en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

罗志宏(1996-),硕士研究生,主要从事海洋中药来源微生物化学成分研究,(E-mail)2438157090@qq.com。

通讯作者:

陈显强,博士,副研究员,主要从事海洋药用天然产物化学成分研究,(E-mail)xianqiangchen@yeah.net。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2023)11-2033-09

DOI:10.11931/guihaia.gxzw202208008

参考文献
BEAU J, MAHID N, BURDA WN, et al. , 2012. Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii [J]. Mar Drugs, 10(4): 762-774.
参考文献
BEEKMAN AM, CASTILLO ME, BARROW RA, 2013. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F [J]. Org Biomol Chem, 11(7): 1109-1115.
参考文献
BIBI SN, FAWZI MM, GOKHAN Z, et al. , 2019. Ethnopharmacology, phytochemistry, and global distribution of mangroves — A comprehensive review [J]. Mar Drugs, 17(4): 231.
参考文献
BRADY SF, WAGENAAR MM, SINGH MP, 2000. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus [J]. Org Lett, 2(25): 4043-4046.
参考文献
CADAMURO RD, DA SILVEIRA BASTOS IMA, SILVA IT, et al. , 2021. Bioactive compounds from mangrove endophytic fungus and their uses for microorganism control [J]. J Fungi, 7(6): 455.
参考文献
CHEN Y, YANG WC, ZOU G, et al. , 2022. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach [J]. J Nat Prod, 85(5): 1229-1238.
参考文献
DENG ZJ, CAO LX, VRIJMOED LLP, et al. , 2010. Studies on distribution of fungal endophyte in mangrove plant Aegiceras corniculatum [J]. J Trop Oceanogr, 29(30): 77-81. [邓祖军, 曹理想, VRIJMOED LLP, 等, 2010. 红树林植物桐花树内生真菌类群分布的研究 [J]. 热带海洋学报, 29(30): 77-81. ]
参考文献
DING L, DAHSE HM, HERTWECK C, 2012. Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum [J]. J Nat Prod, 75(4): 617-621.
参考文献
GONG B, CHEN Y, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.
参考文献
HUANG CH, PAN JH, CHEN B, et al. , 2011. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the south China sea [J]. Mar Drugs, 9(5): 832-843.
参考文献
HUANG ZG, CAI XL, SHAO CL, et al. , 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76 [J]. Phytochemistry, 69(7): 1604-1608.
参考文献
LI F, HUANG SS, HU WJ, et al. , 2020. Diversity and anti-thrombotic activity of endophytic and rhizospheric bacteria isolated from Aegiceras corniculatum [J]. Guihaia, 40(3): 335-344. [李菲, 黄庶识, 胡文进, 等, 2020. 桐花树内生和根际细菌多样性及抗血栓活性研究 [J]. 广西植物, 40(3): 335-344. ]
参考文献
LI JL, SUN X, CHEN L, et al. , 2016. Community structure of endophytic fungi of four mangrove species in Southern China [J]. Mycology, 7(4): 180-190.
参考文献
LIN ZJ, ZHU TJ, FANG YC, et al. , 2008a. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum [J]. Phytochemistry, 69(5): 1273-1278.
参考文献
LIN ZJ, LU ZY, ZHU TJ, 2008b. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum [J]. Chem Pharm Bull, 56(2): 217-227.
参考文献
LUO XW, YANG J, CHEN FM, et al. , 2018. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza a virus activities [J]. Front Chem, 6: 282.
参考文献
SANTOS AL, IONTA M, HORVATH R, et al. , 2021. Molecular network for accessing polyketide derivatives from Phomopsis sp. , an endophytic fungus of Casearia arborea (Salicaceae) [J]. Phytochemistry Lett, 42: 1-7.
参考文献
SHAN TJ, LOU JF, GAO S, et al. , 2012. Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis [J]. Afr J Microbiol Res, 6(14): 3440-3446.
参考文献
SHATAER D, ABDULLA R, MA QL, 2020. Chemical composition of extract of Corylus avellana Shells [J]. Chem Nat Compd, 56(2): 338-340.
参考文献
SUN JF, LIN X, ZHOU XF, et al. , 2014. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum [J]. J Antibiot, 67(6): 451-457.
参考文献
TIAN XM, CAI XJ, GUO QM, et al, 2017. Advances in medicinal research of Aegiceras corniculatum [J]. J Liaoning Univ TCM, 19(11): 114-117. [田晓萌, 蔡晓婧, 郭庆梅, 等, 2017. 桐花树药用研究进展 [J]. 辽宁中医药大学学报, 19(11): 114-117. ]
参考文献
VACA J, SALAZAR F, ORTIZ A, et al. , 2020. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study [J]. J Antibiot, 73(11): 798-802.
参考文献
WANG KW, WANG SW, WU B, et al. , 2014. Bioactive natural compounds from the mangrove endophytic fungi [J]. Mini-Rev Med Chem, 14(4): 370-391.
参考文献
XU TC, LU YH, WANG JF, et al. , 2021. Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010-2019 [J]. Microorganisms, 9(2): 217.
目录contents

    摘要

    为了探究桐花树内生真菌在抑菌方面的价值,该文以内生真菌发酵产物的抑菌作用为评价指标筛选活性菌株,采用生物活性跟踪方法结合多种色谱技术分离活性菌株的化学成分,通过波谱与文献数据比对鉴定单体化合物结构,并利用微孔板法测定单体化合物的抑菌活性。结果表明:(1)从桐花树分离得到的16株内生真菌隶属2纲7目10科10属,镰刀菌属(Fusarium)为优势菌属。内生真菌GXIMD02029和GXIMD02039的发酵产物对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌、藤黄微球菌、粘性放线菌和金黄色葡萄球菌有不同程度的抑制作用,GXIMD02038发酵产物对耐甲氧西林金黄色葡萄球菌、藤黄微球菌和金黄色葡萄球菌有抑制作用。(2)7个化合物从内生真菌Phomopsis sp. GXIMD02029中被分离并鉴定为(15R)-acetoxydothiorelone A (1)、cytosporone B(2)、pestalotiopsone H(3)、pestalotiopsone B(4)、对羟基苯甲醛(5)、对羟基苯甲酸(6)、N-(2-苯乙基)乙酰胺(7)。(3)化合物1和化合物2有不同程度的抑菌作用,化合物1对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌的MIC值为15.625 μg·mL-1,对藤黄微球菌和粘性放线菌的MIC值为7.8125 μg·mL-1,对金黄色葡萄球菌的MIC值为31.25 μg·mL-1。化合物2对藤黄微球菌的MIC值为62.5 μg·mL-1,对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌、粘性放线菌的MIC值为125 μg·mL-1,对金黄色葡萄球菌的MIC值为250 μg·mL-1。该文筛选了3株活性菌株,首次报道化合物1具有抗菌活性,为桐花树内生真菌在抗菌价值方面提供了依据。

    Abstract

    In order to explore the antibacterial activity of endophytic fungi derived from Aegiceras corniculatum, antibacterial activity of ferment extract of endophytic fungi was used as evaluation index to screen active strains, the chemical constituents were separated on the basis of bioactivity-guiding method combined with various chromatographic techniques and identified by spectral technique together with comparison with literature data, and the antibacterial activity of pure compounds was determined by microplate method. The results were as follows: (1) Sixteen taxa of endophytic fungi isolated from A. corniculatum were distributed in 2 classes, 7 orders, 10 families and 10 genera. Fusarium was dominant genus. The ferment extract of endophytic fungi GXIMD02029 and GXIMD02039 displayed different levels of inhibitory effects on Bacillus subtilis, Staphylococcus epidermidis, methicillin-resistant S. aureus, Micrococcus luteus, Actinomyces viscosity, and Staphylococcus aureus when that of GXIMD02038 against methicillin-resistant S. aureus, Micrococcus luteus, and Staphylococcus aureus. (2) Seven pure compounds were isolated from endophytic fungi Phomopsis sp. GXIMD02029 and identified as (15R)-acetoxydothiorelone A (1), cytosporone B (2), pestalotiopsone H (3), pestalotiopsone B (4), p-hydroxybenzaldehyde (5), p-hydroxybenzoic acid (6), N-(2-phenylethyl)acetamide (7). (3) Compounds 1 and 2 showed different levels of antibacterial effects. Compound 1 exhibited inhibitory effect on Bacillus subtilis, Staphylococcus epidermidis and methicillin-resistant S. aureus with MIC value of 15.625 μg·mL-1, Micrococcus luteus and Actinomyces viscosity with MIC value of 7.8125 μg·mL-1, and Staphylococcus aureus with MIC value of 31.25 μg·mL-1. Compound 2 displayed inhibitory effect on Micrococcus luteus with MIC value of 62.5 μg·mL-1, Bacillus subtilis, Staphylococcus epidermidis, methicillin-resistant S. aureus and Actinomyces viscosity with MIC values of 125 μg·mL-1, and Staphylococcus aureus with MIC value of 250 μg·mL-1. Three active strains were reported in the project. It is reported that Compound 1 shows the antibacterial activity for the first time. The result provides the basis for the antibacterial values of endophytic fungi of Aegiceras corniculatum.

  • 桐花树(Aegiceras corniculatum)是红树林的重要组成之一,从中分离得到的甾醇、三萜、醌类、黄酮、有机酸等化合物具有抗炎镇痛、抗肿瘤、抗菌、抗氧化、降血糖、抗疟疾、止泻、保肝、抗凝血等药理活性(田晓萌等,2017;Bibi et al.,2019)。这些活性物质的提取需要砍伐大量的桐花树,易破坏红树林生态系统。为了保护且合理利用桐花树的药用资源,桐花树内生菌及其代谢产物研究在近年来受到了更多的关注。李菲等(2020)报道桐花树内生细菌具有抗血栓作用,是发掘溶血栓活性物质的资源。目前活性代谢产物多来源于桐花树内生真菌,主要包括生物碱、蒽醌、聚酮类、酚类等,它们在抗病毒、抗肿瘤等方面具有潜在的价值(Wang et al.,2014;Cadamuro et al.,2021)。从桐花树内生真菌Pestalotiopsis sp.中分离到的含有不饱和脂肪链的苯酚和苯甲醛类化合物(pestalols A-E)和甾醇化合物对甲型流感病毒亚型(H3N2)和甲型病毒(H1N1)有抑制作用,pestalol B和pestalol C还对多个肿瘤细胞有细胞毒活性(Sun et al.,2014)。内生真菌Fusarium incarnatum从桐花树内果实分离得到,其代谢产物中的3个结构独特生物碱对HUVEC、K-562和HeLa细胞系有较弱的抗增殖和细胞毒活性(Ding et al.,2012)。蒽醌二聚体衍生物alterporriols K-M从桐花树内生真菌Alternaria sp. ZJ9-6B分离得到,alterporriols K和L对肿瘤细胞有一定的细胞毒作用(Huang et al.,2011)。多个特特拉姆酸和聚酮类化合物从桐花树内生真菌Penicillium sp.中分离,有较好的抑制肿瘤细胞增殖作用(Lin et al.,2008a,b)。虽然桐花树内生真菌有较高的药用开发潜能,但关于其抗菌化学成分报道较少。

  • 本研究以采自广西茅尾海康熙岭红树林自然保护区的桐花树为材料,分离其中的内生真菌,以内生真菌发酵产物的抑菌活性为指标筛选活性菌株,通过抑菌活性导向分离活性菌株的次级代谢产物,采用微孔板法测定次级代谢产物的抗菌作用,拟探讨桐花树内生真菌代谢产物的抗菌药用价值,为抗生素的开发拓展资源和提供物质基础。

  • 1 材料与方法

  • 1.1 材料和仪器

  • 乙腈为色谱纯(上海星可高纯溶剂有限公司),甲醇、乙酸乙酯、石油醚等化学试剂为分析纯(广东光华科技股份有限公司);DNA提取试剂盒 [DP305,天根生化科技(北京)有限公司];PCR试剂盒(2×EasyTaq PCR Super Mix,北京全式金生物技术股份有限公司);引物ITS1(5′-TCCGTAGGTGAACCTGCGG-3′)/ITS4(5′-TCCTCCGCTTATTGATATGC-3′) [生工生物工程(上海)股份有限公司合成];柱层析硅胶,薄层硅胶板(烟台江友硅胶开发有限公司);抗菌活性指示菌:耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus ATCC 43300)、表皮葡萄球菌(Staphylococcus epidermidis ATCC 12228)、铜绿假单胞菌(Pseudomona aeruginosa ATCC 10145)、粘性放线菌(Actinomyces viscosus ATCC 15987)、藤黄微球菌(Micrococcus luteus ATCC 49732)、枯草芽孢杆菌(Bacillus subtilis ATCC 6051)、金黄色葡萄球菌(Staphylococcus aureus ATCC 14222)、大肠杆菌(Escherichia coli ATCC 25922)、肺炎克雷伯菌(Klebsiella pneumoniae ATCC13883)和鲍曼不动杆菌(Acinetobacter baumannii ATCC 19606)由广西中医药大学海洋药物研究院保藏;查氏培养基、虎红(琼脂)培养基、MB培养基用于桐花树内生真菌分离;大米培养基(大米100 g、海盐1.5 g、蒸馏水110 mL)用于内生真菌的扩大发酵;桐花树叶于2020年9月采集于广西钦州市茅尾海康熙岭红树林自然保护区。

  • LC-2030C 3D Plus型高效液相色谱仪(日本岛津公司);Avance III HD 500M超导核磁共振波谱仪(Bruker公司);EYELA N-1300D型旋转蒸发仪(东京理化器械株式会社);C1000型 PCR仪(Bio-Rad公司);sepacore型中压制备色谱仪(瑞士Buchi公司);SHZ-CB型循环水真空泵(巩义市予华仪器有限公司);KQ-250DB型超声仪(巩义市予华仪器有限公司);电泳仪(北京六一生物科技有限公司);凝胶成像分析仪(VILBER LOURMAT公司);培养箱(上海精宏实验设备有限公司)。

  • 1.2 方法

  • 1.2.1 桐花树内生真菌的分离与鉴定

  • 参考Shan等(2012)的方法分离桐花树内生真菌,新鲜树叶用无菌水漂洗3次后,浸泡在70%乙醇中30 s,0.2%升汞处理20 min,无菌水反复漂洗5次,无菌滤纸吸干树叶表面水分。用剪刀将树叶剪成约0.5 cm的碎片,均匀地放置在MB培养基、查氏培养基和虎红(琼脂)培养基上,置于28℃恒温箱中培养。待菌落长出后,挑取形态、色泽不同的菌落接种于新的培养基上,连续多次纯化,直至得到单一菌落。纯菌株保藏在4℃下,备用。

  • 取少量新鲜菌体,根据试剂盒的操作说明提取真菌基因组DNA,以获得的DNA为模板,采用真菌核糖体转录间隔区通用引物ITS1和ITS4进行PCR扩增。1%琼脂糖凝胶电泳检测扩增产物,扩增成功后送至生工生物工程(上海)股份有限公司进行测序。测序结果提交到GenBank数据库应用BLAST比对序列相似性,下载同源性较高的序列。运用MEGA X 软件的Neighbor-Joining法构建系统发育树,按照p-distance方法计算进化距离,可靠性设置1 000次bootstrap计算得出。

  • 1.2.2 桐花树内生真菌发酵产物的制备

  • 内生真菌菌株接种至MB液体培养基,28℃、180 r·min-1条件下培养3~5 d,即获得种子液。将种子液接种到装有大米固体培养基的1 000 mL锥形瓶中,共2瓶。在28℃下静置培养30 d。乙酸乙酯超声提取3次,合并提取液,减压回收溶剂,得到菌株发酵产物。

  • 1.2.3 桐花树内生真菌发酵产物的抑菌活性测试

  • 采用滤纸片琼脂扩散法筛选桐花树内生真菌发酵产物的抑菌活性。发酵产物溶解在DMSO中,初始浓度为50 mg·mL-1。阳性对照氨苄青霉素钠和环丙沙星溶解在DMSO,初始浓度为0.1 mg·mL-1。DMSO作为阴性对照。吸取3 μL待测样品到直径为6 mm的无菌滤纸片上,载样滤纸片贴于有指示菌的LB平板上,37℃培养16 h。采用十字交叉法记录抑菌圈的直径。通过抑菌圈直径大小评价发酵产物活性,从而筛选出能够产生抗菌物质的活性菌株。

  • 1.2.4 菌株Phomopsis sp. GXIMD02029扩大发酵和代谢产物的分离

  • Phomopsis sp. GXIMD02029的发酵方法同1.2.2项下,发酵数量扩大至100瓶。用乙酸乙酯浸提发酵产物5次,减压浓缩,得到浸膏95 g。浸膏经正相硅胶(200~300目)柱层析,二氯甲烷-甲醇(100∶0~0∶100,V/V)梯度洗脱,根据薄层色谱分析结果合并,得到4个组分(Fr.1~Fr.4)。Fr.2运用反相色谱柱分离,甲醇-水(30∶70~70∶30,V/V)梯度洗脱得到Fr.2.1~2.4组分。Fr.2.1经过两次硅胶柱层析分离得到化合物5(40.0 mg)。Fr.2.2经反相色谱柱(甲醇-水30∶70~70∶30,V/V)梯度分离,再运用HPLC制备(乙腈-水25∶75,V/V)得到化合物7(184.4 mg)。Fr.2.3经凝胶柱脱色后,再经HPLC制备(乙腈-水55∶45,V/V)得到化合物1(7.6 mg)。Fr.2.4经反相色谱柱分离,甲醇-水(80∶20,V/V)等度洗脱得到组分Fr.2.4A和 Fr.2.4B。Fr.2.4A经凝胶柱分离和HPLC制备(乙腈-水60∶40,V/V)得到化合物3(11.3 mg)和化合物2(293.5 mg);Fr.2.4B经HPLC制备(乙腈-水70∶30,V/V)得到化合物4(13.6 mg)。Fr.3经凝胶柱纯化,再经HPLC制备(乙腈-水70∶30,V/V)得到化合物6(67.7 mg)。

  • 1.2.5 单体化合物的最低抑菌浓度(minimal inhibitory concentration,MIC)测定

  • 单体化合物溶解在DMSO中,初始浓度为10 mg·mL-1的溶液。阳性对照为氨苄青霉素钠和环丙沙星配成1 mg·mL-1的DMSO溶液。指示菌接种于LB培养基,37℃下振荡培养至对数期,调节菌悬液106 CFU·mL-1。96孔板的第1列加入190 μL LB液体培养基和10 μL样品,第2至第9列每孔加入100 μL LB液体培养基。第1列混合均匀后,取100 μL培养液到第2列,倍比稀释至第8列。第1至第8列每孔加入100 μL菌液,第9列不加菌液作为阴性对照,第10列每孔加入100 μL LB培养液和100 μL菌液作空白对照。单体化合物的终浓度依次为250、125、62.5、31.25、15.625、7.812 5、3.906 25、1.953 125 μg·mL-1,每个浓度设3复孔,实验重复3次。37℃恒温培养24 h,观察实验结果,若孔内澄清,说明小孔内细菌生长被抑制,对应澄清孔的最小浓度值为化合物的MIC值。

  • 2 结果与分析

  • 2.1 菌株鉴定结果

  • 根据菌落形态、颜色特征排重后,选取16株内生真菌基因组DNA进行PCR扩增,获得500~600 bp的单一片段碱基对。基于BLAST比对扩增产物序列的结果见表1。由表1可知,16株内生真菌分属2纲7目10科10属,镰刀属(Fusarium)为优势菌属,占鉴定菌株的25%。选取同源性较高的相似菌株序列以Neighbor-Joining法聚类构建系统发育树(图1),16株内生真菌均与相似菌株构成了末端聚类且支持率大于50%。

  • 表1 桐花树内生真菌ITS序列在 GenBank数据库比对结果

  • Table1 Matching results in GenBank database of ITS sequence of endophytic fungi derived from Aegiceras corniculatum

  • 2.2 活性菌株筛选结果

  • 菌株发酵产物抑菌结果见表2,菌株GXIMD02029和GXIMD02039的发酵产物对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌、藤黄微球菌、粘性放线菌和金黄色葡萄球菌有不同程度的抑制作用;菌株GXIMD02038的发酵产物对藤黄微球菌、粘性放线菌和金黄色葡萄球菌有一定的抑制作用;其他菌株发酵产物未显示抑菌活性。所有菌株发酵产物对铜绿假单胞菌、肺炎克雷伯菌、鲍曼不动杆菌和大肠杆菌均未显示抑制作用。

  • 图1 基于Neighbor-Joining法构建内生真菌的ITS-rDNA序列系统发育树

  • Fig.1 Phylogenetic tree of ITS-rDNA sequences of endophytic fungi by Neighbor-Joining method

  • 2.3 Phomopsis sp. GXIMD02029代谢产物的分离与结构鉴定

  • 运用硅胶柱色谱、反相柱色谱、凝胶柱色谱和高效液相制备色谱技术从桐花树内生真菌Phomopsis sp. GXIMD02029发酵产物中分离到7个化合物,分别鉴定为(15R)-acetoxydothiorelone A (1)、cytosporone B(2)、pestalotiopsone H(3)、pestalotiopsone B(4)、对羟基苯甲醛(5)、对羟基苯甲酸(6)、N-(2-苯乙基)乙酰胺(7),化合物结构见图2。

  • 化合物1  白色粉末。1H NMR(500 MHz,CD3OD)δH: 6.20(1H,d,J = 2.2 Hz,H-4),6.27(1H,d,J = 2.2 Hz,H-6),3.58(2H,s,H-2),2.91(2H,t,J = 7.5 Hz,H-10),4.11(2H,q,J = 7.0 Hz,H-17),2.01(3H,s,H-20),1.28~1.68(8H,m,H-11-H-15),1.20(3H,d,J = 6.5 Hz,H-16),1.25(3H,t,J = 7.0 Hz,H-18);13C NMR(125 MHz,CD3OD)δC: 173.6(C-1),40.5(C-2),137.0(C-3),111.7(C-4),161.3(C-5),102.7(C-6),159.8(C-7),121.2(C-8),208.8(C-9),45.0(C-10),25.4(C-11),30.2(C-12),26.3(C-13),36.8(C-14),72.4(C-15),20.2(C-16),61.8(C-17),14.5(C-18),172.7(C-19),21.2(C-20)。上述数据与文献(Luo et al.,2018)数据基本一致,故化合物1被鉴定为(15R)-acetoxydothiorelone A。

  • 表2 菌株发酵产物的抑菌活性

  • Table2 Antibacterial activities of ferment extracts of the strains

  • 注: — 表示未产生抑菌圈。 BS. 枯草芽孢杆菌; SE. 表皮葡萄球菌; MRSA. 耐甲氧西林金黄色葡萄球菌; ML. 藤黄微球菌; AV. 粘性放线菌; SA. 金黄色葡萄球菌。下同。

  • Note: — indicates no inhibitory zone. BS. Bacillus subtilis; SE. Staphylococcus epidermidis; MRSA. Methicillin-resistant S. aureus; ML. Micrococcus luteus; AV. Actinomyces viscosus; SA. Staphylococcus aureus. The same below.

  • 图2 从Phomopsis sp. GXIMD02029中鉴定的化合物结构

  • Fig.2 Chemical structure of compounds identified from Phomopsis sp. GXIMD02029

  • 化合物2  淡黄色粉末。 1H NMR(500 MHz,CD3OD)δH: 6.25(1H,d,J = 2.5 Hz,H-4),6.18(2H,d,J = 2.5 Hz,H-6),4.09(2H,q,J = 7.5 Hz,H-17),3.56(2H,s,H-2),2.89(2H,t,J = 7.5 Hz,H-10),1.60(2H,m,H-11),1.26~1.34(8H,m,H-12-H-15),1.22(3H,t,J = 7.5 Hz,H-18),0.88(3H,t,J = 7.5 Hz,H-16);13C NMR(125 MHz,CD3OD)δC: 173.5(C-1),40.5(C-2),137.0(C-3),102.7(C-4),161.3(C-5),111.7(C-6),159.8(C-7),121.2(C-8),209.0(C-9),45.2(C-10),25.5(C-11),30.4(C-12),30.2(C-13),32.9(C-14),23.6(C-15),14.4(C-16),61.8(C-17),14.5(C-18)。上述数据与文献(Brady et al.,2000)数据基本一致,故化合物2被鉴定为cytosporone B。

  • 化合物3  白色粉末。1H NMR(500 MHz,CD3OD)δH: 6.76(1H,d,J = 2.4 Hz,H-6),6.67(1H,d,J = 2.4 Hz,H-4),5.99(1H,s,H-10),4.12(2H,q,J = 7.2 Hz,H-17),4.06(2H,s,H-2),2.60(2H,t,J = 7.6 Hz,H-12),1.72(2H,m,H-13),1.37(4H,m,H-14,H-15),1.23(3H,t,J = 7.2 Hz,H-18),0.92(3H,t,J = 7.0 Hz,H-16);13C NMR(125 MHz,CD3OD)δC: 173.5(C-1),42.0(C-2),138.8(C-3),119.6(C-4),163.4(C-5),102.9(C-6),161.3(C-7),115.7(C-8),181.4(C-9),110.4(C-10),170.5(C-11),34.5(C-12),27.6(C-13),32.3(C-14),23.4(C-15),14.3(C-16),61.7(C-17),14.5(C-18)。上述数据与文献(Luo et al.,2018)数据基本一致,故化合物3被鉴定为pestalotiopsone H。

  • 化合物4  淡黄色粉末。1H NMR(500 MHz,CD3OD)δH: 6.77(1H,d,J = 2.3 Hz,H-8),6.68(1H,d,J = 2.3 Hz,H-6),6.00(1H,s,H-10),4.13(2H,q,J = 7.5 Hz,H-19),4.07(2H,s,H-2),2.61(2H,t,J = 7.5 Hz,H-12),1.72(2H,m,H-13),1.26~1.43(8H,m,H-14-H-17),1.21(3H,t,J = 7.5 Hz,H-20),0.90(3H,t,J = 7.0 Hz,H-18);13C NMR(125 MHz,CD3OD)δC: 173.4(C-1),42.1(C-2),138.7(C-3),119.5(C-4),163.3(C-5),102.9(C-6),161.2(C-7),115.7(C-8),181.4(C-9),110.4(C-10),170.5(C-11),34.5(C-12),27.9(C-13),30.1(C-14),30.0(C-15),32.8(C-16),23.7(C-17),14.50(C-18),61.7(C-19),14.40(C-20)。上述数据与文献(Beekman et al.,2013)数据基本一致,故化合物4被鉴定为pestalotiopsone B。

  • 化合物5  白色粉末。1 H NMR(500 MHz,CD3OD)δH: 9.74(1H,s,CHO),7.75(2H,d,J = 8.4 Hz,H-2,H-6),6.90(2H,d,J = 8.4 Hz,H-3,H-5);13C NMR(125 MHz,CD3OD)δC: 130.2(C-1),133.4(C-2,C-6),116.8(C-3,C-5),165.1(C-4),192.8(CHO)。上述数据与文献(Shataer et al.,2020)数据基本一致,故化合物5被鉴定为对羟基苯甲醛(p-hydroxybenzaldehyde)。

  • 化合物6  淡黄色粉末。1H NMR(500 MHz,CD3OD)δH: 7.86(2H,d,J = 8.7 Hz,H-2,H-6),6.81(2H,d,J = 8.7 Hz,H-3,H-5);13C NMR(125 MHz,CD3OD)δC: 122.7(C-1),133.0(C-2,C-6),116.0(C-3,C-5),163.4(C-4),170.2(COOH)。上述数据与文献数据(Shataer et al.,2020)基本一致,故化合物6被鉴定为对羟基苯甲酸(p-hydroxybenzoic acid)。

  • 化合物7  白色粉末。1H NMR(500 MHz,CDCl3δH: 7.16~7.30(5H,m,H-2-H-6),3.49(2H,t,J = 7.0 Hz,H-8),2.80(2H,t,J = 7.0 Hz,H-7),1.92(3H,s,H-10);13C NMR(125 MHz,CDCl3δC: 138.9(C-1),128.6(C-2,C-6),128.7(C-3,C-5),126.5(C-4),35.6(C-7),40.6(C-8),170.1(C-9),23.2(C-10)。上述数据与文献(Vaca et al.,2020)数据基本一致,故化合物7被鉴定为N-(2-苯乙基)乙酰胺 [N-(2-phenylethyl)acetamide]。

  • 2.4 单体化合物抑菌结果

  • 采用滤纸片琼脂扩散法初步筛选抗菌活性单体化合物,化合物1和化合物2在每片30 μg给药量时对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌、藤黄微球菌、粘性放线菌、金黄色葡萄球菌有抑制活性,因此,测定其MIC值,具体测定结果见表3。化合物1对6株病原菌的MIC值在7.812 5~31.25 μg·mL-1之间,对测试菌株有一定的抑制活性。化合物2的MIC值为62.5~250 μg·mL-1,有较弱的抑菌活性。

  • 3 讨论与结论

  • 16株内生真菌从桐花树叶中分离得到,隶属2纲7目10科10属,这些科属类别与前人报道的桐花树内生真菌科属基本一致。Li等(2016)报道桐花树枝内生真菌比叶内生真菌丰富,叶点霉属(Phyllosticta)和小光壳属(Leptosphaerulina)为叶片内生真菌的优势属。Gong等(2014)报道刺盘孢属(Colletotrichum)和拟盘多毛孢属(Pestalotiopsis)是桐花树枝的优势内生真菌。邓祖军等(2010)报道桐花树的叶脉、树皮、茎的优势内生真菌在不同季节有差异。镰刀属(Fusarium)在本研究中是优势菌属,与前人的研究有所差异,这个差异的原因可能是采集的桐花树部位以及采集季节的降水量、气温、湿度、光照强度等变化影响了内生真菌的类群。

  • 表3 化合物抑菌活性结果

  • Table3 Antibacterial activities of compounds

  • 拟茎点霉属(Phomopsis)真菌代谢产物在医药、农业等领域有重要的应用前景。该属真菌能够产生聚酮、萜类、大环内酯、生物碱等结构多样性的次级代谢产物,具有细胞毒、抗菌、抗病毒、抗氧化、抗炎等多种生物活性(Xu et al.,2021)。Phomoxanthone A是从拟茎点霉属分离的聚酮类化合物,是一个有望发展为抗耐药性癌症的药物(Chen et al.,2022)。本研究以内生真菌次级发酵产物的抑菌活性为指标筛选出GXIMD02029、GXIMD02038和GXIMD02039为抗菌活性菌株,其中菌株Phomopsis sp. GXIMD02029具有较好的抗菌活性,因此,本研究开展了GXIMD02029菌株的次级代谢产物研究。为了快速、高效地发掘菌株Phomopsis sp. GXIMD02029中的抗菌活性成分,本研究以抗菌活性为导向分离其代谢产物。

  • 基于活性导向方法从内生真菌Phomopsis sp. GXIMD02029中分离得到的7个化合物主要为聚酮类化合物。化合物1已从内生真菌Phomopsis sp.和Diaporthe sp. SCSIO 41011中被分离(Luo et al.,2018;Santos et al.,2021),但未见有抗菌活性报道。本研究首次报道了该化合物的抑菌活性,化合物1对枯草芽孢杆菌、表皮葡萄球菌、耐甲氧西林金黄色葡萄球菌、藤黄微球菌、粘性放线菌和金黄色葡萄球菌有不同程度的抑制作用。Beau等(2012)报道化合物2抗耐甲氧西林金黄色葡萄球菌的MIC值为72 μmol·L-1。Huang等(2008)报道化合物2抑制白色念珠菌和尖孢镰刀菌活性的MIC值为64 μg·mL-1,对肠炎沙门菌、金黄色葡萄球菌、大肠杆菌在最大浓度128 μg·mL-1下未测得MIC值。化合物2的抗菌活性结果与文献报道基本一致,但本研究结果拓展了化合物2的抗菌谱。文献报道化合物4对表皮葡萄球菌的IC50值为421 μg·mL-1(Beekman et al.,2013),本研究在初筛时未见化合物4有抑菌活性,未开展化合物4的MIC值测定。本研究结果可为抗菌活性次级代谢产物分离提供微生物资源,为桐花树内生真菌抑菌活性物质的挖掘提供科学依据,对桐花树内生真菌在抗菌方面的应用有一定的促进意义。

  • 参考文献

    • BEAU J, MAHID N, BURDA WN, et al. , 2012. Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii [J]. Mar Drugs, 10(4): 762-774.

    • BEEKMAN AM, CASTILLO ME, BARROW RA, 2013. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F [J]. Org Biomol Chem, 11(7): 1109-1115.

    • BIBI SN, FAWZI MM, GOKHAN Z, et al. , 2019. Ethnopharmacology, phytochemistry, and global distribution of mangroves — A comprehensive review [J]. Mar Drugs, 17(4): 231.

    • BRADY SF, WAGENAAR MM, SINGH MP, 2000. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus [J]. Org Lett, 2(25): 4043-4046.

    • CADAMURO RD, DA SILVEIRA BASTOS IMA, SILVA IT, et al. , 2021. Bioactive compounds from mangrove endophytic fungus and their uses for microorganism control [J]. J Fungi, 7(6): 455.

    • CHEN Y, YANG WC, ZOU G, et al. , 2022. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach [J]. J Nat Prod, 85(5): 1229-1238.

    • DENG ZJ, CAO LX, VRIJMOED LLP, et al. , 2010. Studies on distribution of fungal endophyte in mangrove plant Aegiceras corniculatum [J]. J Trop Oceanogr, 29(30): 77-81. [邓祖军, 曹理想, VRIJMOED LLP, 等, 2010. 红树林植物桐花树内生真菌类群分布的研究 [J]. 热带海洋学报, 29(30): 77-81. ]

    • DING L, DAHSE HM, HERTWECK C, 2012. Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum [J]. J Nat Prod, 75(4): 617-621.

    • GONG B, CHEN Y, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.

    • HUANG CH, PAN JH, CHEN B, et al. , 2011. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the south China sea [J]. Mar Drugs, 9(5): 832-843.

    • HUANG ZG, CAI XL, SHAO CL, et al. , 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76 [J]. Phytochemistry, 69(7): 1604-1608.

    • LI F, HUANG SS, HU WJ, et al. , 2020. Diversity and anti-thrombotic activity of endophytic and rhizospheric bacteria isolated from Aegiceras corniculatum [J]. Guihaia, 40(3): 335-344. [李菲, 黄庶识, 胡文进, 等, 2020. 桐花树内生和根际细菌多样性及抗血栓活性研究 [J]. 广西植物, 40(3): 335-344. ]

    • LI JL, SUN X, CHEN L, et al. , 2016. Community structure of endophytic fungi of four mangrove species in Southern China [J]. Mycology, 7(4): 180-190.

    • LIN ZJ, ZHU TJ, FANG YC, et al. , 2008a. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum [J]. Phytochemistry, 69(5): 1273-1278.

    • LIN ZJ, LU ZY, ZHU TJ, 2008b. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum [J]. Chem Pharm Bull, 56(2): 217-227.

    • LUO XW, YANG J, CHEN FM, et al. , 2018. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza a virus activities [J]. Front Chem, 6: 282.

    • SANTOS AL, IONTA M, HORVATH R, et al. , 2021. Molecular network for accessing polyketide derivatives from Phomopsis sp. , an endophytic fungus of Casearia arborea (Salicaceae) [J]. Phytochemistry Lett, 42: 1-7.

    • SHAN TJ, LOU JF, GAO S, et al. , 2012. Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis [J]. Afr J Microbiol Res, 6(14): 3440-3446.

    • SHATAER D, ABDULLA R, MA QL, 2020. Chemical composition of extract of Corylus avellana Shells [J]. Chem Nat Compd, 56(2): 338-340.

    • SUN JF, LIN X, ZHOU XF, et al. , 2014. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum [J]. J Antibiot, 67(6): 451-457.

    • TIAN XM, CAI XJ, GUO QM, et al, 2017. Advances in medicinal research of Aegiceras corniculatum [J]. J Liaoning Univ TCM, 19(11): 114-117. [田晓萌, 蔡晓婧, 郭庆梅, 等, 2017. 桐花树药用研究进展 [J]. 辽宁中医药大学学报, 19(11): 114-117. ]

    • VACA J, SALAZAR F, ORTIZ A, et al. , 2020. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study [J]. J Antibiot, 73(11): 798-802.

    • WANG KW, WANG SW, WU B, et al. , 2014. Bioactive natural compounds from the mangrove endophytic fungi [J]. Mini-Rev Med Chem, 14(4): 370-391.

    • XU TC, LU YH, WANG JF, et al. , 2021. Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010-2019 [J]. Microorganisms, 9(2): 217.

  • 参考文献

    • BEAU J, MAHID N, BURDA WN, et al. , 2012. Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii [J]. Mar Drugs, 10(4): 762-774.

    • BEEKMAN AM, CASTILLO ME, BARROW RA, 2013. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F [J]. Org Biomol Chem, 11(7): 1109-1115.

    • BIBI SN, FAWZI MM, GOKHAN Z, et al. , 2019. Ethnopharmacology, phytochemistry, and global distribution of mangroves — A comprehensive review [J]. Mar Drugs, 17(4): 231.

    • BRADY SF, WAGENAAR MM, SINGH MP, 2000. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus [J]. Org Lett, 2(25): 4043-4046.

    • CADAMURO RD, DA SILVEIRA BASTOS IMA, SILVA IT, et al. , 2021. Bioactive compounds from mangrove endophytic fungus and their uses for microorganism control [J]. J Fungi, 7(6): 455.

    • CHEN Y, YANG WC, ZOU G, et al. , 2022. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach [J]. J Nat Prod, 85(5): 1229-1238.

    • DENG ZJ, CAO LX, VRIJMOED LLP, et al. , 2010. Studies on distribution of fungal endophyte in mangrove plant Aegiceras corniculatum [J]. J Trop Oceanogr, 29(30): 77-81. [邓祖军, 曹理想, VRIJMOED LLP, 等, 2010. 红树林植物桐花树内生真菌类群分布的研究 [J]. 热带海洋学报, 29(30): 77-81. ]

    • DING L, DAHSE HM, HERTWECK C, 2012. Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum [J]. J Nat Prod, 75(4): 617-621.

    • GONG B, CHEN Y, ZHANG H, et al. , 2014. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum [J]. Trop J Pharm Res, 13(4): 593-599.

    • HUANG CH, PAN JH, CHEN B, et al. , 2011. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the south China sea [J]. Mar Drugs, 9(5): 832-843.

    • HUANG ZG, CAI XL, SHAO CL, et al. , 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76 [J]. Phytochemistry, 69(7): 1604-1608.

    • LI F, HUANG SS, HU WJ, et al. , 2020. Diversity and anti-thrombotic activity of endophytic and rhizospheric bacteria isolated from Aegiceras corniculatum [J]. Guihaia, 40(3): 335-344. [李菲, 黄庶识, 胡文进, 等, 2020. 桐花树内生和根际细菌多样性及抗血栓活性研究 [J]. 广西植物, 40(3): 335-344. ]

    • LI JL, SUN X, CHEN L, et al. , 2016. Community structure of endophytic fungi of four mangrove species in Southern China [J]. Mycology, 7(4): 180-190.

    • LIN ZJ, ZHU TJ, FANG YC, et al. , 2008a. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum [J]. Phytochemistry, 69(5): 1273-1278.

    • LIN ZJ, LU ZY, ZHU TJ, 2008b. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum [J]. Chem Pharm Bull, 56(2): 217-227.

    • LUO XW, YANG J, CHEN FM, et al. , 2018. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza a virus activities [J]. Front Chem, 6: 282.

    • SANTOS AL, IONTA M, HORVATH R, et al. , 2021. Molecular network for accessing polyketide derivatives from Phomopsis sp. , an endophytic fungus of Casearia arborea (Salicaceae) [J]. Phytochemistry Lett, 42: 1-7.

    • SHAN TJ, LOU JF, GAO S, et al. , 2012. Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis [J]. Afr J Microbiol Res, 6(14): 3440-3446.

    • SHATAER D, ABDULLA R, MA QL, 2020. Chemical composition of extract of Corylus avellana Shells [J]. Chem Nat Compd, 56(2): 338-340.

    • SUN JF, LIN X, ZHOU XF, et al. , 2014. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum [J]. J Antibiot, 67(6): 451-457.

    • TIAN XM, CAI XJ, GUO QM, et al, 2017. Advances in medicinal research of Aegiceras corniculatum [J]. J Liaoning Univ TCM, 19(11): 114-117. [田晓萌, 蔡晓婧, 郭庆梅, 等, 2017. 桐花树药用研究进展 [J]. 辽宁中医药大学学报, 19(11): 114-117. ]

    • VACA J, SALAZAR F, ORTIZ A, et al. , 2020. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study [J]. J Antibiot, 73(11): 798-802.

    • WANG KW, WANG SW, WU B, et al. , 2014. Bioactive natural compounds from the mangrove endophytic fungi [J]. Mini-Rev Med Chem, 14(4): 370-391.

    • XU TC, LU YH, WANG JF, et al. , 2021. Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010-2019 [J]. Microorganisms, 9(2): 217.