en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈家兴(1997-),硕士研究生,主要从事植物表型可塑性研究,(E-mail)cjx905267741@163.com。

通讯作者:

王姝,副教授,主要从事植物表型可塑性研究,(E-mail)lnbx625@163.com。

中图分类号:Q948.1

文献标识码:A

文章编号:1000-3142(2023)12-2280-10

DOI:10.11931/guihaia.gxzw202210057

参考文献
AUCLAIR AN, 1993. Extreme climatic fluctuations as a cause of forest dieback in the pacific rim [J]. Water Air Soil Poll, 66(3): 207-229.
参考文献
CHEN GP, YANG KT, WANG L, et al. , 2020. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu [J]. Chin J Plant Ecol, 44(10): 1040-1049. [陈国鹏, 杨克彤, 王立, 等, 2020. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系 [J]. 植物生态学报, 44(10): 1040-1049. ]
参考文献
DAVIS MA, GRIME JP, THOMPSON K, 2000. Fluctuating resources in plant communities: a general theory of invasibility [J]. J Ecol, 88(3): 528-534.
参考文献
EASTERLING DR, MEEHL GA, PARMESAN C, et al. , 2000. Climate extremes: observations, modeling, and impacts [J]. Science, 289(5487): 2068-2074.
参考文献
ELCAN JM, PEZESHKI SR, 2002. Effects of flooding on susceptibility of Taxodium distichum L. seedlings to drought [J]. Photosynthetica, 40(2): 177-182.
参考文献
FAN GH, CUI Z, ZHANG JW, et al. , 2017. Effects of population density on the biomass allocation and allometric growth of Chenopodium acuminatum [J]. Acta Ecol Sin, 37 (15): 5080-5090. [范高华, 崔桢, 张金伟, 等, 2017. 密度对尖头叶黎生物量分配格局及异速生长的影响 [J]. 生态学报, 37(15): 5080-5090. ]
参考文献
FUHRMANN-AOYAGI MB, DE FÁTIMA RC, BARBOSA EGG, et al. , 2021. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses [J]. J Plant Physiol, 257: 153338.
参考文献
FUNK J, 2008. Differences in plasticity between invasive and native plants from a low resource environment [J]. J Ecol, 96(6): 1162-1173.
参考文献
GAO ZX, JI R, XU RM, et al. , 2003. Biological invasions: process, mechanism and prediction [J]. Acta Ecol Sin, 23(3): 559-570. [高增祥, 季荣, 徐汝梅, 等, 2003. 外来种入侵的过程、机理和预测 [J]. 生态学报, 23(3): 559-570. ]
参考文献
GENG YP, ZHANG WJ, LI B, et al. , 2004. Phenotypic plasticity and invasiveness of alien plants [J]. Biodivers Sci, 12(4): 447-455. [耿宇鹏, 张文驹, 李博, 等, 2004. 表型可塑性与外来植物的入侵能力 [J]. 生物多样性, 12(4): 447-455. ]
参考文献
HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, et al. , 2013. Global flood risk under climate change [J]. Nat Clim Change, 3(9): 816-821.
参考文献
HU SQ, CAO ZC, LIU TT, 2017. Change features of extreme drought events in north China [J]. Meteorol Environ Sci, 40(4): 121-125. [胡顺起, 曹张驰, 刘婷婷, 2017. 华北地区极端干旱事件的变化特征 [J]. 气象与环境科学, 40(4): 121-125. ]
参考文献
HU YC, DONG WJ, HE Y, 2007. Progress of the study of extreme weather and climate events at the beginning of the twenty first century [J]. Adv Earth Sci, 22(10): 1066-1075. [胡宜昌, 董文杰, 何勇, 2007. 21世纪初极端天气气候事件研究进展 [J]. 地球科学进展, 22(10): 1066-1075]
参考文献
HULME PE, 2008. Phenotypic plasticity and plant invasions: is it all Jack [J]. Funct Ecol, 22(1): 3-7.
参考文献
KETTENRING KM, MOCK KE, ZAMAN B, et al. , 2016. Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion [J]. Biol Invas, 18(9): 2475-2495.
参考文献
KAUFMAN SR, SMOUSE PE, 2001. Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav. ) Blake: response of seedlings to water and pH levels [J]. Oecologia, 127(4): 487-494.
参考文献
LI L, WEINER J, ZHOU DW, et al. , 2013. Initial density affects biomass-density and allometric relationships in self-thinning populations of Fagopyrum esculentum [J]. J Ecol, 101(2): 475-483.
参考文献
LIU WH, JIN GL, GONG K, et al. , 2020. Phenotype characteristics and biomass allocation of wild Bromus inermis with different plant heights [J]. Acta Bot Boreal-Occident Sin, 40(12): 2122-2129. [刘文昊, 靳瑰丽, 宫珂, 等, 2020. 不同株高野生无芒雀麦表型特征及生物量分配研究 [J]. 西北植物学报, 40(12): 2122-2129. ]
参考文献
LOPEZ OR, KURSAR TA, 2003. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats [J]. Oecologia, 136(2): 193-204.
参考文献
LU XM, ZHOU CF, AN SQ, et al. , 2007. Phenotypic plasticity, allometry and invasiveness of plants [J]. Chin J Ecol, 26(9): 1438-1444. [陆霞梅, 周长芳, 安树青, 等, 2007. 植物的表型可塑性、异速生长及其入侵能力 [J]. 生态学杂志, 26(9): 1438-1444. ]
参考文献
LUO FL, ZENG B, CHEN T, et al. , 2007. Response to simulated floonding of photosynthesis and growth of riparian plant salix variegata in the three gorges reservoir region of China [J]. Chin J Plant Ecol, 31(5): 910-918. [罗芳丽, 曾波, 陈婷, 等, 2007. 三峡库区岸生植物秋华柳对水淹的光合和生长响应 [J]. 植物生态学报, 31(5): 910-918. ]
参考文献
MAO YY, HAO J, LONG SY, et al. , 2020. Biomass allocation and allometric analysis of Vetuena azanotdes in different planting years on coal spoilheaps [J]. Guihaia, 40(6): 802-811. [毛圆圆, 郝俊, 龙水义, 等, 2020. 煤矸石山不同种植年限香根草生物量分配及异速生长分析 [J]. 广西植物, 40(6): 802-811. ]
参考文献
MIAO SL, ZOU CB, BRESHEARS DD, 2009. Notes and comments: vegetation responses to extreme hydrological events: sequence matters [J]. Am Nat, 173(1): 113-118.
参考文献
MILBERG P, LAMONT BB, PÉREZ-FERNÁNDEZ MA, 1999. Survival and growth of native and exotic composites in response to a nutrient gradient [J]. Plant Ecol, 145(1): 125-132.
参考文献
NIKLAS KJ, ENQUIST BJ, 2002. Canonical rules for plant organ biomass partitioning and annual allocation [J]. Amer J Bot, 89(5): 812-819.
参考文献
NIKLAS KJ, 2004. Plant allometry: is there a grand unifying theory? [J]. Biol Rev, 79(4): 871-889.
参考文献
PAN YM, TANG SC, WEI CQ, et al. , 2017. Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions [J]. Biodivers Sci, 25(12): 1257-1266. [潘玉梅, 唐赛春, 韦春强, 等, 2017. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较 [J]. 生物多样性, 25(12): 1257-1266. ]
参考文献
POORTER H, JAGODZINSKI AM, RUIZ-PEINADO R, et al. , 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents [J]. New Phytol, 208(3): 736-749.
参考文献
RAMÍREZ DA, ROLANDO JL, YACTAYO W, et al. , 2015. Improving potato drought tolerance through the induction of long-term water stress memory [J]. Plant Sci, 238: 26-32.
参考文献
RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.
参考文献
SHEA K, CHESSON P, 2002. Community ecology theory as a framework for biological invasions [J]. Trend Ecol Evol, 17(4): 170-176.
参考文献
SONG LY, SUN LL, SHU Z, et al. , 2009. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in leaves of invasive Wedelia trilobata [J]. Acta Ecol Sin, 29(7): 3713-3721. [宋莉英, 孙兰兰, 舒展, 等, 2009. 干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响 [J]. 生态学报, 29(7): 3713-3721. ]
参考文献
TIAN HQ, XU XF, SONG X, 2007. Drought impacts on terrestrial ecosystem productivity [J]. Chin J Plant Ecol, 31(2): 231-241. [田汉勤, 徐小锋, 宋霞, 2007. 干旱对陆地生态系统生产力的影响 [J]. 植物生态学报, 31(2): 231-241. ]
参考文献
TOMBESI S, FRIONI T, PONI S, et al. , 2018. Effect of water stress “memory” on plant behavior during subsequent drought stress [J]. Environ Exp Bot, 150: 106-114.
参考文献
TURGUT-KARA N, ARIKAN B, CELIK H, 2020. Epigenetic memory and priming in plants [J]. Genetica, 148(1): 47-54.
参考文献
WANG S, 2016. Research on plant phenotypic plasticity and stability [D]. Changchun: Northeast Normal University: 94-99. [王姝, 2016. 植物表型可塑性与稳定性研究 [D]. 长春: 东北师范大学: 94-99. ]
参考文献
WANG S, CALLAWAY RM, ZHOU DW, et al. , 2017. Experience of inundation or drought alters the responses of plants to subsequent water conditions [J]. J Ecol, 105(1): 176-187.
参考文献
WANG S, ZHOU DW, 2021. Stage-dependent plasticity in biomass allocation and allometry in response to population density in Abutilon theophrasti: a step forward to understanding the nature of phenotypic plasticity [J]. Plant Ecol, 222(10): 1157-1181.
参考文献
WANG SP, ALTHOFF DM, 2019. Phenotypic plasticity facilitates initial colonization of a novel environment [J]. Evolution, 73(2): 303-316.
参考文献
WEINER J, 2004. Allocation, plasticity and allometry in plants [J]. Perspect Plant Ecol, 6(4): 207-215.
参考文献
XIONG YQ, ZHAO CY, 2020. Phenotypic plasticity and the successful invasion of alien plants [J]. Chin J Ecol, 39(11): 3853-3864. [熊韫琦, 赵彩云, 2020. 表型可塑性与外来植物的成功入侵 [J]. 生态学杂志, 39(11): 3853-3864. ]
参考文献
XU CY, ZHANG WJ, LU BR, et al. , 2001. Progress in studies on mechanisms of biological invasion [J]. Biodivers Sci, 9(4): 430-438. [徐承远, 张文驹, 卢宝荣, 等, 2001. 生物入侵机制研究进展 [J]. 生物多样性, 9(4): 430-438. ]
参考文献
XU K, XU X, FUKAO T, 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.
参考文献
XU YX, YU HL, LI CH, et al. , 2021. Effects of simulated precipitation on soli enzyme activities in a desert steppe of north China and their related influencing factors [J]. Acta Bot Boreal-Occident Sin, 41(11): 1912-1923. [许艺馨, 余海龙, 李春环, 等, 2021. 模拟降水量变化对荒漠草原土壤酶活性的影响及其相关因素分析 [J]. 西北植物学报, 41(11): 1912-1923. ]
参考文献
YANG YH, FANG JY, MA WH, et al. , 2010. Large-scale pattern of biomass partitioning across China's grasslands [J]. Glob Ecol Biogeogr, 19(2): 268-277.
参考文献
ZHANG CX, ZHAO WQ, DANG HL, et al. , 2021. Effects of different slope aspect on biomass allocation and stoichiometry of ephemeral plants in the southern margin of Junggar Basin [J]. Acta Bot Boreal-Occident Sin, 41(1): 151-158. [张彩霞, 赵文勤, 党寒利, 等, 2021. 准噶尔盆地南缘不同坡向对短命植物生物量分配和化学计量特征的影响 [J]. 西北植物学报, 41(1): 151-158. ]
参考文献
ZHANG WE, LI H, PAN XJ, 2020. Characteristics of accumulation and translocation of dry matter and minerals in Canana edulis under drought stress and rewatering [J]. Acta Bot Boreal-Occident Sin, 2020, 40(3): 490-501. [张文娥, 李慧, 潘学军, 2020. 干旱及复水对芭蕉芋干物质及氮磷钾积累与分配特征的影响 [J]. 西北植物学报, 40(3): 490-501. ]
参考文献
ZHOU XY, DENG XP, 2007. Effect of post-drought rewatering on leaf photosynthetic characteristics and antioxidation in different wheat genotypes [J]. Acta Bot Boreal-Occid Sin, 27(2): 278-285. [周雪英, 邓西平, 2007. 旱后复水对不同倍性小麦光合及抗氧化特性的影响 [J]. 西北植物学报, 27(2): 278-285. ]
参考文献
ZHU QG, JIN AW, WANG YK, et al. , 2013. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis [J]. Chin J Plant Ecol, 37(9): 811-819. [朱强根, 金爱武, 王意锟, 等, 2013. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析 [J]. 植物生态学报, 37(9): 811-819. ]
目录contents

    摘要

    极端气候导致的干旱和水淹事件频发,影响了外来植物和本地植物的生长。为了解外来种和本地种植物对干旱和水淹事件发生顺序的响应,探讨草本植物适应水分时间异质性的策略,该文以美国蒙大拿州西部4种本地植物和4种外来植物为研究对象,将所有植物分别进行持续湿润(对照,CK)、水淹-干旱(I-D)和干旱-水淹(D-I)处理,并观测一系列形态和生物量特征的变化。结果表明:(1)与CK相比,D-I和I-D处理均显著降低了外来种的总生物量(P<0.05)。(2)D-I显著降低了本地种早期总生物量、后期地下生物量和根冠比,但显著提高了其后期的相对生长(P<0.05)。(3)D-I处理显著降低了所有植物的地下-地上生物量关系的异速指数,外来种异速指数显著高于本地种(P<0.05)。综上认为,极端事件(水淹和干旱)的发生顺序能改变外来植物和本地植物的生物量分配,早期干旱比后期干旱更容易减少植物生物量的积累,但能促进本地种后期的生长;本地种在环境胁迫下不被降低的总生物量表现说明维持表型稳定的能力较强;D-I处理下本地种和外来种地上和地下生物量关系的分配方式不同。

    Abstract

    In recent years, many studies have shown that extreme climate events occur more frequently. The extreme climate led to frequent drought and inundation events, which affected the growth of both exotic and native plants. In order to discuss the strategies of exotic and native plants in adapting to temporal heterogeneity in water conditions by investigating their responses to the sequence of drought and inundation events, four native and four exotic perennial herbaceous species in western Montana, USA were used as study objects. All plants were treated with moderate water (CK), initial inundation before drought (I-D) and initial drought before inundation (D-I) conditions, and variations in a series of morphological and biomass traits were measured. The results were as follows: (1) Compared with CK, both D-I and I-D treatments significantly reduced the total biomass of exotic species (P<0.05). (2) D-I treatment significantly reduced the total biomass at the early stage, and late belowground biomass and root/shoot of native species, but significantly improved their later relative growth (P<0.05). (3) D-I treatment significantly reduced the scaling exponent of the allometric relationship between belowground biomass and aboveground biomass for all plants, with a higher allometric exponent for exotic species than native species (P<0.05). In conclusion, the sequence of extreme events (inundation and drought) can alter the allocation of biomass between exotic and native plants. Early drought is more likely to reduce the accumulation of plant biomass than late drought, but it can promote the growth of native species in late period. The total biomass of native species is not reduced under environmental stress, indicating that native species have a strong ability to maintain phenotypic stability. Distribution patterns of aboveground and belowground biomass relationships are different between native and exotic species under D-I treatment.

  • 全球气候变化导致植物在整个生命周期中经历了更频繁的极端环境(胡宜昌等,2007; 许艺馨等,2021)。随着干旱和水淹等极端事件的增加(Hirabayashi et al.,2013; 胡顺起等, 2017),许多植物将会面对水分资源分布不均匀的异质性环境,并且这种环境可能对植物生长产生重要影响(Easterling et al.,2000)。植物对干旱和水淹适应机制上存在差别,可能会改变植物对后续极端水分事件的响应(王姝,2016)。例如,干旱下植物侧重提高根冠比,增加根生物量的策略(田汉勤等,2007),会与水淹环境下减少根部生物量增长(罗芳丽等,2007)的策略相反。另外,植物适应干旱和水淹的表现,可能取决于极端事件的发生顺序。有研究表明干旱和水淹两种水分胁迫的发生顺序,对木本植物生长与存活有显著的影响(Miao et al.,2009),但少有研究关注水分供应时间异质性对外来种和本地种草本植物的影响。

  • 外来种适应新环境的机制一直是生态学研究的热点(徐承远等,2001; 高增祥等,2003)。表型可塑性在外来种适应陌生环境中发挥了重要作用(耿宇鹏等,2004; 熊韫琦和赵彩云, 2020)。虽然外来种可能比本地物种更具可塑性(Wang &Althoff,2019),但资源机遇假说(Davis et al.,2000)或生态位理论(Shea &Chesson,2002)认为,外来种需要比本地种能更好地利用资源才可能在环境中占据优势。然而,环境资源并不是均匀地被植物所利用,资源供应的时间异质性通常会增加植物生长策略的不确定性。例如,前期优势生长的物种所采取的生物量分配策略可能并不适用于另一种不利环境(Auclair,1993; Miao et al.,2009)。因此,如果异质环境干扰过大可能更容易降低本地种和外来种的表现(潘玉梅等,2017)。因此,推测外来植物和本地植物对水分发生顺序的响应,采取了以下不同策略:(1)植物在恶劣环境中也能更好地维持生长;(2)植物在有利条件下具有提高适应性的表现,如适宜的养分浓度能显著增加植物生物量(Milberg et al.,1999);(3)前两种策略兼有(Richards et al.,2006)。此外,比较外来种三裂叶蟛蜞菊(Wedelia trilobata)和本地种蟛蜞菊(W. chinensis)适应水分时间的异质性研究表明,外来种更容易受到干旱胁迫的不利影响,但复水后的恢复能力明显强于本地种(宋莉英等,2009)。产生这种差异的原因可能与外来种和本地种在不同生长阶段对水分的耐受性有关,但相关问题未见研究报道。

  • 关于植物地上和地下生物量的分配能反映对环境的适应策略(Weiner,2004;刘文昊等,2020; 张彩霞等,2021)的研究较多,而在水分时间异质性背景下,研究本地种和外来种地上-地下生物量的异速生长关系的研究较少。了解草本植物生物量分配方式有利于分析本地种和外来种对资源的获取能力。但是,这些分配策略受到植株大小的影响(Poorter et al.,2015),通常采用协方差分析消除个体大小的影响或异速分析不同构件间生长速率的差异,然而协方差分析结果与异速分析不一致时,通常认为异速分析的结果是植物真正的可塑性表现。据最新研究认为异速分析的结果也可能是表观可塑性(Wang &Zhou,2021),对于水分时间异质性处理是否诱导了外来种和本地种生物量分配上的可塑性,需要上述分析方法验证。

  • 本文基于干旱-水淹和水淹-干旱处理下植物一系列特征的变化,采用协方差分析和异速生长分析研究了北美地区4个本地种和4个外来种对不同干旱和水淹发生顺序的响应,拟探讨以下问题:(1)水分发生顺序是否影响外来种和本地种植物最终的特征表现;(2)外来种与本地种对水分发生顺序的响应是否不同,其地上和地下生物量分配之间具有何种关系。

  • 1 材料与方法

  • 1.1 研究材料

  • 根据蒙大拿西部自然草地的土壤水分条件,选择生长在干旱生境的菊科植物[斑点矢车菊(Centaurea stoebe ssp. micranthos)和多毛假金菊(Heterotheca villosa)];分布在湿润生境的菊科植物[滨菊(Leucanthemum vulgare)、宿根天人菊(Gaillardia aristata)]和蔷薇科植物[硫委陵菜(Potentilla recta)、软枣委陵菜(P. arguta)];生长在更湿润生境的唇形科植物[益母草(Leonurus cardiaca)和麻叶藿香(Agastache urticifolia)]为对象。本研究中的8个物种是相对于北美地区的本地种和外来种,其中4个本地种包括多毛假金菊、宿根天人菊、麻叶藿香和软枣委陵菜;4个外来种包括滨菊、斑点矢车菊、益母草和硫委陵菜。所有物种的种子均采集自美国蒙大拿州西部的天然草地(113°59′ W、46°51′ N)。

  • 1.2 试验设计

  • 试验在美国蒙大拿州米苏拉市蒙大拿大学的温室中进行。温室温度保持在15~30℃,大致对应于当地夏天的自然温度,光照充足。试验开始前,将所有物种的种子种植于塑料托盘中。出苗后一周,将幼苗移植入花盆(宽 × 宽,7.0 cm × 7.0 cm,高20.6 cm),每盆定植1株,盆中填满1∶1花园土和无菌的硅砂混合物。保持幼苗在正常条件下生长40 d,在试验处理前测量每株植物的初始大小。由于幼苗期的叶片大小反映了植物获取光的能力,还与叶柄、茎等支撑结构存在生物量分配的关系,因此本研究选择易测量的最大叶片长度作为其初始大小(王姝,2016)。

  • 试验采取裂区试验设计,主要因素为水分顺序处理,次要因素为物种。水分处理包括持续湿润(对照,CK)、水淹-干旱(I-D)、干旱-水淹(D-I)。水淹-干旱和干旱-水淹处理分为两个阶段,干旱-水淹处理为第一阶段干旱70 d,第二阶段水淹70 d;水淹-干旱处理为第一阶段水淹70 d,第二阶段干旱70 d。对照(CK)处理在两个阶段均保持持续湿润。各处理每个物种20株,第一阶段结束后取10株,第二阶段后取剩余10株进行测定,最大取样数为3个处理×8个物种×20株=480株。

  • 使用3个大小相同的水槽(长×宽,161 cm × 91.3 cm,高8.5 cm)分别进行湿润、干旱、水淹处理,水槽为底部具有网状铁丝结构的木框,内侧铺有一层黑色塑料并安装了排水管可调节水位。进行水淹处理的水槽中,水深保持在7.0 cm,使其处于花盆土壤表面10.0 cm以下,每天浇水至饱和。持续湿润(CK)和干旱处理的水槽中无水,CK处理每隔一天浇水至饱和,干旱处理每周浇水1~2次至饱和。

  • 1.3 数据收集和分析

  • 测量所有植株主茎长度和存活叶片数,整株分成地上和地下两部分,分别于烘箱中60℃干燥48 h 至恒重并称重。第一阶段处理:干旱处理组死亡11株,水淹处理组死亡7株,CK处理组死亡9株,共27株死亡,实际取样213株。第二阶段处理:干旱-水淹处理组死亡14株,水淹-干旱处理组死亡28株,CK处理组死亡11株,共53株死亡,实际取样187株。

  • 对于某一特征,相对生长(relative growth,RG)用以下公式计算(Wang et al.,2017): RG=(Y-X)/X

  • 式中: Y表示第二阶段处理结束时存活植株的特征平均值; X为第一阶段处理结束时存活植株的特征平均值。综合相对生长率(composite relative growth rate,%)为主茎长度、叶片数、地上和地下生物量相对生长的平均值(Wang et al.,2017)。

  • 数据分析使用SPSS 20.0软件,绘图使用Origin 2018软件。分析前对所有数据进行对数转换,使其符合正态分布和方差齐性。采用单因素协方差法(one-way ANCOVA)分析不同阶段水分处理对外来种和本地种的主茎长度(stem length,SL)、叶片数(leaf number,LN)、地上生物量(aboveground biomass,AGB)、地下生物量(belowground biomass,BGB)、总生物量(total biomass,TB)和根冠比(root/shoot,R/S)的影响以及比较外来种和本地种的差异,协变量为初始最大叶片长度。使用单因素方差法(one-way ANOVA),分析不同水分处理对所有植物或本地种、外来种综合相对生长率的影响。多重比较采用最小显著差异法(mothod of least significant difference,LSD)。

  • 由于植物存在异速生长现象,地上与地下生物量对环境因子的响应可能是个体大小或生长速度的影响(Weiner,2004),因此,本研究还对地上、地下生物量之间关系进行了异速分析,公式如下:

  • Y=βXα 对数化 logY=logβ+αlogX

  • 式中: XY分别代表地上生物量和地下生物量; α是异速指数;β是异速常数(Niklas &Enquist,2002)。将所有物种的地上和地下生物量进行对数转化(底数10),使用SMATR软件中标准主轴法(standardized major axis test,SMA)估计其异速生长关系(朱强根等,2013; 陈国鹏等,2020)。计算异速生长表达式中异速指数α,截距β和置信区间(confidence interval,CI),检验斜率α与1.0之间的显著性水平(P-1),并比较不同水分处理下本地种、外来种异速指数的差异。

  • 2 结果与分析

  • 2.1 干旱和水淹发生顺序对本地种和外来种生长的影响

  • 去掉初始大小的影响后,水分处理对所有植物的主茎长度、叶片数、总生物量和根冠比均有显著影响;水分处理对综合相对生长率也有显著影响(P<0.05,表1)。主茎长度、叶片数、总生物量、根冠比和综合相对生长率在外来种和本地种之间有显著差异(P<0.05,表1)。

  • 表1 水分处理、物种背景及交互作用对草本植物各特征的影响

  • Table1 Effects of water treatment, species background and interaction on herbaceous plant characteristics

  • 注: 协方差分析中协变量为植物初始大小IS; WT. 水分处理; SB. 物种背景(指外来种或本地种); 加粗字体表示 P<0.05。

  • Note: In the covariance analysis, the covariable is the initial size of the plant IS; WT. Water treatment; SB. Species background (exotic or native species) ; bold fonts indicate P<0.05.

  • 由表2可知,第一阶段处理下,对比水淹和CK,干旱显著降低了外来种和本地种的总生物量(P<0.05),不影响根冠比。与CK相比,水淹处理显著降低了外来种23%的总生物量(P<0.05),不影响本地种。干旱比水淹更容易降低生物量,与CK相比,分别降低外来种和本地种54%和51%的总生物量;第二阶段处理下,与CK相比,干旱-水淹显著降低了本地种根冠比(P<0.05),不影响其总生物量,却显著提高本地种综合相对生长率(P<0.05,图1),3种水分处理对本地种总生物量没有显著影响(P>0.05)。与CK相比,干旱-水淹和水淹-干旱处理均显著降低了外来种总生物量(P<0.05),但是仅干旱-水淹显著降低了外来种根冠比(P<0.05)。

  • 第一阶段处理下,水淹处理组的本地种显著高于外来种34%的总生物量(P<0.05),本地种在3种水分处理下的根冠比显著高于外来种(P<0.05)。第二阶段处理下,水淹-干旱组的本地种显著高于外来种72%的总生物量(P<0.05),本地种根冠比显著高于外来种(P<0.05),并且干旱-水淹下本地种综合相对生长率显著高于外来种(P<0.05)。

  • 表2 本地种(N)和外来种(E)各生物量特征对水分处理的响应

  • Table2 Response of biomass characteristics of native species (N) and exotic species (E) to water treatment

  • 注:调整平均值±标准误。I. 第一阶段; . 第二阶段。不同小写字母表示外来种或本地种在不同水分处理间有显著差异(ANCOVA,P<0.05),不同大写字母表示相同水分下外来种和本地种有显著差异(ANCOVA,P<0.05)。下同。

  • Note: Adjust the x-±sx-. I. The first stage; . The second stage. Different lowercase letters indicate that the exotic or native species has significant differences among different water treatments (ANCOVA, P<0.05) , and different uppercase letters indicate significant differences between exotic and native species under the same water treatment (ANCOVA, P<0.05) . The same below.

  • 2.2 干旱和水淹发生顺序对本地种和外来种异速生长关系的影响

  • 由表3和图2可知,干旱-水淹处理显著降低了所有植物的异速指数(P<0.05),并表现出异速生长,CK和水淹-干旱表现为等速生长。所有水分处理下的外来种异速指数显著高于本地种(P<0.05),本地种异速指数与1.0有显著差异(P-1=0.027),表现为异速生长关系,而外来种表现为等速生长。对于所有水分处理,本地种地上和地下生物量间的异速生长指数为0.813 2~0.864 0,在CK处理中最大,在干旱-水淹处理中最小,均与1.0无显著差异,为等速生长(P>0.05)。外来种地上与地下生物量间的异速生长指数为0.929 0~1.179 6,在水淹-干旱处理中最大,干旱-水淹处理中最小,水淹-干旱下异速指数与1.0有显著差异(P-1=0.025),为异速生长关系。水淹-干旱下外来种的异速指数显著大于干旱-水淹处理组(P=0.032),而干旱-水淹处理下本地种的异速指数显著低于外来种(P=0.011)。

  • 图1 本地种和外来种综合相对生长率的平均值 (±标准误) 对水分处理的响应

  • Fig.1 Response of x-±sx- of composite relative growth rate of native and exotic species to water treatment

  • 3 讨论与结论

  • 3.1 不同水分时间异质性处理对外来种和本地种植物生长的影响

  • 本研究发现,干旱与水淹交替处理能抑制外来种早期和后期的生长。然而,也有研究表明,连续的干旱和水淹事件对植物有促进表现,如干旱和水淹能激发生理上共用的抗胁迫调节机制(Lopez &Kursar,2003; Xu et al.,2006),使大豆在经历干旱后增强了对水淹环境的耐受性(Fuhrmann-Aoyagi et al.,2021)。此外,不同水分事件的发生顺序能改变植物最终的生长表现,这可能与植物耐旱或耐水淹的能力有关。水淹和干旱发生于植物的不同生长阶段,不同阶段下植物对水淹和干旱的耐受性不同,如本研究中草本植物对早期水淹的耐受性强于干旱,并且早期干旱会限制植物生物量的积累,导致植物后期的生长相对明显。综上表明,植物在响应连续不同胁迫时(如干旱和水淹),需要考虑极端事件的发生顺序。

  • 干旱-水淹提高植物生长潜力的机制,也体现在干旱后复水的研究中,即复水的补偿效应,使植物能在补水后一定程度上能修复损伤组织(周雪英和邓西平,2007; 张文娥等,2020)。此外,一定程度的干旱或水淹会使植物产生胁迫记忆或启动效应(Tombesi et al.,2018; Turgut-Kara et al.,2020),增强植物对干旱或水淹胁迫的耐受性(Ramírez et al.,2015)。Wang和Zhou(2021)研究发现,早期干旱能提高植物后期水淹环境的生物量生长,表明早期干旱能提高植物对后期水淹的耐受性。Elcan和Pezeshki(2002)研究发现早期水淹也可以提高植物在后期干旱下的生长,说明早期水淹能提高植物对干旱的耐受性。然而,本研究却并未发现水淹-干旱处理的益处,可能是后期干旱抑制了植物的生长,从而掩盖了早期水淹的促进作用。

  • 3.2 外来种和本地种植物地上-地下生物量间的关系

  • 有研究认为,异速生长关系与植物物种种类无关(Niklas,2004; 毛圆圆等,2020)。然而,本研究中对于所有本地种的地上-地下生物量的异速生长关系与外来种不同,可能是水分时间异质性处理改变了植物的异速生长关系。根据最优分配理论认为,当水分成为环境主要限制因子时,植物会将更多生物量分配给根系(范高华等,2017)。然而,由早期干旱促进的根系生物量分配,可能不适应后期的水淹环境;由早期水淹抑制的根系生长,在后期干旱中可能得到更多的生物量分配。因此,本地种和外来种需要抉择将环境资源投资于地上还是地下部分更有利于后期的生长。本研究发现,在干旱-水淹条件下本地种比外来种更倾向于地上生物量的分配,或外来种比本地种更倾向地下生物量的分配。此外,中国北方6种不同类型的草原植物地上和地下生物量的分配关系,表现为等速生长(Yang et al.,2010)。与本研究中本地种的结果一致,但水淹-干旱下外来种表现为异速生长关系,表明外来种可能具有较强的表型可塑性来响应水分异质性的环境。

  • 表3 不同水分处理下外来种(E)和本地种(N)对地下-地上生物量的异速生长关系

  • Table3 Allometric growth relationship between belowground biomass and aboveground biomass of exotic species (E) and native species (N) under different water treatments

  • 注: P-1表示斜率与理论值1.0 的差异显著性。 WST. 水分顺序处理; A. 异速生长关系(P-1<0.05); I. 等速生长关系(P-1>0.05)。不同小写字母表示外来种或本地种在不同水分处理间有显著差异(P<0.05),不同大写字母表示相同水分下外来种和本地种有显著差异 (P<0.05)。

  • Note: P-1 indicates significant difference between the estimated model slope and theoretical value1.0. WST. Water sequential treatment; A. Allometric relationship (P-1 < 0.05) ; I. Isometric relationship (P-1>0.05) . Different lowercase letters indicate that the exotic or native species has significant differences among different water treatments (P<0.05) , and different uppercase letters indicate significant differences between exotic and native species under the same water treatment (P<0.05) .

  • 3.3 协方差分析与异速分析结果反映的植物可塑性

  • 生物量分配的可塑性分析中,一般认为环境影响植物生物量分配的可塑性若受到植株大小的影响,被认为是表观可塑性;而植物构件间异速关系的可塑,由于去了除个体大小的影响,被认为是真正的可塑性(Weiner,2004)。若同时用协方差和异速生长两种方法进行分析,产生的结果不一致时,通常以异速分析来解释植物生物量分配的变化。但是,因为构件间的异速关系会随生长阶段而变化,所以基于多个生长阶段的异速分析也可能有不同的分配方式(Li et al.,2013; Wang &Zhou,2021)。因此,异速关系的可塑是表观可塑的结论也更有利于解释异速分析结果与协方差分析结果不一致的问题(Wang &Zhou,2021)。

  • 本研究发现,干旱-水淹降低草本植物的根生物量和根冠比及地下-地上生物量关系的异速指数,而水淹-干旱对两种特征没有影响,表明协方差分析与异速分析结果相一致。基于“异速关系的可塑是表观可塑”的假设,则说明干旱-水淹处理既诱导了生物量分配的表观可塑,又造成植物的个体大小和生长阶段的差异;既诱导了其真正的可塑,又导致了生物量分配策略的变化。相比之下,水淹-干旱处理中早期水淹对植物的不利影响不随生长阶段而变化,而植物对后期干旱则表现出稳定的生物量分配。

  • 3.4 本地种与外来种表型可塑性的差异

  • 外来种可以通过表型可塑性来提高在陌生环境中的适合度,因此外来种的可塑性比本地种更强(陆霞梅等,2007; Kettenring et al.,2016),但也存在不一致的看法(Funk,2008; Hulme,2008)。本研究结果表明,外来种对水分时间异质性处理的适应性不如本地种,并且早期干旱比水淹对外来种的不利影响更大。另外,外来种与本地种对水分发生顺序的响应存在差异,表现在不利环境下外来种总生物量容易被降低,但在对照处理下具有较高的生物量表现可能反映了其“部分优胜(Master-of-some)”的策略,即在适宜环境下发挥最大生长潜力,在不利环境下的生物量却容易被降低(Kaufman &Smouse, 2001)。这可能由于对照处理的环境条件还不够优越,未能发挥出外来种真正的生长潜力。相比之下,本地种具有较高的根冠比,并且在两种水分时间异质性处理下保持较高的总生物量,说明本地种维持表型稳定的能力较强,可能是一种“通才(Jack-of-all-trade)”的策略(Richards et al.,2006),即在更好的环境下表现适中,但不容易在恶劣的环境中有被降低的表现。

  • 图2 不同水分处理下本地种和外来种地下-地上生物量的异速生长关系

  • Fig.2 Allometric growth relationship between belowground biomass and aboveground biomass of native and exotic species under different water treatments

  • 参考文献

    • AUCLAIR AN, 1993. Extreme climatic fluctuations as a cause of forest dieback in the pacific rim [J]. Water Air Soil Poll, 66(3): 207-229.

    • CHEN GP, YANG KT, WANG L, et al. , 2020. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu [J]. Chin J Plant Ecol, 44(10): 1040-1049. [陈国鹏, 杨克彤, 王立, 等, 2020. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系 [J]. 植物生态学报, 44(10): 1040-1049. ]

    • DAVIS MA, GRIME JP, THOMPSON K, 2000. Fluctuating resources in plant communities: a general theory of invasibility [J]. J Ecol, 88(3): 528-534.

    • EASTERLING DR, MEEHL GA, PARMESAN C, et al. , 2000. Climate extremes: observations, modeling, and impacts [J]. Science, 289(5487): 2068-2074.

    • ELCAN JM, PEZESHKI SR, 2002. Effects of flooding on susceptibility of Taxodium distichum L. seedlings to drought [J]. Photosynthetica, 40(2): 177-182.

    • FAN GH, CUI Z, ZHANG JW, et al. , 2017. Effects of population density on the biomass allocation and allometric growth of Chenopodium acuminatum [J]. Acta Ecol Sin, 37 (15): 5080-5090. [范高华, 崔桢, 张金伟, 等, 2017. 密度对尖头叶黎生物量分配格局及异速生长的影响 [J]. 生态学报, 37(15): 5080-5090. ]

    • FUHRMANN-AOYAGI MB, DE FÁTIMA RC, BARBOSA EGG, et al. , 2021. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses [J]. J Plant Physiol, 257: 153338.

    • FUNK J, 2008. Differences in plasticity between invasive and native plants from a low resource environment [J]. J Ecol, 96(6): 1162-1173.

    • GAO ZX, JI R, XU RM, et al. , 2003. Biological invasions: process, mechanism and prediction [J]. Acta Ecol Sin, 23(3): 559-570. [高增祥, 季荣, 徐汝梅, 等, 2003. 外来种入侵的过程、机理和预测 [J]. 生态学报, 23(3): 559-570. ]

    • GENG YP, ZHANG WJ, LI B, et al. , 2004. Phenotypic plasticity and invasiveness of alien plants [J]. Biodivers Sci, 12(4): 447-455. [耿宇鹏, 张文驹, 李博, 等, 2004. 表型可塑性与外来植物的入侵能力 [J]. 生物多样性, 12(4): 447-455. ]

    • HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, et al. , 2013. Global flood risk under climate change [J]. Nat Clim Change, 3(9): 816-821.

    • HU SQ, CAO ZC, LIU TT, 2017. Change features of extreme drought events in north China [J]. Meteorol Environ Sci, 40(4): 121-125. [胡顺起, 曹张驰, 刘婷婷, 2017. 华北地区极端干旱事件的变化特征 [J]. 气象与环境科学, 40(4): 121-125. ]

    • HU YC, DONG WJ, HE Y, 2007. Progress of the study of extreme weather and climate events at the beginning of the twenty first century [J]. Adv Earth Sci, 22(10): 1066-1075. [胡宜昌, 董文杰, 何勇, 2007. 21世纪初极端天气气候事件研究进展 [J]. 地球科学进展, 22(10): 1066-1075]

    • HULME PE, 2008. Phenotypic plasticity and plant invasions: is it all Jack [J]. Funct Ecol, 22(1): 3-7.

    • KETTENRING KM, MOCK KE, ZAMAN B, et al. , 2016. Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion [J]. Biol Invas, 18(9): 2475-2495.

    • KAUFMAN SR, SMOUSE PE, 2001. Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav. ) Blake: response of seedlings to water and pH levels [J]. Oecologia, 127(4): 487-494.

    • LI L, WEINER J, ZHOU DW, et al. , 2013. Initial density affects biomass-density and allometric relationships in self-thinning populations of Fagopyrum esculentum [J]. J Ecol, 101(2): 475-483.

    • LIU WH, JIN GL, GONG K, et al. , 2020. Phenotype characteristics and biomass allocation of wild Bromus inermis with different plant heights [J]. Acta Bot Boreal-Occident Sin, 40(12): 2122-2129. [刘文昊, 靳瑰丽, 宫珂, 等, 2020. 不同株高野生无芒雀麦表型特征及生物量分配研究 [J]. 西北植物学报, 40(12): 2122-2129. ]

    • LOPEZ OR, KURSAR TA, 2003. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats [J]. Oecologia, 136(2): 193-204.

    • LU XM, ZHOU CF, AN SQ, et al. , 2007. Phenotypic plasticity, allometry and invasiveness of plants [J]. Chin J Ecol, 26(9): 1438-1444. [陆霞梅, 周长芳, 安树青, 等, 2007. 植物的表型可塑性、异速生长及其入侵能力 [J]. 生态学杂志, 26(9): 1438-1444. ]

    • LUO FL, ZENG B, CHEN T, et al. , 2007. Response to simulated floonding of photosynthesis and growth of riparian plant salix variegata in the three gorges reservoir region of China [J]. Chin J Plant Ecol, 31(5): 910-918. [罗芳丽, 曾波, 陈婷, 等, 2007. 三峡库区岸生植物秋华柳对水淹的光合和生长响应 [J]. 植物生态学报, 31(5): 910-918. ]

    • MAO YY, HAO J, LONG SY, et al. , 2020. Biomass allocation and allometric analysis of Vetuena azanotdes in different planting years on coal spoilheaps [J]. Guihaia, 40(6): 802-811. [毛圆圆, 郝俊, 龙水义, 等, 2020. 煤矸石山不同种植年限香根草生物量分配及异速生长分析 [J]. 广西植物, 40(6): 802-811. ]

    • MIAO SL, ZOU CB, BRESHEARS DD, 2009. Notes and comments: vegetation responses to extreme hydrological events: sequence matters [J]. Am Nat, 173(1): 113-118.

    • MILBERG P, LAMONT BB, PÉREZ-FERNÁNDEZ MA, 1999. Survival and growth of native and exotic composites in response to a nutrient gradient [J]. Plant Ecol, 145(1): 125-132.

    • NIKLAS KJ, ENQUIST BJ, 2002. Canonical rules for plant organ biomass partitioning and annual allocation [J]. Amer J Bot, 89(5): 812-819.

    • NIKLAS KJ, 2004. Plant allometry: is there a grand unifying theory? [J]. Biol Rev, 79(4): 871-889.

    • PAN YM, TANG SC, WEI CQ, et al. , 2017. Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions [J]. Biodivers Sci, 25(12): 1257-1266. [潘玉梅, 唐赛春, 韦春强, 等, 2017. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较 [J]. 生物多样性, 25(12): 1257-1266. ]

    • POORTER H, JAGODZINSKI AM, RUIZ-PEINADO R, et al. , 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents [J]. New Phytol, 208(3): 736-749.

    • RAMÍREZ DA, ROLANDO JL, YACTAYO W, et al. , 2015. Improving potato drought tolerance through the induction of long-term water stress memory [J]. Plant Sci, 238: 26-32.

    • RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.

    • SHEA K, CHESSON P, 2002. Community ecology theory as a framework for biological invasions [J]. Trend Ecol Evol, 17(4): 170-176.

    • SONG LY, SUN LL, SHU Z, et al. , 2009. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in leaves of invasive Wedelia trilobata [J]. Acta Ecol Sin, 29(7): 3713-3721. [宋莉英, 孙兰兰, 舒展, 等, 2009. 干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响 [J]. 生态学报, 29(7): 3713-3721. ]

    • TIAN HQ, XU XF, SONG X, 2007. Drought impacts on terrestrial ecosystem productivity [J]. Chin J Plant Ecol, 31(2): 231-241. [田汉勤, 徐小锋, 宋霞, 2007. 干旱对陆地生态系统生产力的影响 [J]. 植物生态学报, 31(2): 231-241. ]

    • TOMBESI S, FRIONI T, PONI S, et al. , 2018. Effect of water stress “memory” on plant behavior during subsequent drought stress [J]. Environ Exp Bot, 150: 106-114.

    • TURGUT-KARA N, ARIKAN B, CELIK H, 2020. Epigenetic memory and priming in plants [J]. Genetica, 148(1): 47-54.

    • WANG S, 2016. Research on plant phenotypic plasticity and stability [D]. Changchun: Northeast Normal University: 94-99. [王姝, 2016. 植物表型可塑性与稳定性研究 [D]. 长春: 东北师范大学: 94-99. ]

    • WANG S, CALLAWAY RM, ZHOU DW, et al. , 2017. Experience of inundation or drought alters the responses of plants to subsequent water conditions [J]. J Ecol, 105(1): 176-187.

    • WANG S, ZHOU DW, 2021. Stage-dependent plasticity in biomass allocation and allometry in response to population density in Abutilon theophrasti: a step forward to understanding the nature of phenotypic plasticity [J]. Plant Ecol, 222(10): 1157-1181.

    • WANG SP, ALTHOFF DM, 2019. Phenotypic plasticity facilitates initial colonization of a novel environment [J]. Evolution, 73(2): 303-316.

    • WEINER J, 2004. Allocation, plasticity and allometry in plants [J]. Perspect Plant Ecol, 6(4): 207-215.

    • XIONG YQ, ZHAO CY, 2020. Phenotypic plasticity and the successful invasion of alien plants [J]. Chin J Ecol, 39(11): 3853-3864. [熊韫琦, 赵彩云, 2020. 表型可塑性与外来植物的成功入侵 [J]. 生态学杂志, 39(11): 3853-3864. ]

    • XU CY, ZHANG WJ, LU BR, et al. , 2001. Progress in studies on mechanisms of biological invasion [J]. Biodivers Sci, 9(4): 430-438. [徐承远, 张文驹, 卢宝荣, 等, 2001. 生物入侵机制研究进展 [J]. 生物多样性, 9(4): 430-438. ]

    • XU K, XU X, FUKAO T, 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.

    • XU YX, YU HL, LI CH, et al. , 2021. Effects of simulated precipitation on soli enzyme activities in a desert steppe of north China and their related influencing factors [J]. Acta Bot Boreal-Occident Sin, 41(11): 1912-1923. [许艺馨, 余海龙, 李春环, 等, 2021. 模拟降水量变化对荒漠草原土壤酶活性的影响及其相关因素分析 [J]. 西北植物学报, 41(11): 1912-1923. ]

    • YANG YH, FANG JY, MA WH, et al. , 2010. Large-scale pattern of biomass partitioning across China's grasslands [J]. Glob Ecol Biogeogr, 19(2): 268-277.

    • ZHANG CX, ZHAO WQ, DANG HL, et al. , 2021. Effects of different slope aspect on biomass allocation and stoichiometry of ephemeral plants in the southern margin of Junggar Basin [J]. Acta Bot Boreal-Occident Sin, 41(1): 151-158. [张彩霞, 赵文勤, 党寒利, 等, 2021. 准噶尔盆地南缘不同坡向对短命植物生物量分配和化学计量特征的影响 [J]. 西北植物学报, 41(1): 151-158. ]

    • ZHANG WE, LI H, PAN XJ, 2020. Characteristics of accumulation and translocation of dry matter and minerals in Canana edulis under drought stress and rewatering [J]. Acta Bot Boreal-Occident Sin, 2020, 40(3): 490-501. [张文娥, 李慧, 潘学军, 2020. 干旱及复水对芭蕉芋干物质及氮磷钾积累与分配特征的影响 [J]. 西北植物学报, 40(3): 490-501. ]

    • ZHOU XY, DENG XP, 2007. Effect of post-drought rewatering on leaf photosynthetic characteristics and antioxidation in different wheat genotypes [J]. Acta Bot Boreal-Occid Sin, 27(2): 278-285. [周雪英, 邓西平, 2007. 旱后复水对不同倍性小麦光合及抗氧化特性的影响 [J]. 西北植物学报, 27(2): 278-285. ]

    • ZHU QG, JIN AW, WANG YK, et al. , 2013. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis [J]. Chin J Plant Ecol, 37(9): 811-819. [朱强根, 金爱武, 王意锟, 等, 2013. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析 [J]. 植物生态学报, 37(9): 811-819. ]

  • 参考文献

    • AUCLAIR AN, 1993. Extreme climatic fluctuations as a cause of forest dieback in the pacific rim [J]. Water Air Soil Poll, 66(3): 207-229.

    • CHEN GP, YANG KT, WANG L, et al. , 2020. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu [J]. Chin J Plant Ecol, 44(10): 1040-1049. [陈国鹏, 杨克彤, 王立, 等, 2020. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系 [J]. 植物生态学报, 44(10): 1040-1049. ]

    • DAVIS MA, GRIME JP, THOMPSON K, 2000. Fluctuating resources in plant communities: a general theory of invasibility [J]. J Ecol, 88(3): 528-534.

    • EASTERLING DR, MEEHL GA, PARMESAN C, et al. , 2000. Climate extremes: observations, modeling, and impacts [J]. Science, 289(5487): 2068-2074.

    • ELCAN JM, PEZESHKI SR, 2002. Effects of flooding on susceptibility of Taxodium distichum L. seedlings to drought [J]. Photosynthetica, 40(2): 177-182.

    • FAN GH, CUI Z, ZHANG JW, et al. , 2017. Effects of population density on the biomass allocation and allometric growth of Chenopodium acuminatum [J]. Acta Ecol Sin, 37 (15): 5080-5090. [范高华, 崔桢, 张金伟, 等, 2017. 密度对尖头叶黎生物量分配格局及异速生长的影响 [J]. 生态学报, 37(15): 5080-5090. ]

    • FUHRMANN-AOYAGI MB, DE FÁTIMA RC, BARBOSA EGG, et al. , 2021. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses [J]. J Plant Physiol, 257: 153338.

    • FUNK J, 2008. Differences in plasticity between invasive and native plants from a low resource environment [J]. J Ecol, 96(6): 1162-1173.

    • GAO ZX, JI R, XU RM, et al. , 2003. Biological invasions: process, mechanism and prediction [J]. Acta Ecol Sin, 23(3): 559-570. [高增祥, 季荣, 徐汝梅, 等, 2003. 外来种入侵的过程、机理和预测 [J]. 生态学报, 23(3): 559-570. ]

    • GENG YP, ZHANG WJ, LI B, et al. , 2004. Phenotypic plasticity and invasiveness of alien plants [J]. Biodivers Sci, 12(4): 447-455. [耿宇鹏, 张文驹, 李博, 等, 2004. 表型可塑性与外来植物的入侵能力 [J]. 生物多样性, 12(4): 447-455. ]

    • HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, et al. , 2013. Global flood risk under climate change [J]. Nat Clim Change, 3(9): 816-821.

    • HU SQ, CAO ZC, LIU TT, 2017. Change features of extreme drought events in north China [J]. Meteorol Environ Sci, 40(4): 121-125. [胡顺起, 曹张驰, 刘婷婷, 2017. 华北地区极端干旱事件的变化特征 [J]. 气象与环境科学, 40(4): 121-125. ]

    • HU YC, DONG WJ, HE Y, 2007. Progress of the study of extreme weather and climate events at the beginning of the twenty first century [J]. Adv Earth Sci, 22(10): 1066-1075. [胡宜昌, 董文杰, 何勇, 2007. 21世纪初极端天气气候事件研究进展 [J]. 地球科学进展, 22(10): 1066-1075]

    • HULME PE, 2008. Phenotypic plasticity and plant invasions: is it all Jack [J]. Funct Ecol, 22(1): 3-7.

    • KETTENRING KM, MOCK KE, ZAMAN B, et al. , 2016. Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion [J]. Biol Invas, 18(9): 2475-2495.

    • KAUFMAN SR, SMOUSE PE, 2001. Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav. ) Blake: response of seedlings to water and pH levels [J]. Oecologia, 127(4): 487-494.

    • LI L, WEINER J, ZHOU DW, et al. , 2013. Initial density affects biomass-density and allometric relationships in self-thinning populations of Fagopyrum esculentum [J]. J Ecol, 101(2): 475-483.

    • LIU WH, JIN GL, GONG K, et al. , 2020. Phenotype characteristics and biomass allocation of wild Bromus inermis with different plant heights [J]. Acta Bot Boreal-Occident Sin, 40(12): 2122-2129. [刘文昊, 靳瑰丽, 宫珂, 等, 2020. 不同株高野生无芒雀麦表型特征及生物量分配研究 [J]. 西北植物学报, 40(12): 2122-2129. ]

    • LOPEZ OR, KURSAR TA, 2003. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats [J]. Oecologia, 136(2): 193-204.

    • LU XM, ZHOU CF, AN SQ, et al. , 2007. Phenotypic plasticity, allometry and invasiveness of plants [J]. Chin J Ecol, 26(9): 1438-1444. [陆霞梅, 周长芳, 安树青, 等, 2007. 植物的表型可塑性、异速生长及其入侵能力 [J]. 生态学杂志, 26(9): 1438-1444. ]

    • LUO FL, ZENG B, CHEN T, et al. , 2007. Response to simulated floonding of photosynthesis and growth of riparian plant salix variegata in the three gorges reservoir region of China [J]. Chin J Plant Ecol, 31(5): 910-918. [罗芳丽, 曾波, 陈婷, 等, 2007. 三峡库区岸生植物秋华柳对水淹的光合和生长响应 [J]. 植物生态学报, 31(5): 910-918. ]

    • MAO YY, HAO J, LONG SY, et al. , 2020. Biomass allocation and allometric analysis of Vetuena azanotdes in different planting years on coal spoilheaps [J]. Guihaia, 40(6): 802-811. [毛圆圆, 郝俊, 龙水义, 等, 2020. 煤矸石山不同种植年限香根草生物量分配及异速生长分析 [J]. 广西植物, 40(6): 802-811. ]

    • MIAO SL, ZOU CB, BRESHEARS DD, 2009. Notes and comments: vegetation responses to extreme hydrological events: sequence matters [J]. Am Nat, 173(1): 113-118.

    • MILBERG P, LAMONT BB, PÉREZ-FERNÁNDEZ MA, 1999. Survival and growth of native and exotic composites in response to a nutrient gradient [J]. Plant Ecol, 145(1): 125-132.

    • NIKLAS KJ, ENQUIST BJ, 2002. Canonical rules for plant organ biomass partitioning and annual allocation [J]. Amer J Bot, 89(5): 812-819.

    • NIKLAS KJ, 2004. Plant allometry: is there a grand unifying theory? [J]. Biol Rev, 79(4): 871-889.

    • PAN YM, TANG SC, WEI CQ, et al. , 2017. Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions [J]. Biodivers Sci, 25(12): 1257-1266. [潘玉梅, 唐赛春, 韦春强, 等, 2017. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较 [J]. 生物多样性, 25(12): 1257-1266. ]

    • POORTER H, JAGODZINSKI AM, RUIZ-PEINADO R, et al. , 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents [J]. New Phytol, 208(3): 736-749.

    • RAMÍREZ DA, ROLANDO JL, YACTAYO W, et al. , 2015. Improving potato drought tolerance through the induction of long-term water stress memory [J]. Plant Sci, 238: 26-32.

    • RICHARDS CL, BOSSDORF O, MUTH NZ, et al. , 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions [J]. Ecol Lett, 9(8): 981-993.

    • SHEA K, CHESSON P, 2002. Community ecology theory as a framework for biological invasions [J]. Trend Ecol Evol, 17(4): 170-176.

    • SONG LY, SUN LL, SHU Z, et al. , 2009. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in leaves of invasive Wedelia trilobata [J]. Acta Ecol Sin, 29(7): 3713-3721. [宋莉英, 孙兰兰, 舒展, 等, 2009. 干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响 [J]. 生态学报, 29(7): 3713-3721. ]

    • TIAN HQ, XU XF, SONG X, 2007. Drought impacts on terrestrial ecosystem productivity [J]. Chin J Plant Ecol, 31(2): 231-241. [田汉勤, 徐小锋, 宋霞, 2007. 干旱对陆地生态系统生产力的影响 [J]. 植物生态学报, 31(2): 231-241. ]

    • TOMBESI S, FRIONI T, PONI S, et al. , 2018. Effect of water stress “memory” on plant behavior during subsequent drought stress [J]. Environ Exp Bot, 150: 106-114.

    • TURGUT-KARA N, ARIKAN B, CELIK H, 2020. Epigenetic memory and priming in plants [J]. Genetica, 148(1): 47-54.

    • WANG S, 2016. Research on plant phenotypic plasticity and stability [D]. Changchun: Northeast Normal University: 94-99. [王姝, 2016. 植物表型可塑性与稳定性研究 [D]. 长春: 东北师范大学: 94-99. ]

    • WANG S, CALLAWAY RM, ZHOU DW, et al. , 2017. Experience of inundation or drought alters the responses of plants to subsequent water conditions [J]. J Ecol, 105(1): 176-187.

    • WANG S, ZHOU DW, 2021. Stage-dependent plasticity in biomass allocation and allometry in response to population density in Abutilon theophrasti: a step forward to understanding the nature of phenotypic plasticity [J]. Plant Ecol, 222(10): 1157-1181.

    • WANG SP, ALTHOFF DM, 2019. Phenotypic plasticity facilitates initial colonization of a novel environment [J]. Evolution, 73(2): 303-316.

    • WEINER J, 2004. Allocation, plasticity and allometry in plants [J]. Perspect Plant Ecol, 6(4): 207-215.

    • XIONG YQ, ZHAO CY, 2020. Phenotypic plasticity and the successful invasion of alien plants [J]. Chin J Ecol, 39(11): 3853-3864. [熊韫琦, 赵彩云, 2020. 表型可塑性与外来植物的成功入侵 [J]. 生态学杂志, 39(11): 3853-3864. ]

    • XU CY, ZHANG WJ, LU BR, et al. , 2001. Progress in studies on mechanisms of biological invasion [J]. Biodivers Sci, 9(4): 430-438. [徐承远, 张文驹, 卢宝荣, 等, 2001. 生物入侵机制研究进展 [J]. 生物多样性, 9(4): 430-438. ]

    • XU K, XU X, FUKAO T, 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.

    • XU YX, YU HL, LI CH, et al. , 2021. Effects of simulated precipitation on soli enzyme activities in a desert steppe of north China and their related influencing factors [J]. Acta Bot Boreal-Occident Sin, 41(11): 1912-1923. [许艺馨, 余海龙, 李春环, 等, 2021. 模拟降水量变化对荒漠草原土壤酶活性的影响及其相关因素分析 [J]. 西北植物学报, 41(11): 1912-1923. ]

    • YANG YH, FANG JY, MA WH, et al. , 2010. Large-scale pattern of biomass partitioning across China's grasslands [J]. Glob Ecol Biogeogr, 19(2): 268-277.

    • ZHANG CX, ZHAO WQ, DANG HL, et al. , 2021. Effects of different slope aspect on biomass allocation and stoichiometry of ephemeral plants in the southern margin of Junggar Basin [J]. Acta Bot Boreal-Occident Sin, 41(1): 151-158. [张彩霞, 赵文勤, 党寒利, 等, 2021. 准噶尔盆地南缘不同坡向对短命植物生物量分配和化学计量特征的影响 [J]. 西北植物学报, 41(1): 151-158. ]

    • ZHANG WE, LI H, PAN XJ, 2020. Characteristics of accumulation and translocation of dry matter and minerals in Canana edulis under drought stress and rewatering [J]. Acta Bot Boreal-Occident Sin, 2020, 40(3): 490-501. [张文娥, 李慧, 潘学军, 2020. 干旱及复水对芭蕉芋干物质及氮磷钾积累与分配特征的影响 [J]. 西北植物学报, 40(3): 490-501. ]

    • ZHOU XY, DENG XP, 2007. Effect of post-drought rewatering on leaf photosynthetic characteristics and antioxidation in different wheat genotypes [J]. Acta Bot Boreal-Occid Sin, 27(2): 278-285. [周雪英, 邓西平, 2007. 旱后复水对不同倍性小麦光合及抗氧化特性的影响 [J]. 西北植物学报, 27(2): 278-285. ]

    • ZHU QG, JIN AW, WANG YK, et al. , 2013. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis [J]. Chin J Plant Ecol, 37(9): 811-819. [朱强根, 金爱武, 王意锟, 等, 2013. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析 [J]. 植物生态学报, 37(9): 811-819. ]