性干旱;同时加大对结构建设成本的投入,表现为高叶干物质含量和组织密度,增强叶片抗逆性和防御能力。根系采取快速获取资源的策略,增加比根长和比根面积来积极吸收土壤的养分和水分满足快速生长需求,通过生长不定根以拓展生存空间有效利用资源,以及减小根直径加快周转速率。另外,高盐环境还会影响植物对养分的吸收利用效率(侯振安等,2001),表现在土壤含盐量、电导率、pH值与叶、根磷含量呈负相关。这说明植物能够采取合适的生长策略最大程度弥补生境的不足,维持自身生长与种群繁育。土壤容重是表征土壤紧实度和孔隙度的重要指标(郑丽婷等,2018),一般来说,土壤容重越大,土壤硬度越高越紧实,资源获取和运输难度越大,比叶面积等越小。土壤全磷含量与叶、根磷含量相关性弱,表明叶、根磷含量可能并非土壤全磷直接决定。除了研究区土壤具有较高的盐分影响植物对磷的吸收外,还可能因为植物采取了独特的适应机制。有研究表明,在缺乏磷元素时,植物会改变根外部形态,或者改变根系分泌物种类和浓度以提高根际土壤磷的有效性(余杭等,2022),从而满足自身需求。

  • 4 结论

  • 本研究通过分析海岸植物根叶功能性状特征及其与土壤因子的相关关系,受到物种数量和环境的差异性影响,各梯度功能性状变异程度不同。功能性状与土壤因子的冗余分析结果表明,土壤含盐量、含水量、电导率、pH值是影响海岸草本植物功能性状的主要因素,说明植物对土壤水盐变化敏感。海岸梯度下由于土壤异质性以及植物种类和数量差异性从而使功能性状表现各异,表现为不同的生存策略:由海向陆土壤含盐量、电导率、含水量及pH值逐渐下降,整体为低磷高盐碱,距海近的植物采取“叶片资源保守型、根系资源获取型”策略;距海远则采取“叶片资源获取型、根系资源保守型”。本研究结果可为了解海岸草本植物对环境梯度变化的响应机制和适应性提供一定参考价值,有利于借助分析土壤等环境特性按梯度筛选栽种适宜的物种,促进海岸植物的恢复和保护。海岸潮间带土层极薄且受水盐胁迫严重,可优先考虑根系发达、耐盐耐水淹等抗逆性极强的植物;从潮上带至靠近海岸基干林的区域通常易受沙埋、干旱和人为干扰等影响,但土壤条件逐渐改善,可以选择功能性状“各具优势”的植物增加物种多样性,加强人为保护,促进海岸植被的迅速恢复。

  • 但是,影响植物功能性状的因素复杂多样,除外部环境因子还要考虑到物种遗传背景影响,今后需要结合多方面的影响因子和功能性状指标,进一步探讨海岸植物的适生策略。

  • 参考文献

    • CAMPETELLA G, CHELLI S, SIMONETTI E, et al. , 2020. Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests [J]. Sci Rep, 10(1): 19253.

    • CASTELLANOS AE, LLANO-SOTELO JM, MACHADO-ENCINAS LI, et al. , 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert [J]. Plant Ecol, 219(7) : 775-788.

    • CHANG LL, CAI JY, WU Q, et al. , 2017. Leaf traits of Vitex rotundifolia along desertification gradient in a sandy hill of the Poyang Lake [J]. J Desert Res, 37(1) : 81-85. [常玲玲, 蔡家艳, 吴琴, 等, 2017. 鄱阳湖沙山单叶蔓荆(Vitex rotundifolia)叶性状沿沙化梯度变化特征 [J]. 中国沙漠, 37(1): 81-85. ]

    • CHEN GJ, ZHANG Q, ZHANG JL, et al. , 2022. Vegetation resources and floristic characteristics of sand seed plants in Pingtan Island, Fujian Province [J]. Chin J Tropl Crops, 43(2): 399-408. [陈国杰, 张群, 张嘉灵, 等, 2022. 福建平潭岛滨海砂生种子植物植被资源及其区系特征分析 [J]. 热带作物学报, 43(2): 399-408. ]

    • CHEN JY, ZHANG J, LI SH, et al. , 2020. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats [J]. Plant Sci J, 38(6): 762-772. [陈金艺, 张静, 李素慧, 等, 2020. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策 [J]. 植物科学学报, 38(6): 762-772. ]

    • CHEN YF, LIN CL, ZHANG S, et al. , 2022. Functional characteristics of Castanopsis fargesii fine roots and their relationship with soil factors at different elevations in Guoyan Mountain [J]. J Trop Subtrop Bot, 30(3): 413-422. [陈逸飞, 林晨蕾, 张硕, 等, 2022. 郭岩山不同海拔丝栗栲细根功能性状及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(3): 413-422. ]

    • CHENG JJ, ZHANG XN, ZHANG ZY, et al. , 2022. Analysis on differences in leaf functional traits of desert plants under interspecific association pattern in different water-salt environments of Ebinur Lake [J]. J Plant Resour Environ, 31(3): 18-25. [程久菊, 张雪妮, 张子洋, 等, 2022. 艾比湖不同水盐环境荒漠植物种间关联格局下的叶片功能性状差异分析 [J]. 植物资源与环境学报, 31(3): 18-25. ]

    • CHU DS, ZHENG X, QIN SH, et al. , 2020. Characteristics of soil salinity and its effects on poplar growth in a silting coastal area of Northern Jiangsu Province [J]. J Nanjing For Univ (Nat Sci Ed), 44(6): 140-146. [储冬生, 郑旭, 秦盛华, 等, 2020. 苏北淤泥质海岸土壤盐分特征及其对杨树生长的影响 [J]. 南京林业大学学报(自然科学版), 44(6): 140-146. ]

    • DIJKSTRA P, LAMBERS H, 1989. Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate [J]. New Phytol, 113(3): 283-290.

    • EISSENSTAT DM, WELLS CE, YANAI RD, et al. 2000. Building roots in a changing environment: implications for root longevity [J]. New Phytol, 147(1): 33-42.

    • FAN BL, LU J, QIAN T, et al. , 2022. Effects of climate and soil on leaf acquisition and utilization of carbon and water resources in different grasslands [J]. Chin J Ecol, 41(4): 625-632. [樊宝丽, 卢晶, 钱婷, 等, 2022. 不同草原类型下气候和土壤对植物叶片碳水资源获取和利用性状的影响 [J]. 生态学杂志, 41(4): 625-632. ]

    • GAO T, CHEN M, DANG CQ, et al. , 2017. Functional traits of major herbaceous plants in the hydro-fluctuation belt of the Three Gorges Reservoir [J]. Pratac Sci, 34(12): 2493-2503. [高婷, 陈淼, 党成强, 等, 2017. 三峡库区消落带主要草本植物功能性状特征 [J]. 草业科学, 34(12): 2493-2503. ]

    • GUO DL, ROBERT JM, JOSEPH JH, 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest [J]. Oecologia, 140(3): 450-457.

    • HE Y, YAO YP, YAO YP, et al. , 2021. Interspecific and intraspecific variation of functional traits of woody species in the dominant Cyclobalanopsis glauca community in the karst area of Guillin City, Southwest China [J]. Acta Ecol Sin, 41(20): 8237-8245. [何雁, 姚玉萍, 姚义鹏, 等, 2021. 桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究 [J]. 生态学报, 41(20): 8237-8245. ]

    • HE YQ, SHI XJ, CHEN GJ, et al. , 2022. Response and adaptation of leaf functional traits of Eurya emarginata to environmental factors [J]. Acta Ecol Sin, 42(6): 2418-2429. [何雅琴, 史晓洁, 陈国杰, 等, 2022. 滨柃叶功能性状对环境因子的响应 [J]. 生态学报, 42(6): 2418-2429. ]

    • HOU ZA, LI PF, GONG YS, et al. , 2001. Effect of salt stress on growth and nutrient absorptionin Leymus chinesis under salinity soil [J]. J Shihezi Univ (Nat Sci Ed), 5(1): 6-10. [侯振安, 李品芳, 龚元石, 2001. 盐渍土壤环境对羊草生长与养分吸收的效应 [J]. 石河子大学学报(自然科学版), 5(1): 6-10. ]

    • HUANG AM, FANG Y, SUN J, et al. , 2023. Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain [J]. Acta Ecol Sin, 43(1): 398-407. [黄爱梅, 方毅, 孙俊, 等, 2023. 武夷山不同海拔毛竹细根功能性状 [J]. 生态学报, 43(1): 398-407. ]

    • KLEIMAN D, AARSSEN LW, 2007. The leaf size/number trade-off in trees [J]. J Ecol, 95(2) : 376-382.

    • KRAMER-WALTER KR, BELLINGHAM PJ, MILLAR TR, et al. , 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum [J]. J Ecol, 104(5): 1299-1310.

    • LAURE G, DAMARIS Z, NIKLAUS EZ, 2018. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. [J]. Ecol Evol, 8(4) : 2171-2181.

    • LI H, YUAN L, ZHANG LQ, et al. , 2017. Alternative stable states in coastal intertidal wetland ecosystems of Yangtze estuary, China [J]. Chin J Appl Ecol, 28(1): 327-336. [李蕙, 袁琳, 张利权, 等, 2017. 长江口滨海湿地潮间带生态系统的多稳态特征 [J]. 应用生态学报, 28(1): 327-336. ]

    • LI L, ZHANG M, ZHENG JM, et al. , 2022. Functional traits of branches and leaves of 8 bamboo species in the coastal sandy land [J]. J For Environ, 42(4): 354-363. [李磊, 张盟, 郑俊鸣, 等, 2022. 滨海沙地8个竹种枝叶功能性状特征 [J]. 森林与环境学报, 42(4): 354-363. ]

    • LI YT, YANG QS, WANG LL, et al. , 2020. Root distribution and soil properties of Fraxinus chinensis plantations with different forest stand ages in the coastal saline-alkali land [J]. J NE For Univ, 48(8): 50-54. [李永涛, 杨庆山, 王莉莉, 等, 2020. 滨海盐碱地不同林龄白蜡人工林根系分布及土壤特性变化 [J]. 东北林业大学学报, 48(8): 50-54. ]

    • LIU D, ZHANG J, ASIM B, et al. , 2020. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China [J]. Plants (Basel, Switzerland), 9(10): 1323-1323.

    • LIU YZ, XU X, LIU H, et al. , 2020. Latitude gradient variations of leaf functional traits of Spartina alterniflora and Phragmites australis along the coastal saltmarshes of China [J]. J Fudan Univ (Nat Sci Ed), 59(4): 381-389. [刘远瞻, 徐晓, 刘浩, 等, 2020. 中国滨海盐沼互花米草和芦苇叶片功能性状的纬度梯度变异 [J]. 复旦学报(自然科学版), 59(4): 381-389. ]

    • MAO W, LI YL, ZHANG TH, et al. , 2012. Research advances of plant leaf traits at different ecology scales [J]. J Desert Res, 32(1): 33-41. [毛伟, 李玉霖, 张铜会, 等, 2012. 不同尺度生态学中植物叶性状研究概述 [J]. 中国沙漠, 32(1): 33-41. ]

    • MAY F, GRIMM V, JELTSCH F, 2009. Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry [J]. 0ikos, 118(12): 1830-1843.

    • MCCORMACK ML, DICKIE A, EISSENSTAT DM, et al. , 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New phytol, 207(3) : 505-518.

    • MELISSA MJ, RICHARDSON SJ, BELLINGHAM PJ, et al. , 2015. Soil fertility induces coordinated responses of multiple independent functional traits [J]. J Ecol, 103(2): 374-385.

    • QI DH, WEN ZM, YANG SJ, et al. , 2015. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes [J]. Chin J Appl Ecol, 26(7): 1921-1927. [戚德辉, 温仲明, 杨士梭, 等, 2015. 基于功能性状的铁杆蒿对环境变化的响应与适应 [J]. 应用生态学报, 26(7): 1921-1927. ]

    • QIU J, GU JC, JIANG HY, et al. , 2010. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica [J]. Chin J Plant Ecol, 34(9): 1066-1074. [邱俊, 谷加存, 姜红英, 等. 樟子松人工林细根寿命估计及影响因子研究 [J]. 植物生态学报, 34(9): 1066-1074. ]

    • SHANG YQ, CHEN ZQ, CHEN ZB, et al. , 2022. Responses of Dicranopteris pedata leaves to micro-topography in red soil erosion region of South China [J]. Guihaia, 42(7): 1088-1095. [尚艳琼, 陈志强, 陈志彪, 等, 2022. 南方红壤侵蚀区芒萁叶片对微地形的响应 [J]. 广西植物, 42(7): 1088-1095. ]

    • SHUI W, GUO PP, ZHU SF, et al. , 2022. Variation of plant functional traits and adaptive strategy of woody species in degraded karst Tiankeng of Yunnan Province [J]. Sci Geogr Sin, 42(7): 1295-1306. [税伟, 郭平平, 朱粟锋, 等, 2022. 云南喀斯特退化天坑木本植物功能性状变异特征及适应策略 [J]. 地理科学, 42(7): 1295-1306. ]

    • SUN J, XIA BJ, DONG BT, et al. , 2021. Root morphology and growth characteristics of Tamarix chinensis with different densities on the beach of the Yellow River Delta [J]. Acta Ecol Sin, 41(10): 3775-3783. [孙佳, 夏江宝, 董波涛, 等, 2021. 黄河三角洲滨海滩涂不同密度柽柳林的根系形态及生长特征 [J]. 生态学报, 41(10): 3775-3783. ]

    • SUN P, WEI X, YE WH, et al. , 2022. Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest [J]. Guihaia, 42(3): 510-519. [孙鹏, 韦霄, 叶万辉, 等, 2022. 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异 [J]. 广西植物, 42(3): 510-519. ]

    • WANG C, LU J, ZHOU CN, et al. , 2021. Altitude distribution of leaf functional traits of Quercus aquifolioides in southeastern Tibet [J]. J For Environ, 41(4): 366-372. [王超, 卢杰, 周晨霓, 等, 2021. 藏东南川滇高山栎叶功能性状海拔分布特征 [J]. 森林与环境学报, 41(4): 366-372. ]

    • WANG GX, LI CR, XU JW, et al. , 2005. Soil properties and water conservation function of 5 types of vegetation on sandy coast [J]. J Soil Water Conserv, 37(2): 142-146. [王贵霞, 李传荣, 许景伟, 等, 2005. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能 [J]. 水土保持学报, 37(2): 142-146. ]

    • WANG HY, TONG C, HUANG JF, et al. , 2022. Latitude gradient variations of seed functional traits of Phragmites australis in Chinese coastal marsh [J]. Chin J Appl Ecol, 33(12): 3294-3302. [王昊羽, 仝川, 黄佳芳, 等, 2022. 中国滨海沼泽湿地芦苇种子功能性状的纬度梯度变异 [J]. 应用生态学报, 33(12): 3294-3302. ]

    • WANG X, LIU JK, LUO SX, et al. , 2022. Difference of leaf functional traits of coastal psammophytes in Hainan Island and its relationship with soil chemical properties [J]. J Trop Subtrop Bot, 30(5): 708-717. [王旭, 刘敬坤, 罗水星, 等, 2022. 海南岛滨海沙生植物叶片功能性状分异及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(5): 708-717. ]

    • WANG ZY, CHEN XP, CHENG Y, et al. , 2021. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 45(3): 242-252. [王钊颖, 陈晓萍, 程英, 等, 2021. 武夷山49种木本植物叶片与细根经济谱 [J]. 植物生态学报, 45(3): 242-252. ]

    • WRIGHT IJ, ACKERLY DD, FRANS B, et al. , 2007. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests [J]. Ann Bot, 99(5): 1003-1015.

    • WU XD, JI B, HE JL, et al. , 2021. The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe [J]. Acta Ecol Sin, 41(7): 2719-2727. [吴旭东, 季波, 何建龙, 等, 2021. 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响 [J]. 生态学报, 41(7): 2719-2727. ]

    • WU YH, WANG WY, GUAN SM, et al. , 2021. Shrub-grassland traits among three habitat types on Pingtan Island [J]. J For Environ, 41(1): 35-43. [吴雅华, 王伟耀, 管诗敏, 等, 2021. 平潭岛3种生境类型灌草丛植物性状特征 [J]. 森林与环境学报, 41(1): 35-43. ]

    • WU YH, WANG WY, ZHANG ZK, et al. , 2022. Research progress on the response of plant functional traits to climate change based on Cite Space analysis [J]. Chin J Appl Environ Biol, 28(1): 254-266. [吴雅华, 王伟耀, 张增可, 等, 2022. 基于Cite Space分析植物功能性状对气候变化的响应研究进展 [J]. 应用与环境生物学报, 28(1): 254-266. ]

    • XU B, CHENG YX, GAN HJ, et al. , 2010. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Chin J Plant Ecol, 34(1): 29-38. [徐冰, 程雨曦, 甘慧洁, 等, 2010. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联 [J]. 植物生态学报, 34(1): 29-38. ]

    • XU MQ, GAO YJ, ZHANG ZH, et al. , 2021. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress [J]. Pratac Sci, 38(8): 1559-1569. [徐梦琦, 高艳菊, 张志浩, 等, 2021. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应 [J]. 草业科学, 38(8): 1559-1569. ]

    • YU H, GAO RY, YANG WJ, et al. , 2022. Carbon, nitrogen, and phosphorus contents of leaf, root, and soil and their relationships in dominant herbaceous plants in dry-hot valley [J]. Chin J Appl Environ Biol, 28(3): 727-735. [余杭, 高若允, 杨文嘉, 等, 2022. 干热河谷优势草本植物叶片、根系与土壤碳氮磷含量及其关系 [J]. 应用与环境生物学报, 28(3): 727-735. ]

    • YUAN F, WANG YY, LIU HN, et al. , 2020. Responses of litter production and its quality in a Casuarina equisetifolia plantation to the distance from the coastline [J]. J Ecol Rural Environ, 36(9): 1154-1160. [袁锋, 王艳艳, 刘贺娜, 等, 2020. 木麻黄凋落叶量及基质质量对离海距离的响应 [J]. 生态与农村环境学报, 36(9): 1154-1160. ]

    • ZHANG JH, WANG Z, HUANG YM, et al. , 2021. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical [J]. Chin J Plant Ecol, 45(8): 818-833. [张景慧, 王铮, 黄永梅, 等, 2021. 草地利用方式对温性典型草原优势种植物功能性状的影响 [J]. 植物生态学报, 45(8): 818-833. ]

    • ZHANG L, LUO TX, 2004. Advances in ecological studies on leaf lifespan and associated leaf traits [J]. Chin J Plant Ecol, 28(6): 844-852. [张林, 罗天祥, 2004. 植物叶寿命及其相关叶性状的生态学研究进展 [J]. 植物生态学报, 28(6): 844-852. ]

    • ZHANG LM, TAN X, DONG Z, et al. , 2023. The relationship between plant functional traits and soil physicochemical properties in the riparian zones of downtown Chongqing [J]. Acta Ecol Sin, 43(5): 1892-1901. [张丽苗, 谭雪, 董智, 等, 2023. 重庆主城河岸带植物群落功能性状与土壤理化性质的关系 [J]. 生态学报, 43(5): 1892-1901. ]

    • ZHANG Q, GUO CW, YAO MM, et al. , 2022. Effects of grazing intensities on functional traits of the dominant plant leymus secalinus in semi-arid grassland [J]. Acta Agr Sin, 30(8): 2108-2117. [张琦, 郭琛文, 姚蒙蒙, 等, 2022. 放牧强度对半干旱草地优势植物赖草功能性状的影响 [J]. 草地学报, 30(8): 2108-2117. ]

    • ZHANG XF, MU ZB, LIN MJ, et al. , 2020. Functional traits of leaves of four dominant plants on Langqi Island, Fuzhou, and factors influencing these traits [J]. Chin J Appl Environ Biol, 26(3): 667-673. [张秀芳, 穆振北, 林美娇, 等, 2020. 琅岐岛4种优势植物叶功能性状及其影响因子 [J]. 应用与环境生物学报, 26(3): 667-673. ]

    • ZHANG YQ, 2014. Effects of environmental factors on plant functional traits and the relationship between functional traits in Taishan woody plants [D]. Jinan: Shandong University: 37-51. [张月强, 2014. 探究泰山木本植物功能性状间的关系及对环境因子的响应 [D]. 济南: 山东大学: 37-51. ]

    • ZHANG ZK, WU YH, WANG Q, et al. , 2020. Effects of environmental factors on stem and leaf functional traits of island plants [J]. Guihaia, 40(3): 433-442. [张增可, 吴雅华, 王齐, 等, 2020. 环境因子对海岛植物茎、叶功能性状的影响 [J]. 广西植物, 40(3): 433-442. ]

    • ZHAO GS, LIU M, SHI PL, et al. , 2020. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau [J]. Acta Ecol Sin, 40(1): 295-309. [赵广帅, 刘珉, 石培礼, 等, 2020. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策 [J]. 生态学报, 40(1): 295-309. ]

    • ZHAO WX, 2016. Research for leaf, stem and root functional traits for common tree species in subtropical evergreen broad-leaved forest [D]. Beijing: Beijing Forestry University: 26-29. [赵文霞, 2016. 亚热带常绿阔叶林常见树种根茎叶功能性状研究 [D]. 北京: 北京林业大学: 26-29. ]

    • ZHENG LT, SU T, LIU XY, et al. , 2018. Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China [J]. Chin J Appl Ecol, 29(2): 343-351. [郑丽婷, 苏田, 刘翔宇, 等, 2018. 庙岛群岛典型植物群落物种、功能、结构多样性及其对环境因子的响应 [J]. 应用生态学报, 29(2): 343-351. ]

    • ZHONG QL, LIU LB, XU X, et al. , 2018. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plant Ecol, 42(5): 562-572. [钟巧连, 刘立斌, 许鑫, 等, 2018. 黔中喀斯特木本植物功能性状变异及其适应策略 [J]. 植物生态学报, 42(5): 562-572. ]

    • ZHOU LL, QIAN RL, LI SB, et al. , 2019. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site [J]. Chin J Appl Ecol, 30(7): 2320-2328. [周丽丽, 钱瑞玲, 李树斌, 等, 2019. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征 [J]. 应用生态学报, 30(7): 2320-2328. ]

    • ZHOU P, GENG Y, MA WH, et al. , 2010. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 34(1): 7-16. [周鹏, 耿燕, 马文红, 等, 2010. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 34(1): 7-16. ]

  • 参考文献

    • CAMPETELLA G, CHELLI S, SIMONETTI E, et al. , 2020. Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests [J]. Sci Rep, 10(1): 19253.

    • CASTELLANOS AE, LLANO-SOTELO JM, MACHADO-ENCINAS LI, et al. , 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert [J]. Plant Ecol, 219(7) : 775-788.

    • CHANG LL, CAI JY, WU Q, et al. , 2017. Leaf traits of Vitex rotundifolia along desertification gradient in a sandy hill of the Poyang Lake [J]. J Desert Res, 37(1) : 81-85. [常玲玲, 蔡家艳, 吴琴, 等, 2017. 鄱阳湖沙山单叶蔓荆(Vitex rotundifolia)叶性状沿沙化梯度变化特征 [J]. 中国沙漠, 37(1): 81-85. ]

    • CHEN GJ, ZHANG Q, ZHANG JL, et al. , 2022. Vegetation resources and floristic characteristics of sand seed plants in Pingtan Island, Fujian Province [J]. Chin J Tropl Crops, 43(2): 399-408. [陈国杰, 张群, 张嘉灵, 等, 2022. 福建平潭岛滨海砂生种子植物植被资源及其区系特征分析 [J]. 热带作物学报, 43(2): 399-408. ]

    • CHEN JY, ZHANG J, LI SH, et al. , 2020. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats [J]. Plant Sci J, 38(6): 762-772. [陈金艺, 张静, 李素慧, 等, 2020. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策 [J]. 植物科学学报, 38(6): 762-772. ]

    • CHEN YF, LIN CL, ZHANG S, et al. , 2022. Functional characteristics of Castanopsis fargesii fine roots and their relationship with soil factors at different elevations in Guoyan Mountain [J]. J Trop Subtrop Bot, 30(3): 413-422. [陈逸飞, 林晨蕾, 张硕, 等, 2022. 郭岩山不同海拔丝栗栲细根功能性状及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(3): 413-422. ]

    • CHENG JJ, ZHANG XN, ZHANG ZY, et al. , 2022. Analysis on differences in leaf functional traits of desert plants under interspecific association pattern in different water-salt environments of Ebinur Lake [J]. J Plant Resour Environ, 31(3): 18-25. [程久菊, 张雪妮, 张子洋, 等, 2022. 艾比湖不同水盐环境荒漠植物种间关联格局下的叶片功能性状差异分析 [J]. 植物资源与环境学报, 31(3): 18-25. ]

    • CHU DS, ZHENG X, QIN SH, et al. , 2020. Characteristics of soil salinity and its effects on poplar growth in a silting coastal area of Northern Jiangsu Province [J]. J Nanjing For Univ (Nat Sci Ed), 44(6): 140-146. [储冬生, 郑旭, 秦盛华, 等, 2020. 苏北淤泥质海岸土壤盐分特征及其对杨树生长的影响 [J]. 南京林业大学学报(自然科学版), 44(6): 140-146. ]

    • DIJKSTRA P, LAMBERS H, 1989. Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate [J]. New Phytol, 113(3): 283-290.

    • EISSENSTAT DM, WELLS CE, YANAI RD, et al. 2000. Building roots in a changing environment: implications for root longevity [J]. New Phytol, 147(1): 33-42.

    • FAN BL, LU J, QIAN T, et al. , 2022. Effects of climate and soil on leaf acquisition and utilization of carbon and water resources in different grasslands [J]. Chin J Ecol, 41(4): 625-632. [樊宝丽, 卢晶, 钱婷, 等, 2022. 不同草原类型下气候和土壤对植物叶片碳水资源获取和利用性状的影响 [J]. 生态学杂志, 41(4): 625-632. ]

    • GAO T, CHEN M, DANG CQ, et al. , 2017. Functional traits of major herbaceous plants in the hydro-fluctuation belt of the Three Gorges Reservoir [J]. Pratac Sci, 34(12): 2493-2503. [高婷, 陈淼, 党成强, 等, 2017. 三峡库区消落带主要草本植物功能性状特征 [J]. 草业科学, 34(12): 2493-2503. ]

    • GUO DL, ROBERT JM, JOSEPH JH, 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest [J]. Oecologia, 140(3): 450-457.

    • HE Y, YAO YP, YAO YP, et al. , 2021. Interspecific and intraspecific variation of functional traits of woody species in the dominant Cyclobalanopsis glauca community in the karst area of Guillin City, Southwest China [J]. Acta Ecol Sin, 41(20): 8237-8245. [何雁, 姚玉萍, 姚义鹏, 等, 2021. 桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究 [J]. 生态学报, 41(20): 8237-8245. ]

    • HE YQ, SHI XJ, CHEN GJ, et al. , 2022. Response and adaptation of leaf functional traits of Eurya emarginata to environmental factors [J]. Acta Ecol Sin, 42(6): 2418-2429. [何雅琴, 史晓洁, 陈国杰, 等, 2022. 滨柃叶功能性状对环境因子的响应 [J]. 生态学报, 42(6): 2418-2429. ]

    • HOU ZA, LI PF, GONG YS, et al. , 2001. Effect of salt stress on growth and nutrient absorptionin Leymus chinesis under salinity soil [J]. J Shihezi Univ (Nat Sci Ed), 5(1): 6-10. [侯振安, 李品芳, 龚元石, 2001. 盐渍土壤环境对羊草生长与养分吸收的效应 [J]. 石河子大学学报(自然科学版), 5(1): 6-10. ]

    • HUANG AM, FANG Y, SUN J, et al. , 2023. Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain [J]. Acta Ecol Sin, 43(1): 398-407. [黄爱梅, 方毅, 孙俊, 等, 2023. 武夷山不同海拔毛竹细根功能性状 [J]. 生态学报, 43(1): 398-407. ]

    • KLEIMAN D, AARSSEN LW, 2007. The leaf size/number trade-off in trees [J]. J Ecol, 95(2) : 376-382.

    • KRAMER-WALTER KR, BELLINGHAM PJ, MILLAR TR, et al. , 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum [J]. J Ecol, 104(5): 1299-1310.

    • LAURE G, DAMARIS Z, NIKLAUS EZ, 2018. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. [J]. Ecol Evol, 8(4) : 2171-2181.

    • LI H, YUAN L, ZHANG LQ, et al. , 2017. Alternative stable states in coastal intertidal wetland ecosystems of Yangtze estuary, China [J]. Chin J Appl Ecol, 28(1): 327-336. [李蕙, 袁琳, 张利权, 等, 2017. 长江口滨海湿地潮间带生态系统的多稳态特征 [J]. 应用生态学报, 28(1): 327-336. ]

    • LI L, ZHANG M, ZHENG JM, et al. , 2022. Functional traits of branches and leaves of 8 bamboo species in the coastal sandy land [J]. J For Environ, 42(4): 354-363. [李磊, 张盟, 郑俊鸣, 等, 2022. 滨海沙地8个竹种枝叶功能性状特征 [J]. 森林与环境学报, 42(4): 354-363. ]

    • LI YT, YANG QS, WANG LL, et al. , 2020. Root distribution and soil properties of Fraxinus chinensis plantations with different forest stand ages in the coastal saline-alkali land [J]. J NE For Univ, 48(8): 50-54. [李永涛, 杨庆山, 王莉莉, 等, 2020. 滨海盐碱地不同林龄白蜡人工林根系分布及土壤特性变化 [J]. 东北林业大学学报, 48(8): 50-54. ]

    • LIU D, ZHANG J, ASIM B, et al. , 2020. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China [J]. Plants (Basel, Switzerland), 9(10): 1323-1323.

    • LIU YZ, XU X, LIU H, et al. , 2020. Latitude gradient variations of leaf functional traits of Spartina alterniflora and Phragmites australis along the coastal saltmarshes of China [J]. J Fudan Univ (Nat Sci Ed), 59(4): 381-389. [刘远瞻, 徐晓, 刘浩, 等, 2020. 中国滨海盐沼互花米草和芦苇叶片功能性状的纬度梯度变异 [J]. 复旦学报(自然科学版), 59(4): 381-389. ]

    • MAO W, LI YL, ZHANG TH, et al. , 2012. Research advances of plant leaf traits at different ecology scales [J]. J Desert Res, 32(1): 33-41. [毛伟, 李玉霖, 张铜会, 等, 2012. 不同尺度生态学中植物叶性状研究概述 [J]. 中国沙漠, 32(1): 33-41. ]

    • MAY F, GRIMM V, JELTSCH F, 2009. Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry [J]. 0ikos, 118(12): 1830-1843.

    • MCCORMACK ML, DICKIE A, EISSENSTAT DM, et al. , 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New phytol, 207(3) : 505-518.

    • MELISSA MJ, RICHARDSON SJ, BELLINGHAM PJ, et al. , 2015. Soil fertility induces coordinated responses of multiple independent functional traits [J]. J Ecol, 103(2): 374-385.

    • QI DH, WEN ZM, YANG SJ, et al. , 2015. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes [J]. Chin J Appl Ecol, 26(7): 1921-1927. [戚德辉, 温仲明, 杨士梭, 等, 2015. 基于功能性状的铁杆蒿对环境变化的响应与适应 [J]. 应用生态学报, 26(7): 1921-1927. ]

    • QIU J, GU JC, JIANG HY, et al. , 2010. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica [J]. Chin J Plant Ecol, 34(9): 1066-1074. [邱俊, 谷加存, 姜红英, 等. 樟子松人工林细根寿命估计及影响因子研究 [J]. 植物生态学报, 34(9): 1066-1074. ]

    • SHANG YQ, CHEN ZQ, CHEN ZB, et al. , 2022. Responses of Dicranopteris pedata leaves to micro-topography in red soil erosion region of South China [J]. Guihaia, 42(7): 1088-1095. [尚艳琼, 陈志强, 陈志彪, 等, 2022. 南方红壤侵蚀区芒萁叶片对微地形的响应 [J]. 广西植物, 42(7): 1088-1095. ]

    • SHUI W, GUO PP, ZHU SF, et al. , 2022. Variation of plant functional traits and adaptive strategy of woody species in degraded karst Tiankeng of Yunnan Province [J]. Sci Geogr Sin, 42(7): 1295-1306. [税伟, 郭平平, 朱粟锋, 等, 2022. 云南喀斯特退化天坑木本植物功能性状变异特征及适应策略 [J]. 地理科学, 42(7): 1295-1306. ]

    • SUN J, XIA BJ, DONG BT, et al. , 2021. Root morphology and growth characteristics of Tamarix chinensis with different densities on the beach of the Yellow River Delta [J]. Acta Ecol Sin, 41(10): 3775-3783. [孙佳, 夏江宝, 董波涛, 等, 2021. 黄河三角洲滨海滩涂不同密度柽柳林的根系形态及生长特征 [J]. 生态学报, 41(10): 3775-3783. ]

    • SUN P, WEI X, YE WH, et al. , 2022. Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest [J]. Guihaia, 42(3): 510-519. [孙鹏, 韦霄, 叶万辉, 等, 2022. 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异 [J]. 广西植物, 42(3): 510-519. ]

    • WANG C, LU J, ZHOU CN, et al. , 2021. Altitude distribution of leaf functional traits of Quercus aquifolioides in southeastern Tibet [J]. J For Environ, 41(4): 366-372. [王超, 卢杰, 周晨霓, 等, 2021. 藏东南川滇高山栎叶功能性状海拔分布特征 [J]. 森林与环境学报, 41(4): 366-372. ]

    • WANG GX, LI CR, XU JW, et al. , 2005. Soil properties and water conservation function of 5 types of vegetation on sandy coast [J]. J Soil Water Conserv, 37(2): 142-146. [王贵霞, 李传荣, 许景伟, 等, 2005. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能 [J]. 水土保持学报, 37(2): 142-146. ]

    • WANG HY, TONG C, HUANG JF, et al. , 2022. Latitude gradient variations of seed functional traits of Phragmites australis in Chinese coastal marsh [J]. Chin J Appl Ecol, 33(12): 3294-3302. [王昊羽, 仝川, 黄佳芳, 等, 2022. 中国滨海沼泽湿地芦苇种子功能性状的纬度梯度变异 [J]. 应用生态学报, 33(12): 3294-3302. ]

    • WANG X, LIU JK, LUO SX, et al. , 2022. Difference of leaf functional traits of coastal psammophytes in Hainan Island and its relationship with soil chemical properties [J]. J Trop Subtrop Bot, 30(5): 708-717. [王旭, 刘敬坤, 罗水星, 等, 2022. 海南岛滨海沙生植物叶片功能性状分异及其与土壤因子的关系 [J]. 热带亚热带植物学报, 30(5): 708-717. ]

    • WANG ZY, CHEN XP, CHENG Y, et al. , 2021. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 45(3): 242-252. [王钊颖, 陈晓萍, 程英, 等, 2021. 武夷山49种木本植物叶片与细根经济谱 [J]. 植物生态学报, 45(3): 242-252. ]

    • WRIGHT IJ, ACKERLY DD, FRANS B, et al. , 2007. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests [J]. Ann Bot, 99(5): 1003-1015.

    • WU XD, JI B, HE JL, et al. , 2021. The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe [J]. Acta Ecol Sin, 41(7): 2719-2727. [吴旭东, 季波, 何建龙, 等, 2021. 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响 [J]. 生态学报, 41(7): 2719-2727. ]

    • WU YH, WANG WY, GUAN SM, et al. , 2021. Shrub-grassland traits among three habitat types on Pingtan Island [J]. J For Environ, 41(1): 35-43. [吴雅华, 王伟耀, 管诗敏, 等, 2021. 平潭岛3种生境类型灌草丛植物性状特征 [J]. 森林与环境学报, 41(1): 35-43. ]

    • WU YH, WANG WY, ZHANG ZK, et al. , 2022. Research progress on the response of plant functional traits to climate change based on Cite Space analysis [J]. Chin J Appl Environ Biol, 28(1): 254-266. [吴雅华, 王伟耀, 张增可, 等, 2022. 基于Cite Space分析植物功能性状对气候变化的响应研究进展 [J]. 应用与环境生物学报, 28(1): 254-266. ]

    • XU B, CHENG YX, GAN HJ, et al. , 2010. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Chin J Plant Ecol, 34(1): 29-38. [徐冰, 程雨曦, 甘慧洁, 等, 2010. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联 [J]. 植物生态学报, 34(1): 29-38. ]

    • XU MQ, GAO YJ, ZHANG ZH, et al. , 2021. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress [J]. Pratac Sci, 38(8): 1559-1569. [徐梦琦, 高艳菊, 张志浩, 等, 2021. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应 [J]. 草业科学, 38(8): 1559-1569. ]

    • YU H, GAO RY, YANG WJ, et al. , 2022. Carbon, nitrogen, and phosphorus contents of leaf, root, and soil and their relationships in dominant herbaceous plants in dry-hot valley [J]. Chin J Appl Environ Biol, 28(3): 727-735. [余杭, 高若允, 杨文嘉, 等, 2022. 干热河谷优势草本植物叶片、根系与土壤碳氮磷含量及其关系 [J]. 应用与环境生物学报, 28(3): 727-735. ]

    • YUAN F, WANG YY, LIU HN, et al. , 2020. Responses of litter production and its quality in a Casuarina equisetifolia plantation to the distance from the coastline [J]. J Ecol Rural Environ, 36(9): 1154-1160. [袁锋, 王艳艳, 刘贺娜, 等, 2020. 木麻黄凋落叶量及基质质量对离海距离的响应 [J]. 生态与农村环境学报, 36(9): 1154-1160. ]

    • ZHANG JH, WANG Z, HUANG YM, et al. , 2021. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical [J]. Chin J Plant Ecol, 45(8): 818-833. [张景慧, 王铮, 黄永梅, 等, 2021. 草地利用方式对温性典型草原优势种植物功能性状的影响 [J]. 植物生态学报, 45(8): 818-833. ]

    • ZHANG L, LUO TX, 2004. Advances in ecological studies on leaf lifespan and associated leaf traits [J]. Chin J Plant Ecol, 28(6): 844-852. [张林, 罗天祥, 2004. 植物叶寿命及其相关叶性状的生态学研究进展 [J]. 植物生态学报, 28(6): 844-852. ]

    • ZHANG LM, TAN X, DONG Z, et al. , 2023. The relationship between plant functional traits and soil physicochemical properties in the riparian zones of downtown Chongqing [J]. Acta Ecol Sin, 43(5): 1892-1901. [张丽苗, 谭雪, 董智, 等, 2023. 重庆主城河岸带植物群落功能性状与土壤理化性质的关系 [J]. 生态学报, 43(5): 1892-1901. ]

    • ZHANG Q, GUO CW, YAO MM, et al. , 2022. Effects of grazing intensities on functional traits of the dominant plant leymus secalinus in semi-arid grassland [J]. Acta Agr Sin, 30(8): 2108-2117. [张琦, 郭琛文, 姚蒙蒙, 等, 2022. 放牧强度对半干旱草地优势植物赖草功能性状的影响 [J]. 草地学报, 30(8): 2108-2117. ]

    • ZHANG XF, MU ZB, LIN MJ, et al. , 2020. Functional traits of leaves of four dominant plants on Langqi Island, Fuzhou, and factors influencing these traits [J]. Chin J Appl Environ Biol, 26(3): 667-673. [张秀芳, 穆振北, 林美娇, 等, 2020. 琅岐岛4种优势植物叶功能性状及其影响因子 [J]. 应用与环境生物学报, 26(3): 667-673. ]

    • ZHANG YQ, 2014. Effects of environmental factors on plant functional traits and the relationship between functional traits in Taishan woody plants [D]. Jinan: Shandong University: 37-51. [张月强, 2014. 探究泰山木本植物功能性状间的关系及对环境因子的响应 [D]. 济南: 山东大学: 37-51. ]

    • ZHANG ZK, WU YH, WANG Q, et al. , 2020. Effects of environmental factors on stem and leaf functional traits of island plants [J]. Guihaia, 40(3): 433-442. [张增可, 吴雅华, 王齐, 等, 2020. 环境因子对海岛植物茎、叶功能性状的影响 [J]. 广西植物, 40(3): 433-442. ]

    • ZHAO GS, LIU M, SHI PL, et al. , 2020. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau [J]. Acta Ecol Sin, 40(1): 295-309. [赵广帅, 刘珉, 石培礼, 等, 2020. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策 [J]. 生态学报, 40(1): 295-309. ]

    • ZHAO WX, 2016. Research for leaf, stem and root functional traits for common tree species in subtropical evergreen broad-leaved forest [D]. Beijing: Beijing Forestry University: 26-29. [赵文霞, 2016. 亚热带常绿阔叶林常见树种根茎叶功能性状研究 [D]. 北京: 北京林业大学: 26-29. ]

    • ZHENG LT, SU T, LIU XY, et al. , 2018. Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China [J]. Chin J Appl Ecol, 29(2): 343-351. [郑丽婷, 苏田, 刘翔宇, 等, 2018. 庙岛群岛典型植物群落物种、功能、结构多样性及其对环境因子的响应 [J]. 应用生态学报, 29(2): 343-351. ]

    • ZHONG QL, LIU LB, XU X, et al. , 2018. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plant Ecol, 42(5): 562-572. [钟巧连, 刘立斌, 许鑫, 等, 2018. 黔中喀斯特木本植物功能性状变异及其适应策略 [J]. 植物生态学报, 42(5): 562-572. ]

    • ZHOU LL, QIAN RL, LI SB, et al. , 2019. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site [J]. Chin J Appl Ecol, 30(7): 2320-2328. [周丽丽, 钱瑞玲, 李树斌, 等, 2019. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征 [J]. 应用生态学报, 30(7): 2320-2328. ]

    • ZHOU P, GENG Y, MA WH, et al. , 2010. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 34(1): 7-16. [周鹏, 耿燕, 马文红, 等, 2010. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 34(1): 7-16. ]