en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘冰(1998-),硕士研究生,研究方向为植物抗逆研究与应用,(E-mail)liubing8639@163.com。

通讯作者:

滕维超,博士,副教授,研究方向为植物抗逆研究与应用,(E-mail)vincentt@yeah.net。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2269-11

DOI:10.11931/guihaia.gxzw202210058

参考文献
BENZARTI M, REJEB KB, MESSEDI D, et al. , 2014. Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment [J]. S Afr J Bot, 95: 70-77.
参考文献
BURGESS IP, 1988. Provenance trials of Eucalyptus grandis and E. saligna in Australia [J]. Silv Genet, 37(5/6): 221-227.
参考文献
CHEN JX, WANG XF, 2006. Experimental guidance in plant physiology [M]. Guangzhou: South China University of Technology Press: 54-127. [陈建勋, 王晓峰, 2006. 植物生理学实验指导 [M]. 广州: 华南理工大学出版社: 54-127. ]
参考文献
COELHO CD, BOMBARDELLI RGH, SCHULZE GS, et al. , 2019. Genetic control of aluminum tolerance in tropical maize germplasm [J]. Bragantia, 78(1): 71-81.
参考文献
GONZÁLEZ A, CABRERA MLÁ, HENRIQUEZ MJ, et al. , 2012. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess [J]. Plant Physiol, 158(3): 1451-1462.
参考文献
GONZÁLEZ M, BALMELLI G, RESQUIN F, 2021. Performance of Eucalyptus tereticornis provenances in subtropical climate [J]. Agrociencia Urug, 25(1): 322-334.
参考文献
GUO P, 2018. Molecular and physiological mechanism of aluminum-tolerance and sulfur-mediated-alleviation of aluminum-toxicity in Citrus [D]. Fuzhou: Fujian Agriculture and Forestry University. [郭朋, 2018. 柑橘耐铝的分子生理机制及硫对铝毒的缓解 [D]. 福州: 福建农林大学. ]
参考文献
HOU WJ, LUO WJ, WEI J, et al. , 2019. Response of Eucalyptus DH3229 seedlings to SNP-acid aluminum nitrate interactions [J]. Guihaia, 39(4): 437-445. [侯文娟, 罗文姬, 韦洁, 等, 2019. 尾巨桉DH3229幼苗对硝普钠-酸铝互作的响应 [J]. 广西植物, 39(4): 437-445. ]
参考文献
HUANG LP, ZHOU ZL, WU YY, et al. , 2022. Research progress of non-volatile chemical components from Eucalyptus genus plants and their pharmacological activities [J]. Guihaia, 42(4): 531-542. [黄丽平, 周中流, 伍影瑶, 等, 2022. 桉属植物非挥发性化学成分和药理活性研究进展 [J]. 广西植物, 42(4): 531-542. ]
参考文献
HUANG QQ, 2021. Study on the change of soil phosphorus form and its bioavailability in orchard grass [D]. Xianyang: Northwest A & F University. [黄倩倩, 2021. 果园生草土壤磷形态变化特征及其生物有效性的研究 [D]. 咸阳: 西北农林科技大学. ]
参考文献
KONG XS, YI XF, 2008. Experimental techniques in plant physiology [M] Beijing: China Agriculture Press: 124-126. [孔祥生, 易现峰, 2008. 植物生理学实验技术 [M]北京: 中国农业出版社: 124-126. ]
参考文献
LI HS, 2000. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press: 164-261. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 164-261. ]
参考文献
LI L, 2020. Effects of SNP - Al interaction on the growth and physiology of Phoebe bournei seedlings [D]. Nanning: Guangxi University. [李琳, 2020. 硝普钠—酸铝互作对闽楠幼苗生长生理的影响 [D]. 南宁: 广西大学. ]
参考文献
LI L, FANG AH, KANG YC, et al. , 2020. Effects of SNP-AlCl3 interaction on growths of Castanopsis hystrix seedlings and comprehensive evaluation [J]. Guangxi For Sci, 49(2): 186-191. [李琳, 方爱华, 亢亚超, 等, 2020. 硝普钠-酸铝互作对红锥幼苗生长的影响及其综合评价 [J]. 广西林业科学, 49(2): 186-191. ]
参考文献
LI TK, 2020. Operation mode and evaluation of antioxidant system in root tip of four Eucalyptus seedlings under aluminum stress [D]. Nanning: Guangxi University. [黎汤侃, 2020. 铝胁迫下四种桉树幼苗根尖抗氧化系统运作方式与评价 [D]. 南宁: 广西大学. ]
参考文献
LI Y, 2017. Regulation of NO and glucose-6-phosphate dehydrogenase in response to aluminum stress in soybean [D]. Xinxiang: Henan Normal University. [李焱, 2017. NO和葡萄糖-6-磷酸脱氢酶在大豆铝胁迫响应中的调节作用研究 [D]. 新乡: 河南师范大学. ]
参考文献
LIANG JX, 2020. Al stress on root tip antioxidant system of tow Eucalyptus seedlings under H2O2 pretreatment [D]. Nanning: Guangxi University. [梁君霞, 2020. H2O2预处理下两种桉树幼苗根尖抗氧化系统对Al胁迫的响应 [D]. 南宁: 广西大学. ]
参考文献
LIANG YH, 2022. Physiological response characteristics of four species of Eucalyptus seedlings to aluminum stress and the mechanism of alleviating effect under hydrogen peroxide pretreatment [D]. Nanning: Guangxi University. [梁艳红, 2022. 四种桉树幼苗在铝胁迫下的生理响应特征及其在过氧化氢预处理下的缓解效应机制 [D]. 南宁: 广西大学. ]
参考文献
LIANG YH, BAI TD, LIU B, et al. , 2022. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species [J]. Ecotox Environ Saf, 174(2): 1137-1148.
参考文献
LIU Q, HE GH, LIU ZW, et al. , 2016. Effects of exogenous nitric oxide on light energy utilization, photoprotection system and active oxygen metabolism of tobacco leaves under aluminum stress [J]. J Hunan Agric Univ, 42(6): 615-621. [刘强, 贺根和, 柳正葳, 等, 2016. 外源一氧化氮对铝胁迫下烟草叶片光能利用和光保护系统及活性氧代谢的影响 [J]. 湖南农业大学学报, 42(6): 615-621. ]
参考文献
LIU Q, LIU ZW, HU C, et al. , 2017. Effects of exogenous nitric oxide on respiration and active oxygen metabolism of tobacco leaves under aluminum stress [J]. Henan Agric Sci, 46(1): 42-47. [刘强, 柳正葳, 胡萃, 等, 2017. 外源一氧化氮对铝胁迫下烟草叶片呼吸作用和活性氧代谢的影响 [J]. 河南农业科学, 46(1): 42-47. ]
参考文献
LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing Eucalyptus clones [D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究 [D]. 南宁: 广西大学. ]
参考文献
MIFTAHUDIN M, INDRIYANI RD, HUDA FM, et al. , 2021. OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia [J]. Plant Phydiol Biochem, 162(2): 86-99.
参考文献
PEREIRA LB, MAZZANTI C, CARGNELUTTI D, et al. , 2011. Differential responses of oat genotypes: oxidative stress provoked by aluminum [J]. Biometals, 24(1): 73-83.
参考文献
SARA F, ALI FB, MAHDI NN, et al. , 2020. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L. ) under aluminum stress. [J]. Genes Genom, 42(3): 245-261.
参考文献
SEIN CC, MITLÖHNER R, 2011. Eucalyptus urophylla S. T. Blake: ecology and silviculture in Vietnam [M]. Jakarta: Center for International Forestry Research (CIFOR): 16.
参考文献
SHEN Y, ZHANG ZH, XIAO KJ, 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants [J]. Rsc Adv, 5(111): 91846-91854.
参考文献
STEANE D, NICOLLE D, SANSALONI C, et al. , 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping [J]. Mol Phylogenet Evol, 59(1): 206-224.
参考文献
UGOLINI FC, DAHLGREN RA, 2002. Soil development in volcanic ash [J]. Glob Environ Res, 6(2): 69-82.
参考文献
WANG HH, ZHANG YY, LIU WW, 2019. Mitigating effect of nitric oxide on root growth inhibition of soybean under aluminum stress [J] Jiangsu Agric Sci, 47(18): 122-125. [王华华, 张杨阳, 刘文文, 2019. 铝胁迫下一氧化氮对大豆根生长抑制的缓解作用 [J]. 江苏农业科学, 47(18): 122-125. ]
参考文献
WANG XK, 2000. Principle and technology of plant physiology and biochemistry [M]. Beijing: Higher Education Press: 118-279. [王学奎, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 118-279. ]
参考文献
WEI YH, NONG CL, ZHOU MS, et al. , 2021. Application of organic waste compost in Eucalyptus container seedlings [J]. J Cent S Sci-Technol Univ For, 41(10): 83-89. [韦宜慧, 农春兰, 周明晟, 等, 2021. 有机废弃物堆肥在桉树容器苗生产中的应用效果 [J]. 中南林业科技大学学报, 41(10): 83-89. ]
参考文献
WU Y, 2019. Study on relieving effects of exogenous salicylic acid and NO on ryegrass under aluminum stress [D]: Yangzhou: Yangzhou University. [吴亚, 2019. 外源水杨酸和NO对铝胁迫下黑麦草的缓解研究 [D]. 扬州: 扬州大学. ]
参考文献
XIAO JC, ZHENG KM, MA JY, et al. , 2021. Effects of exogenous NO on growth and physiological characteristics of watermelon seedlings under aluminum stress [J]. J Agro-Environ Sci, 40(8): 1650-1658. [肖家昶, 郑开敏, 马俊英, 等, 2021. 外源NO对铝胁迫下西瓜幼苗生长及生理特性的影响 [J]. 农业环境科学学报, 40(8): 1650-1658. ]
参考文献
XIE YJ, 2015. Real Eucalyptus [M]. Beijing: China Forestry Publishing House: 2-10. [谢耀坚, 2015. 真实的桉树 [M]. 北京: 中国林业出版社: 2-10. ]
参考文献
XIONG J, AN L, LU H, et al. , 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall [J]. Planta, 230(4): 755-765.
参考文献
XIONG J, FU G, TAO L, et al. , 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants [J]. Arch Biochem Biophys, 497(1): 13-20.
参考文献
YAMAMOTO Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation [J]. Soil Sci Plant Nutr, 65(1): 41-55.
参考文献
YATNO E, ZAUYAH S, 2008. Properties and management implications of soils formed from volcanic materials in Lembang area, West Java [J]. Indones J Agric Sci, 9(2): 44-54.
参考文献
YIN L, WANG S, ELTAVEB AE, et al. , 2010. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco [J]. Planta, 231(3): 609-621.
参考文献
YU M, LAMATTINA L, SPOEL SH, et al. , 2014. Nitric oxide function in plant biology: a redox cue in deconvolution [J]. New Phytol, 202(4): 1142-1156.
参考文献
ZHAO H, HUANG W, ZHANG Y, et al. , 2018. Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance [J]. Plant Soil, 431(1/2): 71-87.
参考文献
ZHU YA, XU JM, LI GY, et al. , 2018. Genetic parameters for wood properties in a reciprocal factorial mating design between Eucalyptus urophylla and E. camaldulensis [J]. For Res, 31(6): 121-129.
目录contents

    摘要

    为探究外源一氧化氮(NO)对铝胁迫下桉树幼苗耐铝性的影响,该研究以4种3月生桉树幼苗(巨桉、尾叶桉、圆角桉、尾巨桉)为对象,将硝普钠(SNP)作为外源NO供体,采用水培法,研究不同浓度NO(0、50、100、200、400、800 μmol·L-1)对120 mg·L-1铝胁迫条件下桉树幼苗的ROS、抗氧化酶活性和有机渗透调节物质含量等生理指标的影响,并比较4种桉树在NO处理下的耐铝性差异。结果表明:(1)铝胁迫下添加适宜浓度外源NO (50 μmol·L-1≤NO≤200 μmol·L-1),可促使4种桉树提高可溶性糖和可溶性蛋白的含量、抗氧化酶(SOD、POD、CAT、APX)活性,清除体内的ROS和降低MDA的积累,提高抗铝性,但在高浓度的NO(≥800 μmol·L-1) 处理下桉树幼苗的抗氧化酶活性和渗透调节物质含量降低,表现出胁迫反应。(2)NO对于敏感型桉树的耐铝性有较强的提升作用,对耐受型桉树的耐铝性提升不明显,在NO的作用下4种桉树的抗铝性最终趋于一致。(3)SOD、MDA、CAT、O2-、可溶性蛋白和可溶性糖这些指标可作为评判桉树耐铝性强弱的关键指标。该研究结果为桉树耐铝种质资源的选择提供科学参考,为深入了解NO调控桉树种间耐铝性差异的机制奠定了基础。

    Abstract

    To investigate the effect of exogenous nitric oxide (NO) on aluminum tolerance of Eucalyptus seedlings under aluminum stress. In this study, sodium nitroproside (SNP) was used as exogenous NO donor in four kinds of Eucalyptus seedlings (Eucalyptus grandis, E. urophylla, E. tereticornis, E. urophylla×E. grandis). The effects of different concentrations of NO (0, 50, 100, 200, 400, 800 μmol·L-1) on the physiological indices of ROS, antioxidant enzyme activities and the contents of organic osmotic regulatory substances of Eucalyptus seedlings under 120 mg·L-1 aluminum stress were studied, and the differences of aluminum tolerance of four Eucalyptus species under NO treatment were compared. The results were as follows: (1) The addition of exogenous NO (50 μmol·L-1≤NO≤200 μmol·L-1) under aluminum stress promoted the contents of soluble sugar and soluble protein, the activities of antioxidant enzymes (SOD, POD, CAT, APX), the removal of ROS in the body, the reduction of MDA accumulation, and the improvement of aluminum stress resistance. However, under high concentration of NO(≥800 μmol·L-1), the activities of antioxidant enzymes and the contents of osmotic regulatory substances decreased in Eucalyptus seedlings, showing stress response. (2) NO significantly improved the aluminum tolerance of sensitive Eucalyptus, but not significantly improved the aluminum tolerance of tolerant Eucalyptus. Finally, the aluminum resistance of four Eucalyptus species tended to be consistent under the action of NO. (3) SOD, MDA, CAT, O2-, soluble protein and soluble sugar could be used as key indicators to evaluate the aluminum tolerance of Eucalyptus. This study provides a scientific reference for the selection of aluminum tolerance germplasm resources of Eucalyptus, and laid a foundation for further understanding of the mechanism of NO regulating the difference of aluminum tolerance between Eucalyptus species.

  • 铝是地壳中含量最丰富的金属元素,铝毒害能够诱导植物体生成大量活性氧(reactive oxygen species,ROS),从而使细胞发生氧化胁迫,导致细胞膜透性增大(Pereira et al.,2011)。如何解决植物铝毒害,有效利用酸性土壤资源已成为土壤和植物科学家们重视的问题。桉树(Eucalyptus spp.)是桃金娘科(Myrtaceae)桉属(Eucalyptus)植物的统称(谢耀坚,2015),种植历史较长、生长迅速、适应性广、产量高,在我国林业产业中占有重要地位(韦宜慧等,2021; 黄丽平等,2022)。桉树栽植区域主要在我国南方地区,土壤偏酸性且风化程度较高,土壤中铝铁含量较丰富(黄倩倩,2021),抑制桉树的生长发育,严重影响桉树的产量和品质。一氧化氮(NO)是一种重要的氧化还原信号分子,能够调控植物生长发育,在植物受到胁迫时传导信息以提高植株抗逆性,但也可能作为一种活性氮在植物体内大量积累,引起硝化胁迫从而对植物造成损害(李焱,2017)。近年来,前人已开展了一些NO 缓解植物铝毒害方面的研究,NO缓解金属胁迫主要有3种机制:(1)增强抗氧化能力(González et al.,2012);(2)减少重金属在植物体内的积累(Xiong et al.,2009);(3)调控与金属抗性相关的基因表达(Xiong et al.,2010)。有研究表明,NO通过调节体内的渗透物质和增加抗氧化酶活性来降低铝对闽楠(Phoebe bournei)、大豆(Glycine max)、烟草(Nicotiana tabacum)等植物的氧化损伤,提高抗铝性(刘强等,2017; 王华华等,2019; 李琳,2020)。过氧化氢(H2O2)和NO都属于小分子信号物质,均具有毒害和保护细胞这两种相反的生理功能(Yu et al.,2014)。逆境胁迫条件下,植物体内H2O2和外源添加NO对抗氧化系统代谢的影响在植物响应逆境胁迫中至关重要(Yin et al.,2010)。铝胁迫下,桉树外源添加NO对体内H2O2代谢和植物抗氧化系统的响应方面尚未见报道,值得深入研究。为更好地了解NO对不同耐铝性桉树的抗铝性影响机制,我们选取课题组前期研究发现的耐铝性显著差异的4种桉树 [纯种桉树巨桉(Eucalyptus grandis)、圆角桉(E. tereticornis)、尾叶桉(E. urophylla)和杂交种桉树尾巨桉(E. urophylla × E. grandis)]为研究对象(黎汤侃,2020; 梁艳红,2022),其中,巨桉和圆角桉为铝敏感型桉树,尾叶桉和尾巨桉为耐铝型桉树。采用水培方式培养,通过测定并分析不同NO浓度对铝胁迫下桉树幼苗ROS、抗氧化酶活性、渗透调节物质以及膜脂过氧化性等指标的影响,拟探讨:(1)铝胁迫下不同耐铝性桉树叶片的生理指标变化及其与耐铝性的关系;(2)外源NO处理对4种桉树的耐铝性差异的影响;(3)有利于提高4种桉树抗铝性的NO浓度范围。本研究结果将为提高酸性土壤下桉树幼苗的耐铝性以及耐铝桉树种质资源的选育与利用提供理论参考,为铝毒污染的土壤区桉树优质高产栽培提供指导依据。

  • 1 材料与方法

  • 1.1 材料

  • 供试材料为广西国有东门林场林业科学研究所(107°84′ E、 22°17′ N)提供的生长健康、长势均匀的3月生桉树实生幼苗(巨桉、尾叶桉、圆角桉、杂交种尾巨桉)。将苗木运回广西大学林学院(108°17′09.00″ E、 22°50′28.41″ N,属于亚热带季风气候,年均气温22.6℃,年降雨量1 100~1 300 mm)后,在室外进行水培,培养期从 2022年 4 月 10 日开始,至 2022 年 4 月 24 日结束。水培方法按照陆明英(2014)的方法进行。首先将试验苗根部的土质轻轻去除,并用自来水冲洗干净后,浸入1‰多菌灵溶液消毒20 min,其次用自来水冲洗干净,再次用全黑不透光的珍珠棉泡沫板固定植株,每块泡沫板按照黑色塑料桶桶口直径的大小切割成圆形(塑料桶规格:17.8 cm × 17.9 cm),将桉树幼苗均匀固定在珍珠棉泡沫板上,之后移入盛有2.5 L含0.5 mmol·L-1 CaCl2的pH=5.5霍格兰德(Hoagland)营养液的黑色塑料桶中(营养液配方如表1),最后接通氧气泵,保证氧气泵24 h不间断供氧(整体装置见图1)。培养期间,每3 d更换一次培养液,水培一周后,更换的营养液用1 mol·L-1的HCl和1 mol·L-1NaOH溶液逐渐调节pH至4.5,待苗木水培14 d后取长势优良、大小一致的桉树幼苗进行处理。

  • 表1 霍格兰德营养液配方

  • Table1 Hoagland nutrient solution formula

  • 图1 桉树水培装置简图

  • Fig.1 Schematic illustration of Eucalyptus hydroponic device

  • 1.2 设计

  • 在广西大学林学院室外进行试验处理,采用完全随机试验,从2022年4月24日(培养期结束)开始试验处理,至2022年4月26日结束。水培期结束后筛选出生长良好、长势基本一致[株高(30±10) cm,地径(5±2) mm]的桉树幼苗,以AlCl3·7H2O作为Al3+供体,硝普钠(sodium nitroproside,SNP)作为NO的供体,对桉树幼苗设置7个处理(表2),其中铝浓度120 mg·L-1是根据课题组前期实验获得(黎汤侃,2020; 梁君霞,2020; 梁艳红,2022; Liang et al.,2022)。每处理3个重复(3盆),每个重复6株(每盆6株),每种桉树126株,4种共计504株。接通氧气泵处理48 h后,分别采集幼苗中间位置叶片置于-80℃冰箱中保存以用于后续指标测定。

  • 1.3 指标测定方法

  • 丙二醛(MDA)含量测定采用硫代巴比妥酸法,可溶性蛋白质含量测定采用考马斯亮蓝G-250 法,可溶性糖含量测定采用蒽酮比色法,抗坏血酸过氧化物酶(APX)活性测定采用维生素C氧化法(王学奎,2000; 李合生,2000);超氧化物歧化酶(SOD)活性测定采用氮蓝四唑法,过氧化物酶(POD)活性测定采用愈创木酚法,过氧化氢酶(CAT)活性测定采用紫外吸收法(陈建勋和王晓峰,2006);超氧阴离子(O2-)产生速率测定采用羟胺氧化反应法(孔祥生和易现峰,2008);过氧化氢(H2O2)含量测定采用硫酸钛比色法(Yi et al.,2015)。

  • 表2 实验设计与各组处理明细表

  • Table2 Experimental design and treatment list of each group

  • 1.4 数据处理

  • 采用Excel 2016软件对试验数据进行整理,试验数据均为3次重复取平均值±标准差,并用SPSS 26.0软件进行Duncan多重比较分析(P<0.05),柱状图采用Sigmaplot 12.0软件进行绘制,主成分分析采用R软件进行计算和绘制。在进行主成分分析时,为了更好地比较4种桉树对Al和SNP处理的响应程度差异,必须平衡它们在原始状态(CK,无Al或SNP处理)下的差异,故使用相对生理指标来反映它们对Al和SNP处理的响应程度,计算公式如下(Liang et al.,2022):

  • T1相对值=T1实测值/CK实测值;

  • (T2-T6)相对值= (T2-T6)实测值/T1实测值。

  • 2 结果与分析

  • 2.1 各处理对桉树幼苗O2-产生速率、H2O2和MDA含量的影响

  • 由图2可知,与CK相比,铝胁迫处理(T1)对巨桉O2-产生速率无显著影响,而显著增加了其余3种桉树幼苗O2-的产生速率。随着SNP浓度的上升,4种桉树幼苗叶片O2-的产生速率均呈现先降后升的趋势,巨桉在T2时最低,较T1显著下降3.48%(P<0.05),尾叶桉在T3时最低,较T1显著下降3.79%(P<0.05),圆角桉在T4时最低,较T1显著下降5.67%(P<0.05),尾巨桉在T2时最低,较T1显著下降1.94%(P<0.05),4种桉树在T2、T3和T4普遍较低,表明适当浓度的SNP有助于降低桉树体内O2-的产生速率。

  • 与CK相比, T1显著增加了尾叶桉幼苗叶片H2O2含量的累积,而对其余3种桉树幼苗的H2O2含量无显著影响。随着SNP浓度的上升,4种桉树幼苗叶片H2O2含量均呈现先降后升的趋势,巨桉在T3时最低,较T1显著下降13.50%(P<0.05),尾叶桉在T5时最低,较T1显著下降23.77%(P<0.05),圆角桉在T4时最低,较T1显著下降4.69%(P<0.05),尾巨桉在T4时最低,较T1显著下降13.32%(P<0.05),4种桉树在T3、T4和T5时普遍较低,表明适当浓度的SNP有助于降低桉树体内的H2O2含量。

  • 与CK相比,铝胁迫下尾叶桉T1处理的MDA含量无显著变化,其余3种桉树幼苗T1处理的MDA含量显著增加。随着SNP浓度的上升,4种桉树幼苗叶片MDA含量普遍呈现先降后升的趋势,巨桉幼苗在T3时最低,较T1显著下降54.29%(P<0.05),尾叶桉在T3时最低,较T1显著下降36.03%(P<0.05),圆角桉在T4时最低,较T1显著下降40.81%(P<0.05),尾巨桉在T3时最低,较T1显著下降65.57%(P<0.05),4种桉树分别在T3或者T4达到最低值,表明适当浓度的SNP有助于降低桉树体内的MDA含量。

  • 2.2 各处理对桉树幼苗抗氧化酶活性的影响

  • 由图3可知,与CK相比,T1显著提升了圆角桉幼苗叶片SOD活性。随着SNP浓度的上升,4种桉树幼苗叶片SOD活性普遍呈现先升后降的趋势,巨桉幼苗在T3时活性最大,较T1显著提高9.14%(P<0.05),尾叶桉在T5时活性最大,是T1的2.22倍,圆角桉在T4时活性最大,是T1的1.82倍,尾巨桉在T4时活性最大,是T1的1.86倍,4种桉树普遍在T3、T4或者T5达到最大值,表明适当浓度的SNP有助于提高SOD活性。

  • 图2 各处理对桉树幼苗O2-、H2O2及MDA含量的影响

  • Fig.2 Effects of different treatments on O2-, H2O2 and MDA contents in Eucalyptus seedlings

  • 与CK相比,T1显著提升了巨桉和圆角桉幼苗叶片POD活性,而对尾叶桉和尾巨桉的POD活性无显著影响。随着SNP浓度的上升,尾巨桉POD活性无明显变化,其余3种桉树幼苗叶片POD活性普遍呈现先升后降的趋势,巨桉幼苗在T3时活性最大,较T1显著提高53.06%(P<0.05),尾叶桉在T5时活性最大,较T1显著提高66.04%(P<0.05),圆角桉在T4时活性最大,较T1显著提高50.00%(P<0.05),尾巨桉在T6时活性最大,与T1相比无显著影响(P>0.05),表明适当浓度的SNP有助于提高POD活性。

  • 与CK相比, T1显著提升了圆角桉幼苗叶片CAT活性。随着SNP浓度的上升,4种桉树幼苗叶片CAT活性普遍呈现先升后降的趋势,巨桉幼苗在T3时活性最大,与T1相比无显著影响(P>0.05),尾叶桉在T2时活性最大,是T1的3.72倍,圆角桉在T6时活性最大,较T1显著提高41.11%(P<0.05),尾巨桉在T3时活性最大,是T1的3.08倍,表明适当浓度的SNP有助于提高CAT活性。

  • 与CK相比,T1显著提升了巨桉和尾叶桉幼苗叶片APX活性,而对圆角桉和尾巨桉的APX活性无显著影响。随着SNP浓度的上升,4种桉树幼苗叶片APX活性普遍呈现先升后降的趋势,巨桉幼苗在T3时活性最大,较T1显著提高25.33%(P<0.05),尾叶桉在T5时活性最大,较T1显著提高33.59%(P<0.05),圆角桉在T5时活性最大,较T1显著提高54.24%(P<0.05),尾巨桉在T4时活性最大,是T1的2.36倍,表明适当浓度的SNP有助于提高APX活性。

  • 2.3 各处理对桉树幼苗渗透调节物质含量的影响

  • 由图4可知,与CK相比, T1显著提升尾叶桉幼苗叶片可溶性蛋白含量。随着SNP浓度的上升,4种桉树幼苗叶片可溶性蛋白含量普遍呈现先升后降的趋势,巨桉幼苗在T5时活性最大,较T1显著提高8.04%(P<0.05),尾叶桉在T5时活性最大,较T1显著提高15.37%(P<0.05),圆角桉在T5时活性最大,较T1显著提高10.96%(P<0.05),尾巨桉在T2时活性最大,较T1显著提高5.02%,4种桉树分别在T2或T5达到最大值,表明适当浓度的SNP有助于提高桉树幼苗叶片可溶性蛋白含量。

  • 图3 各处理对桉树幼苗抗氧化酶活性的影响

  • Fig.3 Effects of different treatments on antioxidant enzyme activities in Eucalyptus seedlings

  • 与CK相比,T1显著提升了尾叶桉和圆角桉的可溶性糖含量,而对巨桉和尾巨桉幼苗叶片可溶性糖含量影响效果不显著。随着SNP浓度的上升,4种桉树幼苗叶片可溶性糖含量普遍呈现先升后降的趋势,巨桉幼苗在T3时活性最大,较T1显著提高13.51%(P<0.05),尾叶桉在T2时活性最大,较T1显著提高33.20%(P<0.05),圆角桉在T3时活性最大,较T1显著提高31.11%(P<0.05),尾巨桉在T4时活性最大,较T1显著提高8.21%,4种桉树分别在T2、T3或T4达到最大值,表明适当浓度的SNP有助于提高桉树幼苗叶片可溶性糖含量。

  • 2.4 4种桉树主成分分析

  • 为了解9个生理指标在4种桉树间的差异,我们使用主成分分析来减少响应变量的维数。由表3可知,在单一铝胁迫下保留了2个主成分,主成分1和主成分2的贡献率分别为42.90%、37.11%,累计贡献率达80.01%。主成分1主要受SOD、MDA和CAT影响。主成分2主要受O2-产生速率、可溶性糖和可溶性蛋白影响。在SNP处理下,主成分1、主成分2和主成分3的贡献率分别为27.96%、21.58%和15.20%,累积贡献率达64.74%。主成分1主要受APX、SOD、CAT和可溶性糖影响,主成分2主要受O2-产生速率、MDA和可溶性蛋白影响,主成分3主要受H2O2影响。

  • 由图5可知,在单一铝胁迫下,4种桉树的点彼此分离(图5:A),尾叶桉的抗铝性最强,其次是尾巨桉和巨桉,圆角桉的抗铝性最弱。在铝胁迫添加SNP处理下,4种桉树的点相对集中(图5:B,C,D),表明在添加NO时4种桉树的抗铝性趋于一致。

  • 图4 各处理对桉树幼苗渗透调节物质含量的影响

  • Fig.4 Effects of different treatments on contents of osmotic regulatory substances in Eucalyptus seedlings

  • 表3 桉树幼苗主成分特征值矩阵

  • Table3 Eigenvalue matrix of principal components of Eucalyptus seedlings

  • 注:粗体表示载荷量占比最重的指标,反映该指标在主成分中的影响力较大。

  • Note: Bold indicates the index with the heaviest load proportion, reflecting the greater influence of this index in the principal component.

  • 图5 4种桉树的9个生理变量的主成分分析

  • Fig.5 Principal component analysis of nine physiological variables of four Eucalyptus species

  • 3 讨论

  • 3.1 添加NO对桉树响应铝胁迫的影响

  • 桉树幼苗对铝胁迫的响应主要表现在细胞膜系统、保护酶活性、渗透调节物质和代谢活性等方面(黎汤侃,2020),本研究从上述3个方面分别选取具有代表性的指标,探讨铝胁迫下施加外源物质SNP对4种桉树幼苗的保护效果。铝胁迫下植物体内会产生大量活性氧,引起氧化胁迫,破坏脂质、蛋白质、DNA等生物大分子,使细胞死亡,从而影响植物生理状态(郭朋,2018)。其中O2-和H2O2是植物氧化损伤的主要指标,MDA是质膜过氧化的产物,它们常作为反映植物质膜氧化胁迫水平的重要生理指标,其含量多少与细胞膜的氧化损伤呈正相关(Yamamoto,2019)。当植物体内积累大量ROS时,就会激活抗氧化系统进行清除,从而维持细胞内氧化还原的稳态。本研究中,与对照组相比,铝胁迫处理显著加剧4种桉树的O2-产生速率和MDA含量的累积,添加适量SNP(巨桉和尾叶桉SNP添加量在50~100 μmol·L-1之间,圆角桉在100~200 μmol·L-1之间,尾巨桉在50~200 μmol·L-1之间)能有效提高铝胁迫下桉树幼苗的SOD、POD、CAT、APX酶活性和可溶性蛋白、可溶性糖的含量,并降低O2-产生速率和MDA含量,减轻质膜过氧化损伤,表明铝胁迫下适当浓度的SNP可以提高抗氧化酶活性,增强植物体消除ROS能力以提高植物耐铝性,这与侯文娟等(2019)的研究结果类似。但施加800 μmol·L-1 SNP导致4种桉树叶片O2-产生速率和可溶性蛋白含量提高,同时4种桉树可溶性糖含量以及巨桉的SOD等抗氧化酶活性降低,这可能是因为NO 除了作为信号分子参与调控植物生理代谢过程外,还可能是因为NO是一种活性氮,高浓度的SNP施加后活性氮在植物体内过量积累导致硝化胁迫,铝胁迫和硝化胁迫的双重胁迫,这严重破坏抗氧化系统,抑制抗氧化酶活性。由此可见,NO这种重要的气体信号分子具有双重性,适当外施NO能缓解铝胁迫下桉树幼苗的生理损伤,而高浓度则产生抑制作用,该研究结果与西瓜(肖家昶等,2021)、尾巨桉DH3229(侯文娟等,2019)以及红锥(李琳等,2020)等的研究结果一致。为验证硝化胁迫的影响程度,后续我们将测定并分析硝化胁迫特有的生理指标[谷胱甘肽还原酶(GSNOR)活性、过氧亚硝基阴离子(ONOO-)和一氧化氮(NO)在植物组织中的分布],完善试验结论。

  • 3.2 表征桉树耐铝性强弱的主要指标

  • 在单一铝胁迫下,PC1主要表征抗氧化能力和膜脂过氧化程度,PC2主要表征渗透调节物质含量。在铝胁迫下添加NO,PC1主要表征抗氧化能力,PC2主要表征膜脂过氧化程度,PC3主要表征活性氧积累程度。综上可知,SOD、MDA、CAT、O2-、可溶性蛋白和可溶性糖这些指标可作为评判桉树耐铝性强弱的关键指标。桉树在受到铝胁迫时,大量的活性氧(包括O2-和H2O2等)在体内累积,主要通过提高抗氧化酶活性来清除活性氧,此外还可以生物合成可溶性化合物(包括可溶性糖和可溶性蛋白等),以调节细胞渗透情况,保持膜的完整性和功能(Benzarti et al.,2014)。

  • 3.3 种间耐铝性差异及NO对铝胁迫的影响效益

  • 在单一铝胁迫下,尾叶桉的抗铝性最强,其次是尾巨桉和巨桉,圆角桉的抗铝性最弱,主要是因为铝胁迫下尾叶桉的APX活性提升幅度较大,抗氧化能力提高,渗透调节物质含量提升幅度较大,对细胞膜有更好的保护作用,膜脂过氧化程度较低。圆角桉虽然具有较高的抗氧化酶活性和渗透调节能力,但是MDA含量也很高,这可能由于圆角桉对铝胁迫的响应较敏感,抗性响应积极,然而受限于自身的不足,膜脂过氧化程度较高,因此抗性较弱。这与课题组前期研究结果大致相当(Liang et al.,2022)。桉树种间耐铝性差异可能与它们的适应性进化历史有关。尾叶桉原生长在印尼东部岛屿(7°30′—10°0′ S)的火山衍生土壤上(Sein &Mitlöhner,2011),那里的土壤富含铝矾土、铁矾土和铝/铁腐殖质复合体(Ugolini &Dahlgren,2002; Yatno &Zauyah,2008),长期的富铝环境导致尾叶桉进化出较强的抗铝性(Steane et al.,2011)。巨桉原产于澳大利亚东部(17°—32° S)(Burgess,1988)。圆角桉的自然分布范围最广,从巴布亚新几内亚到南澳大利亚(6°—38° S)(González et al.,2021),巨大的纬度差异引起人为和环境因素直接或间接影响土壤环境(如pH值),可能导致圆角桉较强的抗逆可塑性,本次试验发现圆角桉的抗铝能力最弱,但是在前期试验中发现圆角桉的耐铝性位于尾叶桉和巨桉之间(Liang et al.,2022),这可能是由于不同批次苗木的个体差异。总的来说,巨桉、尾叶桉和圆角桉这3种桉树之间的耐铝性差异可能归因于它们不同的栖息地,而尾巨桉作为尾叶桉和巨桉的杂交种,其抗铝性介于尾叶桉和巨桉之间。尾巨桉具有与其母本物种(尾叶桉)相似的特性,表明抗铝胁迫的能力是可遗传的,由少数基因调控,并在很大程度上由杂交物种遗传。在许多植物中发现了耐铝的遗传控制机理,一些作物的耐铝品种已被选育(Zhao et al.,2018; Coelho et al.,2019; Sara et al.,2020; Miftahudin et al.,2021)。许多国家都开展了桉树杂交改良品种选育和种植的相关研究,选育出了一批高产、高抗、高适应性的改良品种(Zhu et al.,2018)。这表明桉树耐铝基因型的选育是可行的和有前景的。值得注意的是,虽然本研究发现杂交品种具有与母本品种相似的强耐铝能力,但是父本品种的耐铝能力较低。因此,需要进行反交试验来进一步验证桉树的耐铝能力的遗传特性。

  • 本研究结果表明外源NO可以通过激活桉树体内抗氧化酶活性和增加渗透调节物质来降低铝胁迫的危害,提高耐铝性。有研究发现,在黑麦草(吴亚,2019)、烟草(刘强等,2016)植物中,外源NO对铝胁迫下敏感型黑麦草Nagahahikari、敏感基因型烟草云烟105的缓解效果分别比耐铝型更明显,表现出较强的耐铝性。本研究也发现类似结果,在外源NO作用下,4种桉树耐铝性相对集中,这可能是因为NO有类似缓冲剂的平衡作用,即提高原本较弱的巨桉和圆角桉(敏感型)的抗铝性,对原本抗铝性较强的尾叶桉(耐受型)影响不大,所以在NO的作用下4种桉树的抗铝性最终趋于一致。

  • 4 结论

  • 适量的NO浓度(50~200 μmol·L-1)可通过提高铝胁迫下桉树抗氧化酶活性和渗透调节物质含量,降低MDA含量来提高桉树抗铝性。而浓度过高(≥800 μmol·L-1)的NO会对桉树产生胁迫作用。NO对于敏感型桉树的耐铝性有较强的提升作用,对耐受型桉树的耐铝性提升不明显,在NO的作用下4种桉树的抗铝性最终趋于一致。SOD、MDA、CAT、O2-、可溶性蛋白和可溶性糖这些指标可作为评判桉树耐铝性强弱的关键指标。

  • 参考文献

    • BENZARTI M, REJEB KB, MESSEDI D, et al. , 2014. Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment [J]. S Afr J Bot, 95: 70-77.

    • BURGESS IP, 1988. Provenance trials of Eucalyptus grandis and E. saligna in Australia [J]. Silv Genet, 37(5/6): 221-227.

    • CHEN JX, WANG XF, 2006. Experimental guidance in plant physiology [M]. Guangzhou: South China University of Technology Press: 54-127. [陈建勋, 王晓峰, 2006. 植物生理学实验指导 [M]. 广州: 华南理工大学出版社: 54-127. ]

    • COELHO CD, BOMBARDELLI RGH, SCHULZE GS, et al. , 2019. Genetic control of aluminum tolerance in tropical maize germplasm [J]. Bragantia, 78(1): 71-81.

    • GONZÁLEZ A, CABRERA MLÁ, HENRIQUEZ MJ, et al. , 2012. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess [J]. Plant Physiol, 158(3): 1451-1462.

    • GONZÁLEZ M, BALMELLI G, RESQUIN F, 2021. Performance of Eucalyptus tereticornis provenances in subtropical climate [J]. Agrociencia Urug, 25(1): 322-334.

    • GUO P, 2018. Molecular and physiological mechanism of aluminum-tolerance and sulfur-mediated-alleviation of aluminum-toxicity in Citrus [D]. Fuzhou: Fujian Agriculture and Forestry University. [郭朋, 2018. 柑橘耐铝的分子生理机制及硫对铝毒的缓解 [D]. 福州: 福建农林大学. ]

    • HOU WJ, LUO WJ, WEI J, et al. , 2019. Response of Eucalyptus DH3229 seedlings to SNP-acid aluminum nitrate interactions [J]. Guihaia, 39(4): 437-445. [侯文娟, 罗文姬, 韦洁, 等, 2019. 尾巨桉DH3229幼苗对硝普钠-酸铝互作的响应 [J]. 广西植物, 39(4): 437-445. ]

    • HUANG LP, ZHOU ZL, WU YY, et al. , 2022. Research progress of non-volatile chemical components from Eucalyptus genus plants and their pharmacological activities [J]. Guihaia, 42(4): 531-542. [黄丽平, 周中流, 伍影瑶, 等, 2022. 桉属植物非挥发性化学成分和药理活性研究进展 [J]. 广西植物, 42(4): 531-542. ]

    • HUANG QQ, 2021. Study on the change of soil phosphorus form and its bioavailability in orchard grass [D]. Xianyang: Northwest A & F University. [黄倩倩, 2021. 果园生草土壤磷形态变化特征及其生物有效性的研究 [D]. 咸阳: 西北农林科技大学. ]

    • KONG XS, YI XF, 2008. Experimental techniques in plant physiology [M] Beijing: China Agriculture Press: 124-126. [孔祥生, 易现峰, 2008. 植物生理学实验技术 [M]北京: 中国农业出版社: 124-126. ]

    • LI HS, 2000. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press: 164-261. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 164-261. ]

    • LI L, 2020. Effects of SNP - Al interaction on the growth and physiology of Phoebe bournei seedlings [D]. Nanning: Guangxi University. [李琳, 2020. 硝普钠—酸铝互作对闽楠幼苗生长生理的影响 [D]. 南宁: 广西大学. ]

    • LI L, FANG AH, KANG YC, et al. , 2020. Effects of SNP-AlCl3 interaction on growths of Castanopsis hystrix seedlings and comprehensive evaluation [J]. Guangxi For Sci, 49(2): 186-191. [李琳, 方爱华, 亢亚超, 等, 2020. 硝普钠-酸铝互作对红锥幼苗生长的影响及其综合评价 [J]. 广西林业科学, 49(2): 186-191. ]

    • LI TK, 2020. Operation mode and evaluation of antioxidant system in root tip of four Eucalyptus seedlings under aluminum stress [D]. Nanning: Guangxi University. [黎汤侃, 2020. 铝胁迫下四种桉树幼苗根尖抗氧化系统运作方式与评价 [D]. 南宁: 广西大学. ]

    • LI Y, 2017. Regulation of NO and glucose-6-phosphate dehydrogenase in response to aluminum stress in soybean [D]. Xinxiang: Henan Normal University. [李焱, 2017. NO和葡萄糖-6-磷酸脱氢酶在大豆铝胁迫响应中的调节作用研究 [D]. 新乡: 河南师范大学. ]

    • LIANG JX, 2020. Al stress on root tip antioxidant system of tow Eucalyptus seedlings under H2O2 pretreatment [D]. Nanning: Guangxi University. [梁君霞, 2020. H2O2预处理下两种桉树幼苗根尖抗氧化系统对Al胁迫的响应 [D]. 南宁: 广西大学. ]

    • LIANG YH, 2022. Physiological response characteristics of four species of Eucalyptus seedlings to aluminum stress and the mechanism of alleviating effect under hydrogen peroxide pretreatment [D]. Nanning: Guangxi University. [梁艳红, 2022. 四种桉树幼苗在铝胁迫下的生理响应特征及其在过氧化氢预处理下的缓解效应机制 [D]. 南宁: 广西大学. ]

    • LIANG YH, BAI TD, LIU B, et al. , 2022. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species [J]. Ecotox Environ Saf, 174(2): 1137-1148.

    • LIU Q, HE GH, LIU ZW, et al. , 2016. Effects of exogenous nitric oxide on light energy utilization, photoprotection system and active oxygen metabolism of tobacco leaves under aluminum stress [J]. J Hunan Agric Univ, 42(6): 615-621. [刘强, 贺根和, 柳正葳, 等, 2016. 外源一氧化氮对铝胁迫下烟草叶片光能利用和光保护系统及活性氧代谢的影响 [J]. 湖南农业大学学报, 42(6): 615-621. ]

    • LIU Q, LIU ZW, HU C, et al. , 2017. Effects of exogenous nitric oxide on respiration and active oxygen metabolism of tobacco leaves under aluminum stress [J]. Henan Agric Sci, 46(1): 42-47. [刘强, 柳正葳, 胡萃, 等, 2017. 外源一氧化氮对铝胁迫下烟草叶片呼吸作用和活性氧代谢的影响 [J]. 河南农业科学, 46(1): 42-47. ]

    • LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing Eucalyptus clones [D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究 [D]. 南宁: 广西大学. ]

    • MIFTAHUDIN M, INDRIYANI RD, HUDA FM, et al. , 2021. OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia [J]. Plant Phydiol Biochem, 162(2): 86-99.

    • PEREIRA LB, MAZZANTI C, CARGNELUTTI D, et al. , 2011. Differential responses of oat genotypes: oxidative stress provoked by aluminum [J]. Biometals, 24(1): 73-83.

    • SARA F, ALI FB, MAHDI NN, et al. , 2020. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L. ) under aluminum stress. [J]. Genes Genom, 42(3): 245-261.

    • SEIN CC, MITLÖHNER R, 2011. Eucalyptus urophylla S. T. Blake: ecology and silviculture in Vietnam [M]. Jakarta: Center for International Forestry Research (CIFOR): 16.

    • SHEN Y, ZHANG ZH, XIAO KJ, 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants [J]. Rsc Adv, 5(111): 91846-91854.

    • STEANE D, NICOLLE D, SANSALONI C, et al. , 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping [J]. Mol Phylogenet Evol, 59(1): 206-224.

    • UGOLINI FC, DAHLGREN RA, 2002. Soil development in volcanic ash [J]. Glob Environ Res, 6(2): 69-82.

    • WANG HH, ZHANG YY, LIU WW, 2019. Mitigating effect of nitric oxide on root growth inhibition of soybean under aluminum stress [J] Jiangsu Agric Sci, 47(18): 122-125. [王华华, 张杨阳, 刘文文, 2019. 铝胁迫下一氧化氮对大豆根生长抑制的缓解作用 [J]. 江苏农业科学, 47(18): 122-125. ]

    • WANG XK, 2000. Principle and technology of plant physiology and biochemistry [M]. Beijing: Higher Education Press: 118-279. [王学奎, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 118-279. ]

    • WEI YH, NONG CL, ZHOU MS, et al. , 2021. Application of organic waste compost in Eucalyptus container seedlings [J]. J Cent S Sci-Technol Univ For, 41(10): 83-89. [韦宜慧, 农春兰, 周明晟, 等, 2021. 有机废弃物堆肥在桉树容器苗生产中的应用效果 [J]. 中南林业科技大学学报, 41(10): 83-89. ]

    • WU Y, 2019. Study on relieving effects of exogenous salicylic acid and NO on ryegrass under aluminum stress [D]: Yangzhou: Yangzhou University. [吴亚, 2019. 外源水杨酸和NO对铝胁迫下黑麦草的缓解研究 [D]. 扬州: 扬州大学. ]

    • XIAO JC, ZHENG KM, MA JY, et al. , 2021. Effects of exogenous NO on growth and physiological characteristics of watermelon seedlings under aluminum stress [J]. J Agro-Environ Sci, 40(8): 1650-1658. [肖家昶, 郑开敏, 马俊英, 等, 2021. 外源NO对铝胁迫下西瓜幼苗生长及生理特性的影响 [J]. 农业环境科学学报, 40(8): 1650-1658. ]

    • XIE YJ, 2015. Real Eucalyptus [M]. Beijing: China Forestry Publishing House: 2-10. [谢耀坚, 2015. 真实的桉树 [M]. 北京: 中国林业出版社: 2-10. ]

    • XIONG J, AN L, LU H, et al. , 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall [J]. Planta, 230(4): 755-765.

    • XIONG J, FU G, TAO L, et al. , 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants [J]. Arch Biochem Biophys, 497(1): 13-20.

    • YAMAMOTO Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation [J]. Soil Sci Plant Nutr, 65(1): 41-55.

    • YATNO E, ZAUYAH S, 2008. Properties and management implications of soils formed from volcanic materials in Lembang area, West Java [J]. Indones J Agric Sci, 9(2): 44-54.

    • YIN L, WANG S, ELTAVEB AE, et al. , 2010. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco [J]. Planta, 231(3): 609-621.

    • YU M, LAMATTINA L, SPOEL SH, et al. , 2014. Nitric oxide function in plant biology: a redox cue in deconvolution [J]. New Phytol, 202(4): 1142-1156.

    • ZHAO H, HUANG W, ZHANG Y, et al. , 2018. Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance [J]. Plant Soil, 431(1/2): 71-87.

    • ZHU YA, XU JM, LI GY, et al. , 2018. Genetic parameters for wood properties in a reciprocal factorial mating design between Eucalyptus urophylla and E. camaldulensis [J]. For Res, 31(6): 121-129.

  • 参考文献

    • BENZARTI M, REJEB KB, MESSEDI D, et al. , 2014. Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment [J]. S Afr J Bot, 95: 70-77.

    • BURGESS IP, 1988. Provenance trials of Eucalyptus grandis and E. saligna in Australia [J]. Silv Genet, 37(5/6): 221-227.

    • CHEN JX, WANG XF, 2006. Experimental guidance in plant physiology [M]. Guangzhou: South China University of Technology Press: 54-127. [陈建勋, 王晓峰, 2006. 植物生理学实验指导 [M]. 广州: 华南理工大学出版社: 54-127. ]

    • COELHO CD, BOMBARDELLI RGH, SCHULZE GS, et al. , 2019. Genetic control of aluminum tolerance in tropical maize germplasm [J]. Bragantia, 78(1): 71-81.

    • GONZÁLEZ A, CABRERA MLÁ, HENRIQUEZ MJ, et al. , 2012. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess [J]. Plant Physiol, 158(3): 1451-1462.

    • GONZÁLEZ M, BALMELLI G, RESQUIN F, 2021. Performance of Eucalyptus tereticornis provenances in subtropical climate [J]. Agrociencia Urug, 25(1): 322-334.

    • GUO P, 2018. Molecular and physiological mechanism of aluminum-tolerance and sulfur-mediated-alleviation of aluminum-toxicity in Citrus [D]. Fuzhou: Fujian Agriculture and Forestry University. [郭朋, 2018. 柑橘耐铝的分子生理机制及硫对铝毒的缓解 [D]. 福州: 福建农林大学. ]

    • HOU WJ, LUO WJ, WEI J, et al. , 2019. Response of Eucalyptus DH3229 seedlings to SNP-acid aluminum nitrate interactions [J]. Guihaia, 39(4): 437-445. [侯文娟, 罗文姬, 韦洁, 等, 2019. 尾巨桉DH3229幼苗对硝普钠-酸铝互作的响应 [J]. 广西植物, 39(4): 437-445. ]

    • HUANG LP, ZHOU ZL, WU YY, et al. , 2022. Research progress of non-volatile chemical components from Eucalyptus genus plants and their pharmacological activities [J]. Guihaia, 42(4): 531-542. [黄丽平, 周中流, 伍影瑶, 等, 2022. 桉属植物非挥发性化学成分和药理活性研究进展 [J]. 广西植物, 42(4): 531-542. ]

    • HUANG QQ, 2021. Study on the change of soil phosphorus form and its bioavailability in orchard grass [D]. Xianyang: Northwest A & F University. [黄倩倩, 2021. 果园生草土壤磷形态变化特征及其生物有效性的研究 [D]. 咸阳: 西北农林科技大学. ]

    • KONG XS, YI XF, 2008. Experimental techniques in plant physiology [M] Beijing: China Agriculture Press: 124-126. [孔祥生, 易现峰, 2008. 植物生理学实验技术 [M]北京: 中国农业出版社: 124-126. ]

    • LI HS, 2000. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press: 164-261. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 164-261. ]

    • LI L, 2020. Effects of SNP - Al interaction on the growth and physiology of Phoebe bournei seedlings [D]. Nanning: Guangxi University. [李琳, 2020. 硝普钠—酸铝互作对闽楠幼苗生长生理的影响 [D]. 南宁: 广西大学. ]

    • LI L, FANG AH, KANG YC, et al. , 2020. Effects of SNP-AlCl3 interaction on growths of Castanopsis hystrix seedlings and comprehensive evaluation [J]. Guangxi For Sci, 49(2): 186-191. [李琳, 方爱华, 亢亚超, 等, 2020. 硝普钠-酸铝互作对红锥幼苗生长的影响及其综合评价 [J]. 广西林业科学, 49(2): 186-191. ]

    • LI TK, 2020. Operation mode and evaluation of antioxidant system in root tip of four Eucalyptus seedlings under aluminum stress [D]. Nanning: Guangxi University. [黎汤侃, 2020. 铝胁迫下四种桉树幼苗根尖抗氧化系统运作方式与评价 [D]. 南宁: 广西大学. ]

    • LI Y, 2017. Regulation of NO and glucose-6-phosphate dehydrogenase in response to aluminum stress in soybean [D]. Xinxiang: Henan Normal University. [李焱, 2017. NO和葡萄糖-6-磷酸脱氢酶在大豆铝胁迫响应中的调节作用研究 [D]. 新乡: 河南师范大学. ]

    • LIANG JX, 2020. Al stress on root tip antioxidant system of tow Eucalyptus seedlings under H2O2 pretreatment [D]. Nanning: Guangxi University. [梁君霞, 2020. H2O2预处理下两种桉树幼苗根尖抗氧化系统对Al胁迫的响应 [D]. 南宁: 广西大学. ]

    • LIANG YH, 2022. Physiological response characteristics of four species of Eucalyptus seedlings to aluminum stress and the mechanism of alleviating effect under hydrogen peroxide pretreatment [D]. Nanning: Guangxi University. [梁艳红, 2022. 四种桉树幼苗在铝胁迫下的生理响应特征及其在过氧化氢预处理下的缓解效应机制 [D]. 南宁: 广西大学. ]

    • LIANG YH, BAI TD, LIU B, et al. , 2022. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species [J]. Ecotox Environ Saf, 174(2): 1137-1148.

    • LIU Q, HE GH, LIU ZW, et al. , 2016. Effects of exogenous nitric oxide on light energy utilization, photoprotection system and active oxygen metabolism of tobacco leaves under aluminum stress [J]. J Hunan Agric Univ, 42(6): 615-621. [刘强, 贺根和, 柳正葳, 等, 2016. 外源一氧化氮对铝胁迫下烟草叶片光能利用和光保护系统及活性氧代谢的影响 [J]. 湖南农业大学学报, 42(6): 615-621. ]

    • LIU Q, LIU ZW, HU C, et al. , 2017. Effects of exogenous nitric oxide on respiration and active oxygen metabolism of tobacco leaves under aluminum stress [J]. Henan Agric Sci, 46(1): 42-47. [刘强, 柳正葳, 胡萃, 等, 2017. 外源一氧化氮对铝胁迫下烟草叶片呼吸作用和活性氧代谢的影响 [J]. 河南农业科学, 46(1): 42-47. ]

    • LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing Eucalyptus clones [D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究 [D]. 南宁: 广西大学. ]

    • MIFTAHUDIN M, INDRIYANI RD, HUDA FM, et al. , 2021. OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia [J]. Plant Phydiol Biochem, 162(2): 86-99.

    • PEREIRA LB, MAZZANTI C, CARGNELUTTI D, et al. , 2011. Differential responses of oat genotypes: oxidative stress provoked by aluminum [J]. Biometals, 24(1): 73-83.

    • SARA F, ALI FB, MAHDI NN, et al. , 2020. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L. ) under aluminum stress. [J]. Genes Genom, 42(3): 245-261.

    • SEIN CC, MITLÖHNER R, 2011. Eucalyptus urophylla S. T. Blake: ecology and silviculture in Vietnam [M]. Jakarta: Center for International Forestry Research (CIFOR): 16.

    • SHEN Y, ZHANG ZH, XIAO KJ, 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants [J]. Rsc Adv, 5(111): 91846-91854.

    • STEANE D, NICOLLE D, SANSALONI C, et al. , 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping [J]. Mol Phylogenet Evol, 59(1): 206-224.

    • UGOLINI FC, DAHLGREN RA, 2002. Soil development in volcanic ash [J]. Glob Environ Res, 6(2): 69-82.

    • WANG HH, ZHANG YY, LIU WW, 2019. Mitigating effect of nitric oxide on root growth inhibition of soybean under aluminum stress [J] Jiangsu Agric Sci, 47(18): 122-125. [王华华, 张杨阳, 刘文文, 2019. 铝胁迫下一氧化氮对大豆根生长抑制的缓解作用 [J]. 江苏农业科学, 47(18): 122-125. ]

    • WANG XK, 2000. Principle and technology of plant physiology and biochemistry [M]. Beijing: Higher Education Press: 118-279. [王学奎, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 118-279. ]

    • WEI YH, NONG CL, ZHOU MS, et al. , 2021. Application of organic waste compost in Eucalyptus container seedlings [J]. J Cent S Sci-Technol Univ For, 41(10): 83-89. [韦宜慧, 农春兰, 周明晟, 等, 2021. 有机废弃物堆肥在桉树容器苗生产中的应用效果 [J]. 中南林业科技大学学报, 41(10): 83-89. ]

    • WU Y, 2019. Study on relieving effects of exogenous salicylic acid and NO on ryegrass under aluminum stress [D]: Yangzhou: Yangzhou University. [吴亚, 2019. 外源水杨酸和NO对铝胁迫下黑麦草的缓解研究 [D]. 扬州: 扬州大学. ]

    • XIAO JC, ZHENG KM, MA JY, et al. , 2021. Effects of exogenous NO on growth and physiological characteristics of watermelon seedlings under aluminum stress [J]. J Agro-Environ Sci, 40(8): 1650-1658. [肖家昶, 郑开敏, 马俊英, 等, 2021. 外源NO对铝胁迫下西瓜幼苗生长及生理特性的影响 [J]. 农业环境科学学报, 40(8): 1650-1658. ]

    • XIE YJ, 2015. Real Eucalyptus [M]. Beijing: China Forestry Publishing House: 2-10. [谢耀坚, 2015. 真实的桉树 [M]. 北京: 中国林业出版社: 2-10. ]

    • XIONG J, AN L, LU H, et al. , 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall [J]. Planta, 230(4): 755-765.

    • XIONG J, FU G, TAO L, et al. , 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants [J]. Arch Biochem Biophys, 497(1): 13-20.

    • YAMAMOTO Y, 2019. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation [J]. Soil Sci Plant Nutr, 65(1): 41-55.

    • YATNO E, ZAUYAH S, 2008. Properties and management implications of soils formed from volcanic materials in Lembang area, West Java [J]. Indones J Agric Sci, 9(2): 44-54.

    • YIN L, WANG S, ELTAVEB AE, et al. , 2010. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco [J]. Planta, 231(3): 609-621.

    • YU M, LAMATTINA L, SPOEL SH, et al. , 2014. Nitric oxide function in plant biology: a redox cue in deconvolution [J]. New Phytol, 202(4): 1142-1156.

    • ZHAO H, HUANG W, ZHANG Y, et al. , 2018. Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance [J]. Plant Soil, 431(1/2): 71-87.

    • ZHU YA, XU JM, LI GY, et al. , 2018. Genetic parameters for wood properties in a reciprocal factorial mating design between Eucalyptus urophylla and E. camaldulensis [J]. For Res, 31(6): 121-129.