en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

秦中维(1997-),硕士研究生,研究方向为热带滨海作物逆境生理生态,(E-mail)1198674844@qq.com。

通讯作者:

李映志,博士,教授,研究方向为热带园艺植物栽培与育种研究,(E-mail)liyz@gdou.edu.cn。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2300-09

DOI:10.11931/guihaia.gxzw202210069

参考文献
DEINLEIN U, STEPHAN AB, HORIE T, et al. , 2014. Plant salt-tolerance mechanisms [J]. Trends Plant Sci, 19(6): 371-379.
参考文献
高俊凤, 2006. 植物生物学试验指导 [M]. 北京: 高等教育出版社: 208-230.
参考文献
GAO ZQ, ZHANG JY, ZHANG J, et al. , 2022. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr [J]. Plant Physiol Biochem: 173: 46-58.
参考文献
GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61: 703-714.
参考文献
GOHARI G, ZAREEI E, ROSTAMI H, et al. , 2021. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L. ) cv. flame seedless under salt stress conditions [J]. Ecotoxicol Environ Safety, 220: 112402.
参考文献
GOYAL V, JHANGHEL D, MEHROTRA S, 2021. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide [J]. Physiol Plant, 171(4): 896-908.
参考文献
GUI X, ZHANG ZY, LIU ST, et al. , 2015. Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment [J]. PLoS ONE, 10(8): e0134261.
参考文献
HASSANPOURAGHDAM MB, MEHRABANI LV, BONABIAN Z, et al. , 2022. Foliar application of cerium oxide-salicylic acid nanoparticles (CeO2: SA Nanoparticles) influences the growth and physiological responses of Portulaca oleracea L. under salinity [J]. Int J Mol Sci, 23(9): 5093.
参考文献
HUSSAIN S, NISAR F, BHATT A, et al. , 2022. Redox priming alleviates dormancy and improves salinity tolerance of seeds and seedlings of medicinal halophyte Zygophyllum simplex L. [J]. J Appl Res Med Aromat Plant, 30: 100384.
参考文献
KE QB, YE J, WANG BM, et al. , 2018. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism [J]. Front Plant Sci, 9: 914.
参考文献
KHAN MN, LI YH, KHAN Z, et al. , 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities [J]. J Nanobiotechnol, 19(1): 276.
参考文献
LIU XH, WANG RH, WANG WC, et al. , 2021. Effect of potassium sulfate and magnesium chloride combination on germination of sugar beet seeds. [J]. Sugar Crops Chin, 43(3): 61-65. [刘晓晗, 王荣华, 王维成, 等, 2021. 硫酸钾与氯化镁组合对甜菜种子萌发的影响 [J]. 中国糖料, 43(3): 61-65. ]
参考文献
LIZZI D, MATTIELLO A, PIANI B, et al. , 2020. Germination and early development of three spontaneous plant species exposed to nanoceria (nCeO2) with different concentrations and particle sizes [J]. Nanomater Basel, 10(12): 2534.
参考文献
NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.
参考文献
NEWKIRK GM, WU HH, SANTANA I, et al. , 2018. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles [J]. J Visualized Exp, 138: e58373.
参考文献
NOOR R, YASMIN H, ILYAS N, et al. , 2022. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress [J]. Chemosphere, 292: 133201.
参考文献
NOUMAN W, AZIZ U, 2022. Seed priming improves salinity tolerance in Calotropis procera (Aiton) by increasing photosynthetic pigments, antioxidant activities, and phenolic acids [J]. Biol, 77: 609-626.
参考文献
PRAKASH V, PERALTA-VIDEA J, TRIPATHI DK, et al. , 2021. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum [J]. Ecotoxicol Environ Safety, 221: 112403.
参考文献
RAFFAELLA B, WALTER C, ANDREA G, et al. , 2022. A stressful life: how plants cope with multiple biotic and abiotic adverse factors [J]. Plant Stress, 5: 10095.
参考文献
RAWASHDEH RY, HARB AM, AIHASAN AM, 2020. Biological interaction levels of Zinc oxide nanoparticles; lettuce seeds as case study [J]. Heliyon, 6(5): e03983.
参考文献
RONG ZY, JIANG DJ, CAO JL, et al. , 2022. Endophytic fungus Serendipita indica accelerates ascorbate-glutathione cycle of white clover in response to water stress [J]. Front Microb, 13: 967851.
参考文献
ROSSI L, ZHANG WL, LOMBARDINI L, et al. , 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. [J]. Environ Poll, 219: 28-36.
参考文献
SARDAR R, AHMED S, SHAH AA, et al. , 2022. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions [J]. Chemosphere, 287(Pt 3): 132332.
参考文献
SCHNEIDER K, SCHLEGEL HG, 1981. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16 [J]. Biochem J, 193(1): 99-107.
参考文献
SHA HJ, HU WC, JIA Y, et al. , 2017. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress [J]. Acta Agron Sin, 43(11): 1677-1688. [沙汉景, 胡文成, 贾琰, 等, 2017. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下稻产量的影响 [J]. 作物学报, 43(11): 1677-1688. ]
参考文献
SHANG YF, HASAN MK, AHAMMED GJ, et al. , 2019. Applications of nanotechnology in plant growth and crop protection: A review [J]. Molecules, 24(14): 2558.
参考文献
VELIKOVA V, YORDANOV I, EDREVA A, 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines [J]. Plant Sci, 151(1): 59-66.
参考文献
王立浩, 马艳青, 张宝玺, 2019. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, (8): 1-4.
参考文献
WANG SY, JIAO HJ, FAUST M, 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple [J]. Physiol Plant, 82(2): 231-236.
参考文献
XIAO ZL, 2022. Effects of salt stress on growth, physiological characteristics, yield and quality of processed pepper [D]. Urumqi: Xinjiang Agricultural University: 7-34. [肖中林, 2022. 盐胁迫对加工辣椒生长、生理特性、产量及品质的影响 [D]. 乌鲁木齐: 新疆农业大学: 7-34. ]
参考文献
YAN SP, CHONG PF, ZHAO M, 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings [J]. Plant Signal Behav, 17(1): 2031782.
参考文献
YANG H, DAI LJ, WEI YX, et al. , 2020. Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings [J]. Ind Crops Prod, 145(C): 111990.
参考文献
YIN FM, ZHANG SY, CAO BL, et al. , 2021. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents [J]. Peer J, 9: e10832.
参考文献
ZHANG L, 2017. Effects of plant growth promoters on the growth and stress resistance of maize [D]. Wuhan: Huazhong Agricultural University: 3-27. [张璐, 2017. 植物生长促进剂对玉米生长的影响及抗逆效应研究 [D]. 武汉: 华中农业大学: 3-27. ]
参考文献
ZHANG TJ, CHEN YJ, LIU JZ, 2019. Characteristics of soil salinization in coastal wetlands based on canonical correspondence analysis [J]. Acta Ecol Sin, 39(9): 3322-3332. [张天举, 陈永金, 刘加珍, 2019. 基于典范对应分析的滨海湿地土壤季节性盐渍化特征 [J]. 生态学报, 39(9): 3322-3332. ]
参考文献
ZHANG WH, XIE Y, WU Y, et al. , 2022. Amelioration of salt-induced damage on alfalfa by exogenous application of silicon [J]. Grassl Sci, 68(1): 60-69.
参考文献
ZHAO LJ, PENG B, HERNANDEZ-VIEZCAS JA, et al. , 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation [J]. ACS Nano, 6(11): 9615-9622.
参考文献
ZHOU XD, JIA XR, ZHANG ZH, et al. , 2022. AgNPS seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage [J]. Sci Total Environ, 808: 151896.
参考文献
ZOU XX, HU BW, XIONG C, et al. , 2022. Review andprospects of pepper breeding for the past 60 years in China [J]. Acta Hortic Sin, 49(10): 2099-2118. [邹学校, 胡博文, 熊程, 等, 2022. 中国辣椒育种60年回顾与展望 [J]. 园艺学报, 49(10): 2099-2118. ]
目录contents

    摘要

    氧化铈纳米颗粒(CeO2NPS),因具有较强的自由基清除能力和抗氧化酶特性,已被证明可提高植物的耐盐性,但其对辣椒种子引发作用和机制尚不明确。为揭示CeO2NPS种子引发处理辣椒对盐胁迫下的萌发及幼苗生长的影响,以辣椒品种(Capsicum annuum)茂蔬360为试验材料,设置了7个CeO2NPS浓度(0、0.05、0.1、0.2、0.3、0.4、0.5 mmol·L-1),以未引发处理组为对照,研究不同浓度CeO2NPS种子引发处理后对盐胁迫下辣椒种子萌发、幼苗生物量和生理生化指标的影响。结果表明:(1)0.5 mmol·L-1 CeO2NPS种子引发处理后的种子,其可溶性蛋白质、脯氨酸含量和过氧化氢酶(CAT)活性、抗坏血酸(AsA)含量和AsA/DHA比值显著提高,超氧阴离子(O2-)含量显著降低;盐胁迫下,该处理种子的发芽率、发芽势、发芽指数、活力指数最大。(2)0.4 mmol·L-1 CeO2NPS种子引发处理的幼苗在盐胁迫下的鲜重、干重和根长最大,幼苗的可溶性蛋白质、AsA含量和AsA/DHA比值均显著提高。综上认为,CeO2NPS引发处理不仅可通过降低种子水势、促进贮藏物质代谢和提高抗氧化能力提高种子在盐胁迫下的发芽率,还可在苗期通过增强蛋白合成和抗坏血酸-谷胱甘肽循环(AsA-GSH)促进盐胁迫下幼苗的生长。

    Abstract

    Cerium oxide nanoparticles (CeO2NPS) have been shown to improve the salt tolerance of plant due to the potential to eliminate free radicals and the antioxidation properties. However, the effects and mechanisms of seed priming with CeO2NPS on pepper plant are unclear. To reveal impacts of CeO2NPS seed priming on the germination and seedling growth of peeper plants under salt stress, using the Maoshu 360 variety of pepper(Capsicum annuum)as material, a total of seven concentrations of treatments (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 mmol·L-1) and a control of un-treatment were carried out to investigate effects of CeO2NPS seed priming on seed germination rate, seedling biomass, and physiological and biochemical indexes under salt stress. The results were as follows: (1) In the seed priming with 0.5 mmol·L-1 CeO2NPS, soluble protein, content of proline, activity of catalase (CAT), content of ascorbic acid (AsA) and ratio of AsA/DHA significantly increased and levels of the superoxide anion (O2-) significantly decreased. There was no loss of viability for the seeds primed with cerium oxide nanoparticles. Indeed their germination rate and germination potential were enhanced under salt stress, and their germination index, and vigor index were improved under salt stress. (2) Under salt stress, seedlings from seeds primed with 0.4 mmol·L-1 CeO2NPS showed the highest fresh weight, dry weight, and root length; additionally, soluble protein content, AsA content and AsA/DHA ratio were also improved. In conclusion, seed priming with CeO2NPS can not only enhance seed germination under salt stress by decreasing seed water potential, accelerating storage substances metabolism and improving antioxidant capacity but also promote seedling growth through boosting protein synthesis and ascorbic acid-glutathione cycle (AsA-GSH).

  • 土壤盐渍化是阻碍农作物生产力提高的主要非生物胁迫因素之一,可影响种子的顺利萌发和幼苗的健康生长(Yan et al.,2022)。盐胁迫易使细胞中有毒离子(Na+和Cl-)过量积累,抑制水分吸收(Yang et al.,2020),同时会导致大量活性氧(reactive oxygen species,ROS)的产生,如过氧化氢(hydrogen peroxide,H2O2)和超氧阴离子(superoxide anion,O2-)(Yin et al.,2021),使细胞膜遭受氧化毒害,导致氧化应激反应,不仅影响辣椒(Capsicum annuum)、驼蹄瓣属(Zygophyllum)、蔓菁(Brassica rapa)等植物种子的萌发(Gammoudi et al.,2022; Hussain et al.,2022; Zhou et al.,2022),还影响辣椒、牛角瓜(Calotropis gigantea)、小麦(Triticum aestivum)等幼苗的正常生长(Ke et al.,2018; 肖中林,2022;Nouman &Aziz,2022),甚至降低稻(Oryza sativa)等作物的产量(沙汉景等,2017)。因此,探究如何提高种子在盐胁迫下的发芽率和增强植株的盐胁迫耐受能力,对解决我国土壤盐渍化问题、保障作物的安全及社会稳定发展具有重大意义(Raffaella et al.,2022)。

  • 种子引发是一种新兴的应对盐渍化胁迫的种子处理技术,即在种子发芽前用天然和/或合成引发剂处理,诱导种子进入特定的生理状态,可通过记忆效应使植物通过改变关键信号分子、转录因子等来抵御生长期发生的盐胁迫(Shang et al.,2019; Goyal et al.,2021)。多种纳米材料如氧化锌纳米颗粒(zinic oxide nanoparticles,ZnONPS)、硒纳米颗粒(selenium nanoparticles,SeNPs)、氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2NPS)等被用于种子引发(Rawashdeh et al.,2020;Prakash et al.,2021; Sardar et al.,2022)。其中,CeO2NPS是一种新兴纳米材料,因具有超强自由基清除能力被广泛运用于医疗、化妆品行业,近年来也被运用于纳米农业中(Newkirk et al.,2018)。CeO2NPS通过Ce3+和Ce4+悬空键模拟抗氧化酶活性减少ROS的过度积累,从而缓解植物的氧化应激反应,提高植物对逆境的耐受性。Khan等(2021)研究发现,CeO2NPS通过种子引发处理后可提高芸薹(Brassica rapa)种子的α-淀粉酶活性和清除过量ROS,并提高其在盐胁迫下的发芽率,同时可在苗期通过提高盐胁迫下芸薹幼苗的SOD、POD活性和可溶性糖含量,进而增强芸薹的耐盐性,最终促进芸薹生物量的提高。目前,有关CeO2NPS通过种子引发处理对辣椒盐胁迫下生长发育影响方面的研究还罕有报道。辣椒,为茄科辣椒属植物,由于其具有促进食欲、改善消化、抗菌杀虫等作用,深得广大群众的喜爱(邹学校等,2022)。目前,我国已成为鲜辣椒产量最高的国家,种植面积为78万公顷,产量为1 900万吨(王立浩等,2019);其果实含有大量的生物活性化合物(如辣椒素),在食品、医药、化妆品行业中有广泛的应用前景(张天举等,2019)。

  • 为探究辣椒耐盐碱栽培技术措施及其耐盐机制,本研究以茂蔬360为试验材料,通过种子引发处理和生理生化分析,旨在探明:(1)CeO2NPS种子引发处理对盐胁迫下辣椒种子萌发、幼苗生长的影响;(2)CeO2NPS种子引发处理提高辣椒耐盐性的最佳浓度;(3)种子引发处理提高辣椒耐盐性的可能作用机制。

  • 1 材料与方法

  • 1.1 供试材料

  • 本试验于2022年3月至8月在广东海洋大学滨海农业学院进行。供试材料为辣椒,品种为茂蔬360。

  • 1.2 试验设计

  • 1.2.1 种子引发处理

  • 参考Newkirk等(2018)的方法合成氧化铈纳米颗粒(CeO2NPS)溶液,并将新合成的CeO2NPS溶液保存在4℃,分别配置成浓度为0、0.05、0.1、0.2、0.3、0.4、0.5 mmol·L-1(分别用S0、S0.05、S0.1、S0.2、S0.3、S0.4、S0.5表示)的CeO2NPS溶液,其中,0 mmol· L-1 CeO2NPS溶液(S0)为渗透缓冲液,由100 mmol·L-1 TES和100 mmol·L-1 MgCl2组成,用HCl调节pH为7.5,作为CeO2NPS溶液的阴性对照。挑选粒大饱满、大小均一的辣椒种子约2 g置于烧杯中,分别加入10 mL不同浓度的CeO2NPS溶液,封口后置于培养箱中引发24 h。用蒸馏水将种子冲洗干净,滤纸吸干后回干至初始含水量。

  • 1.2.2 种子发芽

  • 将未引发处理(CK)和引发处理的辣椒种子置于标准发芽皿(10 cm × 10 cm × 5 cm)中,加入5mL的100 mmol·L-1的NaCl溶液模拟盐胁迫,放置在25℃的光照培养箱中进行发芽试验,每个处理60粒种子,重复3次。

  • 1.2.3 幼苗生长

  • 将CK和不同浓度CeO2NPS引发处理后的辣椒种子分别播种于混有蛭石椰糠的育苗盘中,每盘播50(5×10)粒发芽种子,并浇入浓度为100 mmol·L-1的NaCl溶液模拟盐胁迫。于室温下培养至幼苗两叶一心取样,进行各项指标的测定。

  • 1.3 指标测定

  • 1.3.1 种子萌发指标

  • 以胚根突破种皮2 mm作为种子萌发过程中的发芽标准。保持每天记录辣椒种子的发芽数,直到无种子发芽为止。参考Gammoudi等(2020)的方法计算发芽势(germination potential,GP)、发芽率(germination rate,GR)、发芽指数(germination index,GI)、活力指数(vigor index,VI)。

  • 发芽势(GP)=(3 d内发芽数/供试种子数)×100%。

  • 发芽率(GR)=(发芽结束后的发芽种子数/供试种子数)×100%。

  • 发芽指数(GI)=∑(Ni/ti)。

  • 活力指数(VI)=GP×(苗高+根长)。

  • 式中: Ni为培养第一天发芽的种子数; ti是从开始到第一次发芽的时间。

  • 1.3.2 生长指标

  • 待辣椒幼苗长至两叶一心时,选取长势一致的幼苗,全株采回后立即清洗擦干,用游标卡尺测量株高、根长,先用电子天平称量幼苗鲜重,然后将样品置于烘箱105℃杀青30 min,随后转至80℃烘干至恒重,记录干重。

  • 1.3.3 生理指标

  • 将引发后的辣椒种子及长至两叶一心的幼苗进行取样,并测定生理指标。采用硫代巴比妥酸法(Velikova et al.,2000)测定丙二醛(MDA)含量(nmol·g-1),采用Schneider和Schlegel(1981)的方法测定超氧阴离子(O2-)含量(μmol·g-1),采用蒽酮比色法(张璐,2017)测定可溶性糖含量(mg·g-1)、考马斯亮蓝染色法(高俊凤,2006))测定可溶性蛋白质含量(mg·g-1),采用Wang等(1991)的方法测定抗坏血酸(ascorbic acid,AsA)和脱氢抗坏血酸(dehydroascorbic acid,DHA)含量(nmol·g-1),采用Nakano和Asada(1981)的方法测定抗坏血酸过氧化物酶活性(ascorbate peroxidase,APX),酶活性以(U·g-1·min-1)表示,采用试剂盒法(北京索莱宝科技有限公司)测定超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)活性,酶活性以U·g-1表示,采用试剂盒法(北京索莱宝科技有限公司)测定脯氨酸含量(μg·g-1)。

  • 1.4 数据统计与分析

  • 利用SPSS 26.0统计分析软件处理试验数据,Excel作图。

  • 2 结果与分析

  • 2.1 CeO2NPS种子引发处理对盐胁迫下辣椒种子萌发的影响

  • 由表1可知,不同浓度CeO2NPS种子引发处理均能促进盐胁迫下的辣椒种子萌发, S0.5处理组种子的发芽率最高,比未引发处理组的种子提高了34.59%,并且发芽势为未引发处理组的12倍。不同数据显示,CeO2 NPS启动显著提高发芽指数。在盐胁迫下,所有的引物浓度似乎都能改善发芽指数、活力指数,S0.5处理组的发芽指数和活力指数均达到最高水平(与未引发处理组组相比分别提高了399.57和7.84)。

  • 表1 CeO2NPS种子引发处理对盐胁迫下辣椒种子萌发的影响

  • Table1 Effects of CeO2NPS seed priming on pepper seed germination under salt stress

  • 注:同列不同小写字母表示差异显著(P < 0.05)。CK为对照组。S0~S0.5分别代表不同浓度CeO2NPS处理组,分别是0、0.05、0.1、0.2、0.3、0.4、0.5 mmol·L-1。下同。

  • Note: Different lowercase letters in the same column indicate significant differences (P<0.05) . CK is control group. S0 to S0.5 indicate treatments with different CeO2NPS concentrations of 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 mmol·L-1. The same below.

  • 2.2 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗生长的影响

  • 由表2可知,适宜浓度CeO2NPS引发处理能促进盐胁迫下的辣椒幼苗的生长。S0.4处理组的幼苗的鲜重、干重和根长均显著高于未引发处理组,分别提高了35.75%、135.33%、35.48%,但株高显著低于未引发处理组,说明种子引发处理能够显著促进幼苗根系的生长。

  • 2.3 CeO2NPS种子引发处理后的辣椒种子生理生化变化

  • 2.3.1 CeO2NPS种子引发处理后对辣椒种子氧化应激反应的影响

  • 由图1可知,S0.5处理组种子的超氧阴离子含量显著低于未引发处理组,降低了68.54%,但种子的丙二醛含量提高了21.74%,与未引发处理组相比差异不显著。

  • 由表3可知,S0.5处理组的种子的CAT活性显著高于未引发处理组,提高了54.06%,但种子POD、APX活性显著低于未引发处理组,分别降低了44.56%、59.98%;S0.5处理组的种子的AsA含量高于未引发处理组,提高了8.89%,同时,S0.5处理组种子的AsA/DHA比值与未引发处理组相比显著提高了78.81%。

  • 2.3.2 CeO2NPS种子引发处理后对辣椒种子可溶性蛋白质、脯氨酸、可溶性糖含量的影响

  • 由表4可知,S0.5处理组种子的可溶性蛋白质和脯氨酸含量显著高于未引发处理组,分别提高了119.62%和114.50%,但种子的可溶性糖含量与未引发处理组相比无显著差异。

  • 2.4 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗生理生化特征的影响

  • 2.4.1 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗可溶性蛋白质、脯氨酸、可溶性糖含量的影响

  • 由表5可知,S0.4处理组幼苗的可溶性蛋白质含量显著高于未引发处理组,提高了20.51%,但幼苗的脯氨酸和可溶性糖含量均显著低于未引发处理组,分别降低了75.02%和41.16%。

  • 2.4.2 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗氧化应激的影响

  • 由表6可知,S0.4处理组幼苗的CAT、POD、APX、SOD活性均显著低于未引发处理组,分别降低了84.92%、 13.58%、 41.33%、6 1.79%;S0.4处理组幼苗的丙二醛含量低于未引发处理组,降低了20.38%。

  • 表2 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗生长的影响

  • Table2 Effects of CeO2NPS seed priming on growth of pepper seedlings under salt stress

  • 图1 CeO2NPS种子引发处理对辣椒种子超氧阴离子和丙二醛含量的影响

  • Fig.1 Effects of CeO2NPS seed priming on superoxide anion and MDA contents of pepper seeds

  • 由图2可知,S0.4处理组幼苗的AsA含量和AsA/DHA比值均显著高于未引发处理组,分别提高了111.04%和273.77%。

  • 3 讨论

  • 3.1 CeO2NPS种子引发处理对盐胁迫下辣椒种子萌发的影响

  • 盐胁迫通过渗透胁迫使植物细胞体内离子平衡和氧化还原平衡失调,从而产生过量活性氧(reactive oxygen species,ROS),导致细胞脂质过氧化、蛋白质氧化,进而使细胞膜受到损害,最终使种子萌发受到抑制(Zhang et al.,2022)。因此,选择具有清除ROS能力的试剂来进行种子引发处理是目前较为新兴的研究方向之一。研究表明,氧化铈纳米颗粒(CeO2NPS)可以通过清除ROS、提高植物体内抗氧化酶系统等方式促进种子在非生物胁迫下的顺利萌发(Lizzi et al.,2020)。

  • 本研究表明,S0.5处理组的辣椒种子引发效果相对较好,提高了盐胁迫下辣椒种子的萌发速度,进而促进了种子的萌发。本研究发现,S0处理组辣椒种子的发芽率也远高于未引发处理组,可能与S0处理组中的MgCl2溶质曾被作为无机的种子引发剂促进甜菜种子的萌发有关(刘晓晗等,2021)。

  • 表3 CeO2NPS种子引发处理对辣椒种子抗氧化酶及抗氧化物质含量的影响

  • Table3 Effects of CeO2NPS seed priming on antioxidant enzyme activities and antioxidant contents of pepper seeds

  • 表4 CeO2NPS种子引发处理对辣椒种子可溶性蛋白质、脯氨酸、可溶性糖含量的影响

  • Table4 Effects of CeO2NPS seed priming on soluble protein, proline and soluble sugar contents of pepper seeds

  • S0.5处理组种子的丙二醛含量稍高于未引发处理组,表明CeO2NPS种子引发处理可能对种子的氧化应激平衡造成了一定程度的影响,这可能是由于纳米毒性引起。但是,S0.5处理组的种子超氧阴离子含量显著低于未引发处理组,并且脯氨酸、可溶性蛋白质、CAT活性、抗坏血酸(AsA)含量及AsA/DHA比值显著高于未引发处理组,说明CeO2NPS辣椒种子引发处理影响了种子的生理生化活动。脯氨酸的积累有助于稳定细胞质的渗透平衡、保护细胞免受氧化损伤和保护胁迫相关蛋白的合成(Gui et al.,2015; Noor et al.,2022),进一步提高如CAT的活性,与抗坏血酸-谷胱甘肽循环协同清除过量的活性氧含量,维持细胞的氧化还原稳态,最终减缓盐胁迫对辣椒种子萌发过程中所造成的细胞脂质过氧化程度,进而维持种子细胞膜的完整,使种子能够顺利发芽,并且其最终发芽率显著高于未引发处理组,表明CeO2NPS种子引发处理对辣椒种子萌发的促进作用起主导作用,同时也可以证明辣椒种子具有适应CeO2NPS毒性的保护机制。这与Khan等(2021)采用0.1 mmol· L-1 CeO2NPS引发处理提高芸薹种子盐胁迫下发芽率的研究结果相似,表明CeO2NPS种子引发处理对促进种子非生物胁迫下的萌发具有一定的积极作用,但不同植物的最适浓度不一定相同。

  • 表5 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗可溶性蛋白质、脯氨酸、可溶性糖含量的影响

  • Table5 Effects of CeO2NPS seed priming on soluble protein, proline and soluble sugar contents of pepper seedlings under salt stress

  • 表6 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗抗氧化酶活性及丙二醛含量的影响

  • Table6 Effects of CeO2NPS seed priming on antioxidant enzyme activities and MDA contents of pepper seedlings under salt stress

  • 图2 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗AsA含量及AsA/DHA比值的影响

  • Fig.2 Effects of CeO2NPS seed priming on AsA content and AsA/DHA ratio of pepper seedlings under salt stress

  • 3.2 CeO2NPS种子引发处理对盐胁迫下辣椒幼苗生长及生理的影响

  • 盐胁迫通过影响抗氧化系统的建立、抑制蛋白质合成等方式抑制植物的生长发育(Rossi et al.,2016; Hassanpouraghdam et al.,2022)。CeO2NPS已被证明可促进植物的生长发育(Khan et al.,2021)。

  • 本研究表明,S0.4处理组的种子在盐胁迫下长成的幼苗的鲜重、干重及根系长度均达到了最大值,显著高于未引发处理组,说明适宜浓度CeO2NPS种子引发处理可促进盐胁迫下辣椒幼苗的生长。这与 Khan等(2021)用0.1 mmol·L-1 CeO2NPS种子引发处理芸薹种子后,可促进盐胁迫下芸薹幼苗的生长发育的研究结果相似。同时,S0.4处理组在盐胁迫下长成的辣椒幼苗的鲜重、干重及根长均显著高于S0处理组,说明CeO2NPS种子引发处理对幼苗生长发育的影响作用要优于MgCl2

  • 盐胁迫对细胞氧化应激的损伤程度可以通过MDA的产生和积累来识别(Deinlein et al.,2014)。本研究中,S0.4处理组的幼苗在盐胁迫下的丙二醛含量降低,表明CeO2NPS种子引发处理对减轻辣椒幼苗在盐胁迫下的脂质过氧化程度有一定的积极作用。同时,幼苗的CAT、SOD活性均降低,可能与CeO2NPS因颗粒表面存在+3/+4氧化还原态比率而使其具有独特的类抗氧化酶(CAT、SOD)活性有关(Zhao et al.,2012)。

  • AsA可作为非酶类抗氧化物直接清除ROS,也可与还原型谷胱甘肽(GSH)一起参与抗坏血酸-谷胱甘肽循环(AsA-GSH循环)(Rong et al.,2022)。AsA/DHA比值可反映AsA-GSH循环效率从而用于评价抗氧化能力和衡量植物的抗逆能力(Gao et al.,2022)。本研究表明,S0.4处理组的幼苗在盐胁迫下的AsA含量及AsA/DHA比值显著提高,说明CeO2NPS种子引发处理可通过促进幼苗叶片的AsA-GSH循环来维持盐胁迫下幼苗的氧化应激平衡,这与Gohari等(2021)在75 mmol·L-1 NaCl溶液模拟盐胁迫下,对葡萄(Vitis vinifera)叶片进行叶面喷施CeO2NPS后,可通过促进葡萄叶片的抗坏血酸-谷胱甘肽循环,从而降低叶片ROS含量来缓解盐胁迫下葡萄叶片的氧化应激反应的研究结果相似。

  • 4 结论

  • (1)不同浓度CeO2NPS均可促进辣椒种子在盐胁迫下的萌发,以0.5 mmol·L-1 的浓度最佳。

  • (2)适宜浓度 CeO2NPS种子引发处理后可促进幼苗根系生长和生物量的提高,以0.4 mmol· L-1的浓度最佳。

  • (3)CeO2NPS种子引发处理后,可通过激发萌发有关酶活性、增加代谢产物等方式提高种子的发芽率,还可通过记忆效应,提高抗氧化物含量、促进ASA-GSH循环从而降低脂质过氧化、缓解氧化应激来提高幼苗的耐盐性。CeO2NPS可作为一种纳米引发剂促进植物在盐胁迫下的生长发育。

  • 参考文献

    • DEINLEIN U, STEPHAN AB, HORIE T, et al. , 2014. Plant salt-tolerance mechanisms [J]. Trends Plant Sci, 19(6): 371-379.

    • 高俊凤, 2006. 植物生物学试验指导 [M]. 北京: 高等教育出版社: 208-230.

    • GAO ZQ, ZHANG JY, ZHANG J, et al. , 2022. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr [J]. Plant Physiol Biochem: 173: 46-58.

    • GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61: 703-714.

    • GOHARI G, ZAREEI E, ROSTAMI H, et al. , 2021. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L. ) cv. flame seedless under salt stress conditions [J]. Ecotoxicol Environ Safety, 220: 112402.

    • GOYAL V, JHANGHEL D, MEHROTRA S, 2021. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide [J]. Physiol Plant, 171(4): 896-908.

    • GUI X, ZHANG ZY, LIU ST, et al. , 2015. Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment [J]. PLoS ONE, 10(8): e0134261.

    • HASSANPOURAGHDAM MB, MEHRABANI LV, BONABIAN Z, et al. , 2022. Foliar application of cerium oxide-salicylic acid nanoparticles (CeO2: SA Nanoparticles) influences the growth and physiological responses of Portulaca oleracea L. under salinity [J]. Int J Mol Sci, 23(9): 5093.

    • HUSSAIN S, NISAR F, BHATT A, et al. , 2022. Redox priming alleviates dormancy and improves salinity tolerance of seeds and seedlings of medicinal halophyte Zygophyllum simplex L. [J]. J Appl Res Med Aromat Plant, 30: 100384.

    • KE QB, YE J, WANG BM, et al. , 2018. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism [J]. Front Plant Sci, 9: 914.

    • KHAN MN, LI YH, KHAN Z, et al. , 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities [J]. J Nanobiotechnol, 19(1): 276.

    • LIU XH, WANG RH, WANG WC, et al. , 2021. Effect of potassium sulfate and magnesium chloride combination on germination of sugar beet seeds. [J]. Sugar Crops Chin, 43(3): 61-65. [刘晓晗, 王荣华, 王维成, 等, 2021. 硫酸钾与氯化镁组合对甜菜种子萌发的影响 [J]. 中国糖料, 43(3): 61-65. ]

    • LIZZI D, MATTIELLO A, PIANI B, et al. , 2020. Germination and early development of three spontaneous plant species exposed to nanoceria (nCeO2) with different concentrations and particle sizes [J]. Nanomater Basel, 10(12): 2534.

    • NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.

    • NEWKIRK GM, WU HH, SANTANA I, et al. , 2018. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles [J]. J Visualized Exp, 138: e58373.

    • NOOR R, YASMIN H, ILYAS N, et al. , 2022. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress [J]. Chemosphere, 292: 133201.

    • NOUMAN W, AZIZ U, 2022. Seed priming improves salinity tolerance in Calotropis procera (Aiton) by increasing photosynthetic pigments, antioxidant activities, and phenolic acids [J]. Biol, 77: 609-626.

    • PRAKASH V, PERALTA-VIDEA J, TRIPATHI DK, et al. , 2021. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum [J]. Ecotoxicol Environ Safety, 221: 112403.

    • RAFFAELLA B, WALTER C, ANDREA G, et al. , 2022. A stressful life: how plants cope with multiple biotic and abiotic adverse factors [J]. Plant Stress, 5: 10095.

    • RAWASHDEH RY, HARB AM, AIHASAN AM, 2020. Biological interaction levels of Zinc oxide nanoparticles; lettuce seeds as case study [J]. Heliyon, 6(5): e03983.

    • RONG ZY, JIANG DJ, CAO JL, et al. , 2022. Endophytic fungus Serendipita indica accelerates ascorbate-glutathione cycle of white clover in response to water stress [J]. Front Microb, 13: 967851.

    • ROSSI L, ZHANG WL, LOMBARDINI L, et al. , 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. [J]. Environ Poll, 219: 28-36.

    • SARDAR R, AHMED S, SHAH AA, et al. , 2022. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions [J]. Chemosphere, 287(Pt 3): 132332.

    • SCHNEIDER K, SCHLEGEL HG, 1981. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16 [J]. Biochem J, 193(1): 99-107.

    • SHA HJ, HU WC, JIA Y, et al. , 2017. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress [J]. Acta Agron Sin, 43(11): 1677-1688. [沙汉景, 胡文成, 贾琰, 等, 2017. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下稻产量的影响 [J]. 作物学报, 43(11): 1677-1688. ]

    • SHANG YF, HASAN MK, AHAMMED GJ, et al. , 2019. Applications of nanotechnology in plant growth and crop protection: A review [J]. Molecules, 24(14): 2558.

    • VELIKOVA V, YORDANOV I, EDREVA A, 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines [J]. Plant Sci, 151(1): 59-66.

    • 王立浩, 马艳青, 张宝玺, 2019. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, (8): 1-4.

    • WANG SY, JIAO HJ, FAUST M, 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple [J]. Physiol Plant, 82(2): 231-236.

    • XIAO ZL, 2022. Effects of salt stress on growth, physiological characteristics, yield and quality of processed pepper [D]. Urumqi: Xinjiang Agricultural University: 7-34. [肖中林, 2022. 盐胁迫对加工辣椒生长、生理特性、产量及品质的影响 [D]. 乌鲁木齐: 新疆农业大学: 7-34. ]

    • YAN SP, CHONG PF, ZHAO M, 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings [J]. Plant Signal Behav, 17(1): 2031782.

    • YANG H, DAI LJ, WEI YX, et al. , 2020. Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings [J]. Ind Crops Prod, 145(C): 111990.

    • YIN FM, ZHANG SY, CAO BL, et al. , 2021. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents [J]. Peer J, 9: e10832.

    • ZHANG L, 2017. Effects of plant growth promoters on the growth and stress resistance of maize [D]. Wuhan: Huazhong Agricultural University: 3-27. [张璐, 2017. 植物生长促进剂对玉米生长的影响及抗逆效应研究 [D]. 武汉: 华中农业大学: 3-27. ]

    • ZHANG TJ, CHEN YJ, LIU JZ, 2019. Characteristics of soil salinization in coastal wetlands based on canonical correspondence analysis [J]. Acta Ecol Sin, 39(9): 3322-3332. [张天举, 陈永金, 刘加珍, 2019. 基于典范对应分析的滨海湿地土壤季节性盐渍化特征 [J]. 生态学报, 39(9): 3322-3332. ]

    • ZHANG WH, XIE Y, WU Y, et al. , 2022. Amelioration of salt-induced damage on alfalfa by exogenous application of silicon [J]. Grassl Sci, 68(1): 60-69.

    • ZHAO LJ, PENG B, HERNANDEZ-VIEZCAS JA, et al. , 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation [J]. ACS Nano, 6(11): 9615-9622.

    • ZHOU XD, JIA XR, ZHANG ZH, et al. , 2022. AgNPS seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage [J]. Sci Total Environ, 808: 151896.

    • ZOU XX, HU BW, XIONG C, et al. , 2022. Review andprospects of pepper breeding for the past 60 years in China [J]. Acta Hortic Sin, 49(10): 2099-2118. [邹学校, 胡博文, 熊程, 等, 2022. 中国辣椒育种60年回顾与展望 [J]. 园艺学报, 49(10): 2099-2118. ]

  • 参考文献

    • DEINLEIN U, STEPHAN AB, HORIE T, et al. , 2014. Plant salt-tolerance mechanisms [J]. Trends Plant Sci, 19(6): 371-379.

    • 高俊凤, 2006. 植物生物学试验指导 [M]. 北京: 高等教育出版社: 208-230.

    • GAO ZQ, ZHANG JY, ZHANG J, et al. , 2022. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr [J]. Plant Physiol Biochem: 173: 46-58.

    • GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61: 703-714.

    • GOHARI G, ZAREEI E, ROSTAMI H, et al. , 2021. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L. ) cv. flame seedless under salt stress conditions [J]. Ecotoxicol Environ Safety, 220: 112402.

    • GOYAL V, JHANGHEL D, MEHROTRA S, 2021. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide [J]. Physiol Plant, 171(4): 896-908.

    • GUI X, ZHANG ZY, LIU ST, et al. , 2015. Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment [J]. PLoS ONE, 10(8): e0134261.

    • HASSANPOURAGHDAM MB, MEHRABANI LV, BONABIAN Z, et al. , 2022. Foliar application of cerium oxide-salicylic acid nanoparticles (CeO2: SA Nanoparticles) influences the growth and physiological responses of Portulaca oleracea L. under salinity [J]. Int J Mol Sci, 23(9): 5093.

    • HUSSAIN S, NISAR F, BHATT A, et al. , 2022. Redox priming alleviates dormancy and improves salinity tolerance of seeds and seedlings of medicinal halophyte Zygophyllum simplex L. [J]. J Appl Res Med Aromat Plant, 30: 100384.

    • KE QB, YE J, WANG BM, et al. , 2018. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism [J]. Front Plant Sci, 9: 914.

    • KHAN MN, LI YH, KHAN Z, et al. , 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities [J]. J Nanobiotechnol, 19(1): 276.

    • LIU XH, WANG RH, WANG WC, et al. , 2021. Effect of potassium sulfate and magnesium chloride combination on germination of sugar beet seeds. [J]. Sugar Crops Chin, 43(3): 61-65. [刘晓晗, 王荣华, 王维成, 等, 2021. 硫酸钾与氯化镁组合对甜菜种子萌发的影响 [J]. 中国糖料, 43(3): 61-65. ]

    • LIZZI D, MATTIELLO A, PIANI B, et al. , 2020. Germination and early development of three spontaneous plant species exposed to nanoceria (nCeO2) with different concentrations and particle sizes [J]. Nanomater Basel, 10(12): 2534.

    • NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.

    • NEWKIRK GM, WU HH, SANTANA I, et al. , 2018. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles [J]. J Visualized Exp, 138: e58373.

    • NOOR R, YASMIN H, ILYAS N, et al. , 2022. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress [J]. Chemosphere, 292: 133201.

    • NOUMAN W, AZIZ U, 2022. Seed priming improves salinity tolerance in Calotropis procera (Aiton) by increasing photosynthetic pigments, antioxidant activities, and phenolic acids [J]. Biol, 77: 609-626.

    • PRAKASH V, PERALTA-VIDEA J, TRIPATHI DK, et al. , 2021. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum [J]. Ecotoxicol Environ Safety, 221: 112403.

    • RAFFAELLA B, WALTER C, ANDREA G, et al. , 2022. A stressful life: how plants cope with multiple biotic and abiotic adverse factors [J]. Plant Stress, 5: 10095.

    • RAWASHDEH RY, HARB AM, AIHASAN AM, 2020. Biological interaction levels of Zinc oxide nanoparticles; lettuce seeds as case study [J]. Heliyon, 6(5): e03983.

    • RONG ZY, JIANG DJ, CAO JL, et al. , 2022. Endophytic fungus Serendipita indica accelerates ascorbate-glutathione cycle of white clover in response to water stress [J]. Front Microb, 13: 967851.

    • ROSSI L, ZHANG WL, LOMBARDINI L, et al. , 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. [J]. Environ Poll, 219: 28-36.

    • SARDAR R, AHMED S, SHAH AA, et al. , 2022. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions [J]. Chemosphere, 287(Pt 3): 132332.

    • SCHNEIDER K, SCHLEGEL HG, 1981. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16 [J]. Biochem J, 193(1): 99-107.

    • SHA HJ, HU WC, JIA Y, et al. , 2017. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress [J]. Acta Agron Sin, 43(11): 1677-1688. [沙汉景, 胡文成, 贾琰, 等, 2017. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下稻产量的影响 [J]. 作物学报, 43(11): 1677-1688. ]

    • SHANG YF, HASAN MK, AHAMMED GJ, et al. , 2019. Applications of nanotechnology in plant growth and crop protection: A review [J]. Molecules, 24(14): 2558.

    • VELIKOVA V, YORDANOV I, EDREVA A, 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines [J]. Plant Sci, 151(1): 59-66.

    • 王立浩, 马艳青, 张宝玺, 2019. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, (8): 1-4.

    • WANG SY, JIAO HJ, FAUST M, 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple [J]. Physiol Plant, 82(2): 231-236.

    • XIAO ZL, 2022. Effects of salt stress on growth, physiological characteristics, yield and quality of processed pepper [D]. Urumqi: Xinjiang Agricultural University: 7-34. [肖中林, 2022. 盐胁迫对加工辣椒生长、生理特性、产量及品质的影响 [D]. 乌鲁木齐: 新疆农业大学: 7-34. ]

    • YAN SP, CHONG PF, ZHAO M, 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings [J]. Plant Signal Behav, 17(1): 2031782.

    • YANG H, DAI LJ, WEI YX, et al. , 2020. Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings [J]. Ind Crops Prod, 145(C): 111990.

    • YIN FM, ZHANG SY, CAO BL, et al. , 2021. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents [J]. Peer J, 9: e10832.

    • ZHANG L, 2017. Effects of plant growth promoters on the growth and stress resistance of maize [D]. Wuhan: Huazhong Agricultural University: 3-27. [张璐, 2017. 植物生长促进剂对玉米生长的影响及抗逆效应研究 [D]. 武汉: 华中农业大学: 3-27. ]

    • ZHANG TJ, CHEN YJ, LIU JZ, 2019. Characteristics of soil salinization in coastal wetlands based on canonical correspondence analysis [J]. Acta Ecol Sin, 39(9): 3322-3332. [张天举, 陈永金, 刘加珍, 2019. 基于典范对应分析的滨海湿地土壤季节性盐渍化特征 [J]. 生态学报, 39(9): 3322-3332. ]

    • ZHANG WH, XIE Y, WU Y, et al. , 2022. Amelioration of salt-induced damage on alfalfa by exogenous application of silicon [J]. Grassl Sci, 68(1): 60-69.

    • ZHAO LJ, PENG B, HERNANDEZ-VIEZCAS JA, et al. , 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation [J]. ACS Nano, 6(11): 9615-9622.

    • ZHOU XD, JIA XR, ZHANG ZH, et al. , 2022. AgNPS seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage [J]. Sci Total Environ, 808: 151896.

    • ZOU XX, HU BW, XIONG C, et al. , 2022. Review andprospects of pepper breeding for the past 60 years in China [J]. Acta Hortic Sin, 49(10): 2099-2118. [邹学校, 胡博文, 熊程, 等, 2022. 中国辣椒育种60年回顾与展望 [J]. 园艺学报, 49(10): 2099-2118. ]