en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

庞丽(1979-),博士,副教授,主要从事林木营养遗传研究,(E-mail)pangli4286@163.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2352-10

DOI:10.11931/guihaia.gxzw202207016

参考文献
ADNANE B, WISSAL E, SAID K, et al. , 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus [J]. Microbiol Res, 252: 126842.
参考文献
BERGKEMPER F, SCHLER A, ENGEL M, et al. , 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environ Microbiol, 18(6): 1988-2000.
参考文献
FAN YM, LI W, WEN ZM, et al. , 2021. Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau [J]. Acta Ecol Sin, 41(24): 9824-9835. [樊勇明, 李伟, 温仲明, 等, 2021. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应 [J]. 生态学报, 41(24): 9824-9835. ]
参考文献
FRANSEN B, KROON HD, 2001. Long-term disadvantages of selective root placement: Root proliferation and shoot biomass of two perennial grass species in a 2-year experiment [J]. J Ecol, 89: 711-722.
参考文献
GAO CH, WANG G, DONG YZ, et al. , 2003. Effect of phosphorus bacteria in the pot and the field [J]. J Shanxi Agric Sci, (3): 40-43. [郜春花, 王岗, 董云中, 等, 2003. 解磷菌剂盆栽及大田施用效果 [J]. 山西农业科学, (3): 40-43. ]
参考文献
HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.
参考文献
HE D, WAN W, 2022. Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition [J]. Microbiol Spec: e00290-22.
参考文献
HE Y, LIAO H, YAN XL, 2003. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant Soil, 248: 247-256.
参考文献
HUANG PF, LIU JA, JIN AX, et al. , 2012. Isolation and screening, identification of phosphorus-solubilizing bacteria in rhizosphere soil of Pinus massonuana and its phosphate-degradation capacity [J]. Chin Agric Sci Bull, 28(19): 12-16. [黄鹏飞, 刘君昂, 靳爱仙, 等, 2012. 马尾松根际土壤溶磷菌分离筛选、鉴定及其溶磷效果研究 [J]. 中国农学通报, 28(19): 12-16. ]
参考文献
KUMAR R, SHASTRI B, 2017. Role of phosphate-solubilizing microorganisms in sustainable agricultural development [J]. Agron Environ Sust, 2(13): 271-303.
参考文献
LI CH, ZHANG YM, FENG LQ, et al. , 2016. Research summary of local root fertilization and water-fertilizer coupling technology [J]. Gansu Agric Sci Technol, (7): 61-66. [李翠红, 张永茂, 冯毓琴, 等, 2016. 根系局部施肥与肥水耦合技术研究综述 [J]. 甘肃农业科技, (7): 61-66. ]
参考文献
LI HB, MA QH, LI HG, et al. , 2014. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits [J]. Plant Soil, 376: 151-163.
参考文献
LI HP, GAN YN, HAN QQ, et al. , 2022. Isolation of phosphate solubilizing bacteria from soil of spruce forest in the Qilian Mountains and their growth promotion effects in white clover [J]. Acta Agr Sin, 30(4): 879-888. [李慧萍, 甘雅楠, 韩庆庆, 等, 2022. 祁连山云杉林土壤溶磷细菌的分离及对白三叶的促生效应 [J]. 草地学报, 30(4): 879-888. ]
参考文献
LI QL, LI AB, HUANG ZY, et al. , 2022. Application of phosphorus solubilizing microorganisms in forest soil ecological restoration [J]. World For Res, 35(1): 15-20. [李巧玲, 李爱博, 黄志远, 等, 2022. 解磷微生物在林业土壤生态修复中的应用进展 [J]. 世界林业研究, 35(1): 15-20. ]
参考文献
LIU HK, CHEN X, ZHANG MZ, et al. , 2020. Anatomical characteristics of fine roots of 11 tree species in the hilly foothills areas in central Shandong Province and their drought resistance strategies [J]. Sci Silv Sin, 56(7): 185-193. [刘洪凯, 陈旭, 张明忠, 等, 2020. 鲁中丘陵山地干旱生境上11个树种的细根解剖特征与耐旱策略 [J]. 林业科学, 56(7): 185-193. ]
参考文献
LIU YH, LI XH, SHENG KY, et al. , 2022. Effects of phosphate-solubilizing bacteria Burkholderia ZP-4 and Klebsiella ZP-2 on soil phosphorus fraction and bacterial diversity [J]. Chin J Soil Sci, 53(2): 472-481. [刘耀辉, 李新华, 盛可银, 等, 2022. 溶磷菌Burkholderia ZP-4和Klebsiella ZP-2对土壤磷素的转化及细菌多样性的影响 [J]. 土壤通报, 53(2): 472-481. ]
参考文献
LÜ J, PAN HX, YU C, 2020. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing Paraburkholderia sp. from pinus massoniana rhizosphere soil [J]. Biotechnol Bull, 36(9): 147-156. [吕俊, 潘洪祥, 于存, 2020. 马尾松根际溶磷细菌 Paraburkholderia sp. 的筛选、鉴定及溶磷特性研究 [J]. 生物技术通报, 36(9): 147-156. ]
参考文献
LÜ J, YU C, 2020. Screening and identification of an effect phosphate-soluble Burkholderia sp. and its growth-promoting effect on Pinus massonuana seedlings [J]. J Appl Ecol, 31(9): 2923-2934. [吕俊, 于存, 2020. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用 [J]. 应用生态学报, 31(9): 2923-2934. ]
参考文献
MOMMER L, VAN RUIJVEN J, JANSEN C, et al. , 2012. Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory [J]. Funct Ecol, 26: 66-73.
参考文献
PURWANINGSIH S, SUTISNA E, NUGROHO AA, 2022. Characterization, diversity, and effectiveness phosphate solubilizing bacteria from the soil and rhizosphere on the growth of Glycine max L. in greenhouse [J]. Earth Environ Sci, 976(1): 012030.
参考文献
QIAO H, WU XQ, WEI W, 2016. Effects of two phosphate-solubilizing Penicillium strains on microbial community structure and their growth-promoting in masson pine rhizosphere [J]. J Nanjing For Univ(Nat Sci Ed), 40(6): 109-116. [乔欢, 吴小芹, 魏伟, 2016. 两株解磷青霉对马尾松根际土壤的微生态效应及其促生作用 [J]. 南京林业大学学报(自然科学版), 40(6): 109-116. ]
参考文献
SONG P, ZHANG R, ZHOU ZC, et al. , 2017. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency [J]. Chin J Plant Ecol, 41(6): 622-631. [宋平, 张蕊, 周志春, 等, 2017. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响 [J]. 植物生态学报, 41(6): 622-631. ]
参考文献
SONG P, ZHANG R, ZHANG Y, et al. , 2016. Effects of simulated nitrogen deposition on fine root morphology, nitrogen and phosphorus efficiency of Pinus massoniana clones under phosphorus deficiency [J]. Chin J Plant Ecol, 40(11): 1136-1144. [宋平, 张蕊, 张一, 等, 2016. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响 [J]. 植物生态学报, 40(11): 1136-1144. ]
参考文献
WANG ZG, HU YL, XU WH, et al. , 2015. Separation and identification of a phosphorus solubilizing bacteria and its promoting effect on watermelon root [J]. Acta Agric Zhejiang, 27(5): 798-803. [王志刚, 胡云龙, 徐伟慧, 等, 2015. 一株溶磷菌的分离鉴定及对西瓜根系的促生效应 [J]. 浙江农业学报, 27(5): 798-803. ]
参考文献
WU WL, HONG JP, MENG HS, et al. , 2016. Effects of continuous application of phosphorus bacterial fertilizer on soil alkaline phosphatase activity and Hedley phosphorus forms in the reclaimed soil [J]. Soil Fert Chin, (4): 59-64. [吴文丽, 洪坚平, 孟会生, 等, 2016. 连续施用解磷菌肥对复垦土壤磷酸酶和Hedley磷形态的影响 [J]. 中国土壤与肥料, (4): 59-64. ]
参考文献
XU ZH, WANG ZK, CHEN ZY, et al. , 2021. Biofertilizer applications affected root architecture and root morphology of Cyclocarya paliurus [J]. Soil Fert Chin, (4): 258-266. [徐子恒, 王志康, 陈紫云, 等, 2021. 生物菌肥对青钱柳根构型和根系形态的影响 [J]. 中国土壤与肥料, (4): 258-266. ]
参考文献
YAN XL, HU WJ, MA YF, et al. , 2020. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies [J]. Sci Silv Sin, 56(2): 1-11. [闫小莉, 胡文佳, 马远帆, 等, 2020. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略 [J]. 林业科学, 56(2): 1-11. ]
参考文献
YU XL, 2011. Screening of high-effect phosphate soluble microorganisms in Eucalyptus soil and that effect on the growth of Eucalyptus [D]. Fuzhou: Fujian Agriculture and Forestry University. [俞新玲, 2011. 桉树土壤高效解磷菌的筛选及其对桉树生长的影响 [D]. 福州: 福建农林大学. ]
参考文献
ZHANG DB, WANG XH, ZHOU SC, et al. , 2019. Response of masson pine container seedlings from different families to substrate proportion and control released fertilizer [J]. J Zhejiang For Univ, 36(5): 1044-1050. [张东北, 王秀花, 周生财, 等, 2019. 不同家系马尾松容器苗对基质配比及控释肥的响应 [J]. 浙江农林大学学报, 36(5): 1044-1050. ]
参考文献
ZHANG FS, CUI ZL, WANG JQ, et al. , 2007. Current status of soil and plant nutrient management in China and improvement strategies [J]. Chin Bull Bot, 24(6): 687-694. [张福锁, 崔振岭, 王激清, 等, 2007. 中国土壤和植物养分管理现状与改进策略 [J]. 植物学通报, 24(6): 687-694. ]
参考文献
ZHANG H, FORDER BG, 2000. Regulation of Arabidopsis root development by nitrate availability [J]. J Exp Bot, 51: 51-59.
参考文献
ZHANG Y, ZHOU ZC, JIN GQ, et al. , 2010. Genetic distances of parents of Pinus massoniana and relationship between growth traits and heterosis of progeny [J]. J Nanjing For Univ, 34(1): 9-14. [张一, 周志春, 金国庆, 等, 2010. 马尾松双列杂交亲本遗传距离与杂种生长优势相关性分析 [J]. 南京林业大学学报 (自然科学版), 34(1): 9-14. ]
参考文献
ZHANG Y, ZHOU ZC, YANG Q, 2013. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions [J]. Plant Soil, 364: 93-104.
参考文献
ZHENG QY, XIE YT, BIAN HY, et al. , 2022. Effects of phosphate solubilizing bio-fertilizer on phosphorus fractions and fertility of red soil [J]. J Jiangxi Agric Univ, 44(1): 233-244. [郑淇元, 谢意太, 卞海洋, 等, 2022. 溶磷菌肥对红壤磷组分及土壤肥力的影响 [J]. 江西农业大学学报, 44(1): 233-244. ]
参考文献
ZHANG YC, LIU FZ, WANG HB, 2020. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soil Fert Chin, (2): 1-9. [张艺灿, 刘凤之, 王海波, 2020. 根际溶磷微生物促生机制研究进展 [J]. 中国土壤与肥料, (2): 1-9. ]
参考文献
ZHOU ZC, XIE YR, JIN GQ, et al. , 2005. Study on phosphorus efficiency of different provenances of Pinus massoniana [J]. Sci Silv Sin, 41(4): 25-30. [周志春, 谢钰容, 金国庆, 等, 2005. 马尾松种源磷效率研究 [J]. 林业科学, 41(4): 25-30. ]
目录contents

    摘要

    为了探讨解磷菌肥分区施入对低磷胁迫下马尾松磷营养状况的影响,该文设置了局部和均匀施用解磷菌肥(PSB肥)的盆栽接种试验,并利用WinRHIZO Pro STD1600+ 根系图像分析软件、H2SO4-H2O2消煮和钼锑抗比色法研究了马尾松不同家系根系形态参数和苗木磷素吸收量对PSB肥不同施用方式的响应。结果表明:(1)局部和均匀施用PSB肥均对马尾松生长影响显著,局部施用较均匀显著增加了苗木苗高、地径、根冠比、根系和整株干物质量等主要生长指标。(2)局部施用PSB肥苗木根长、根表面积、根体积和根尖数显著增加,而均匀施用根系各参数有所增加但差异不显著;局部施用较均匀0<根系直径(D)≤0.5 mm的细根根长增加了近2倍。两种处理根系生长的差异与局部施用PSB肥造成了土壤磷素的异质性分布有关。(3)与均匀施用PSB肥相比,局部施用显著增加了苗木根、茎、叶及整株磷素吸收量。相关性分析表明,苗木磷素吸收量与根系形态参数、D≤1.0 mm根系根长呈显著正相关。说明局部施用PSB肥通过诱导根系的生长促进苗木对磷素的吸收。(4)马尾松不同家系对施用PSB肥的响应存在差异。亲本为耐低磷种源的22号家系对局部施用PSB肥较敏感,其各生长指标均显著高于10号和50号家系。综上所述,低磷环境下局部施用PSB肥较均匀施用对马尾松幼苗生长和磷素吸收的影响更加显著,该研究结果可为磷匮乏立地上马尾松人工林的管理提供参考和指导。

    Abstract

    In order to study the effect of different application modes of phosphorus-solubilizing bacterial fertilizer (PSB fertilizer) on seedling phosphorus nutrition of Pinus massoniana, a pot inoculation experiment with local and evenly application of PSB fertilizer was set up. We studied the responses of P uptake and root growth of different P. massoniana families under different PSB fertilizer treatments through using WinRHIZO Pro STD1600+ root image analysis software and Molybdenum antimony colorimetric method. The results were as follows: (1)Inoculating PSB fertilizer had a significant effect on growth of P. massoniana seedlings. The main growth indexes, such as seedling height, ground diameter, root dry matter weight, root/shoot and whole plant dry matter weight, significantly increased under local treatment. (2)Local treatment significantly increased the root length, root surface area, root volume and root tip number of seedlings. The root length of 0<root diameter (D)≤0.5 mm fine roots under local treatment was nearly three times of that under evenly treatment. Differences of root growth were related to the heterogeneous distribution of soil P caused by localized application of PSB fertilizer under the two treatments. (3) Inoculating PSB fertilizer significantly increased the P uptake of root, stem, leave and whole plant, and the local treatment was significantly higher than evenly treatment. Correlation analysis showed that P uptake of seedlings was significantly positively correlated with root morphological parameters and root length of D≤1.0 mm. This indicated that local treatment promoted P uptake by inducing root growth. (4)Due to the genetic background, the families of P. massoniana showed different performance under application of PSB fertilizer. The low phophorus tolerance provenance No. 22 was a much sensitive family, and all growth indexes were significantly higher than those of No. 10 and No. 50 families. In conclusion, local application of PSB fertilizer significantly promoted the growth and P uptake of P. massoniana families under low P environment, and this study provides guidances for the management of P. massoniana plantation under P poor sites.

  • 马尾松(Pinus massoniana)是我国亚热带地区最重要、分布最广的速生用材树种之一。根据第九次森林资源清查结果显示,我国马尾松人工林种植面积已达804万公顷,支撑着我国造纸、木材加工、林产化工等众多产业的发展。然而,由于我国南方地区主要分布着酸性土壤,土壤中超过90% 的磷素被吸附固定,导致其有效磷含量较低(张福锁等, 2007; 张一等,2010)。与其他速生用材树种相比,马尾松对土壤磷素匮乏更加敏感,因此磷成为限制马尾松人工林生产力的主要因素(Zhang et al.,2013; 张东北等,2019)。

  • 解磷菌肥(phosphorus-solubilizing bacteria fertilizer,简称PSB fertilizer)是一种微生物菌肥,其富含的解磷微生物能够通过酸解作用和/或酶解作用,将土壤中固定磷转化为有效磷供植物吸收利用(Bergkemper et al.,2016; Adnane et al.,2021)。研究表明,从植物根际土壤中筛选出的解磷微生物,通过溶解土壤中不同形态的磷,加速磷组分的转化,提高土壤速效磷含量(黄鹏飞等,2012; 吕俊等,2020; 刘耀辉等,2022)。施加解磷菌肥不仅能够改善土壤理化性质、提高土壤有效磷含量,还能够促进植物根系的生长发育,增加植物对土壤磷素的吸收,进而改善植物生长和磷营养状况(李巧玲等,2022)。吕俊等(2020)将1株伯克霍尔德菌(Burkholderia sp.)WJ27接种于马尾松盆栽苗木中,研究表明马尾松幼苗主根长、苗高及磷素含量等显著增加。乔欢等(2016)将2株高效解磷真菌Penicillium guanacastense JP-NJ2和P. pinophilum JPNJ4接种于马尾松盆栽苗木中,发现其对马尾松苗高和地径具有良好的促生作用。

  • 研究接种解磷菌肥对植物的促生效果及其影响因素,有助于合理地开发及广泛地应用解磷菌肥。众多研究表明,植物对土壤养分均匀和局部供应的响应存在显著差异(Zhang &Forder,2000; 李翠红等,2016)。目前大多数盆栽和大田试验均是将解磷菌肥与基质或土壤混匀后施用,或直接施于播种层(郜春花等,2003; 吴文丽等,2016; 郑淇元等,2022),对解磷菌肥分区施用形成的磷素异质性分布如何影响植物的生长发育及其磷素吸收尚不清楚。在生物菌肥已成为我国肥料产业中重要组成部分的情况下(徐子恒等,2021; Chen et al.,2021),植物对生物菌肥不同施用方式的响应必将对其广泛应用具有重要意义。鉴于此,本研究利用WinRHIZO Pro STD1600+ 根系图像分析软件,通过盆栽接种试验研究了马尾松不同家系根系形态参数和苗木磷素吸收量对解磷菌肥均匀和局部施用的响应,以期为应用微生物解磷菌肥改良马尾松苗木生长和磷素营养,以及提高马尾松人工林生产力提供参考。

  • 1 材料与方法

  • 1.1 试验材料

  • 以马尾松二代育种群体内控制授粉产生的优良子代10号(No.10) [7750(湖南)× 1126(广西)]、22号(No.22) [6627(江西)× 5907(浙江)]和50号(No.50) [6610(江西)× 3412(安徽)]作为试验材料。盆栽容器采用上部内径为24 cm、下部内径15 cm、高16 cm的塑料盆。试验所用基质为贵州省黔中地区贫瘠的酸性黄壤,其有机质含量为6.42 g·kg-1,全N和全P含量分别为(0.38±0.10)g·kg-1和(0.31±0.06)g·kg-1,水解N、有效P和速效K含量分别为(25.2±2.20)mg·kg-1、(0.81±0.15)mg·kg-1和(43.7±5.50)mg·kg-1,pH为(4.85±0.12)。解磷菌肥为将荧光假单胞菌、假单胞菌1、假单胞菌2在高密度发酵罐中混合发酵,发酵好的细菌菌液与有机营养土按1∶9的比例在搅拌机中混匀而制成,其有效活菌数≥0.5×107 CFU·g-1,有机质含量≥50%。

  • 1.2 试验设计

  • 设置均匀施用解磷菌肥(均匀)、局部施用解磷菌肥(局部)和不施用解磷菌肥(CK)3种处理。均匀处理为解磷菌肥与基质按1∶5混匀后施入盆栽容器。局部处理将盆栽容器分成A、B两侧,中间固定PVC隔板(高度12 cm)隔开,以避免养分在两侧间的交流(图1)(宋平等,2017;闫小莉等,2020),将与均匀处理相同质量的解磷菌肥与A侧基质混匀后施入一侧,B侧只施入等量的基质。对照为将等量解磷菌肥灭菌后与基质混匀施入盆栽容器。在各处理盆栽基质上部覆盖3 cm厚的干净河沙作为播种层。

  • 将用0.4%高锰酸钾溶液浸泡20 min的马尾松种子,清水冲洗数次后,放入铺有灭菌湿滤纸的培养皿中,在人工气候箱中25℃下直至出芽。将出芽种子播入盆栽容器播种层正中间,每盆播种2~3粒,出苗后各处理选择长势一致的苗木,每盆保留1株。试验采用完全随机区组设计,单株小区,5个区组(以避免环境因素对试验的影响),即每个处理每个家系5个重复。于2020年5月初播种,6—8月为马尾松生长旺盛期,11月中旬完成一个生长周期后收获。试验在安顺学院温室大棚内开展,试验期间维持盆栽土壤水分在50%~80%范围内,以保证马尾松苗木对水分的正常需求。

  • 图1 局部处理盆栽试验设计(侧视图)

  • Fig.1 Experimental design of local treatment pot application (lateral view)

  • 1.3 实验方法

  • 1.3.1 苗木生长指标和磷含量测定

  • 用钢卷尺、游标卡尺分别测量马尾松苗木苗高、地径。将收获的苗木分成根、茎、叶3部分,于烘箱中105℃杀青30 min,60℃烘干至恒重,以获得苗木各部分的干物质量。分别称取适量各部分干样,采用H2SO4-H2O2消煮、钼锑抗比色法(NY/T2017-2011)测定苗木不同器官的磷含量。

  • 1.3.2 根系形态参数测定

  • 用根系扫描仪对苗木所有根系进行扫描,利用根系图像分析软件WinRHIZO Pro STD1600+(加拿大Regent Instruments公司)对根系扫描图进行分析,得到的根系形态参数包括根长、根系直径(D)、根表面积、根体积和根尖数等。

  • 1.4 统计分析

  • 根冠比=地下部分干重/地上部分干重。

  • 根系(茎或叶)磷吸收量(mg)=根系(茎或叶)磷含量(mg·g-1)×根系(茎或叶)干物质量(g)。

  • 整株磷含量(mg·g-1)=(根系磷含量×根系干物质量+ 茎磷含量×茎干物质量+ 叶磷含量×叶干物质量)/(根系干物质量+茎干物质量+叶干物质量)。

  • 整株磷吸收量用单位植株干物质积累量的全磷含量表示,即整株磷吸收量(mg·plant-1)=整株磷含量(mg·g-1)× 整株干物质积累量(g·plant-1)。

  • 采用 Microsoft Office Excel 2003 软件进行数据处理及图表的制作,利用 IBM SPSS Statistics 19.0 软件进行多因素方差分析和相关分析,Duncan检验法进行多重比较(α=0.05)。

  • 2 结果与分析

  • 2.1 不同解磷菌肥处理对马尾松苗木生长的影响

  • 由表1可知,施用解磷菌肥处理对马尾松苗木生长影响显著(P<0.001)。局部施用解磷菌肥较对照的苗高、地径、根干物质量、根冠比、整株干物质量分别显著增加了19.5%、38.5%、76.9%、20.5%、54.4%,均匀施用解磷菌肥较对照苗高、根干物质量、整株干物质量分别增加了11.4%、38.5%、34.9%。与均匀施用解磷菌肥处理相比,局部施用解磷菌肥苗高、地径、根干物质量、根冠比、整株干物质量分别显著增加了7.3%、29.9%、27.8%、16.4%、14.4%。这说明局部施用解磷菌肥较均匀施用显著增加了苗木的地径和根冠比。

  • 不同马尾松家系对施用解磷菌肥表现不同(图2)。与对照相比,局部施用解磷菌肥处理下3个家系各生长指标均显著增加,其中22号家系增加幅度最大,苗高、地径、根干物质量、根冠比、整株干物质量分别增加了30.1%、50.0%、142.8%、30.3%、100%。均匀施用解磷菌肥处理下,22号家系苗高、地径、根干物质量、整株干物质量增加最多,分别增加了19.1%、16.7%、85.7%、72.4%;10号和50号家系苗高和整株干物质量增加显著;3个家系根冠比较对照有所增加但差异不显著。这说明22号家系对施用解磷菌肥处理最敏感。

  • 表1 马尾松苗木生长性状对解磷菌肥不同施用方式的响应

  • Table1 Responses of growth traits of Pinus massoniana seedlings to different application modes of PSB fertilizer

  • 注:不同小写字母表示不同处理间在0.05水平上差异显著。***、**和*分别表示在P<0.001、P<0.01和P<0.05水平差异显著。下同。

  • Note: Different small letters indicate significant differences between different treatments at 0. 05 level.***, ** and * indicate significant differences in P<0.001, P<0.01 and P<0.05 levels. The same below.

  • 2.2 根系形态特征及不同径阶根系根长对解磷菌肥处理的响应

  • 由表2可知,施用解磷菌肥显著增加了马尾松苗木的根长、根表面积、根体积、根尖数,与对照相比,局部施用解磷菌肥处理分别增加了21.4%、19.7%、20.0%、37.9%,均匀施用解磷菌肥处理分别增加了10.6%、9.8%、4.3%、14.2%。

  • 解磷菌肥×家系的交互作用对马尾松苗木根长、根表面积和根尖数影响显著(图3)。与对照相比,22号家系局部和均匀施用解磷菌肥下根长、根表面积、根体积、根尖数分别增加了42.3%和30.6%、30.2%和23.7%、34.7%和20.0%、47.4%和19.8%;10号家系局部处理下根系各性状差异明显,分别增加了18.3%、16.9%、15.4%、24.0%;50号家系局部处理下根表面积、根体积、根尖数分别增加了13.2%、11.3%、23.6%。说明22号家系对施用解磷菌肥较敏感,局部和均匀处理均能够显著诱导其苗木根系生长。

  • 由图4可知,施用解磷菌肥处理增加了根系直径(D)范围为0<D≤0.5 mm和0.5 mm<D≤1.0 mm根系的增生发育。与对照相比,局部和均匀处理下根系直径范围为0<D≤0.5 mm的根长分别增加了61.5%和22.9%, 0.5 mm<D≤1.0 mm的根长分别增加了17.7%和10.4%,1.0 mm<D≤2.0 mm和D>2.0 mm的根长增加不明显。由此可见,局部较均匀施用显著促进了0<D≤0.5 mm 根系的增生发育。

  • 图2 解磷菌肥处理对马尾松不同家系生长性状的影响

  • Fig.2 Effects of PSB fertilizer treatments on growth traits of Pinus massoniana different families

  • 表2 施用解磷菌肥对马尾松根系性状的影响及方差分析

  • Table2 Effects and variance analysis of root traits of Pinus massoniana seedlings to PSB fertilizer treatments

  • 图3 解磷菌肥处理对马尾松不同家系根系形态特征的影响

  • Fig.3 Effects of PSB fertilizer treatments on root morphological characters of Pinus massoniana different families

  • 图4 马尾松不同径级根系根长对解磷菌肥不同施加方式的响应

  • Fig.4 Response of length of root with different diameters of Pinus massoniana to different application modes of PSB fertilizer

  • 2.3 不同解磷菌肥处理对马尾松磷素吸收量的影响

  • 由表3可知,施用解磷菌肥对马尾松苗木各器官和整株磷素吸收量影响显著。局部和均匀施用解磷菌肥处理下,苗木根系磷吸收量分别较对照显著增加了109.9%和46.1%,茎磷吸收量分别显著增加了51.7%和36.2%,叶磷吸收量分别显著增加了68.8%和49.6%,整株磷吸收量分别显著增加了71.5%和45.2%。局部施用解磷菌肥处理下,苗木各部分磷吸收量增加幅度为根>叶>茎;均匀施用解磷菌肥处理为叶>根>茎。

  • 施用解磷菌肥处理显著增加了马尾松3个家系不同器官和整株的磷素吸收量(图5)。局部和均匀施用解磷菌肥处理下,马尾松22号家系根系、整株磷素吸收量增加幅度最大,根系磷素吸收量分别增加了163.4%和83.6%,整株磷素吸收量分别增加了114.2%和76.1%。10号家系较22号家系根系、整株磷素吸收量增加幅度减小。局部施用解磷菌肥处理下,22号家系和10号家系叶磷素吸收量增加幅度较大,分别增加了120.5%和74.9%,50号家系和22号家系茎磷素吸收量增加幅度较大,分别增加了81.2%和80.3%。

  • 表3 解磷菌肥处理对马尾松苗木磷素吸收量的影响及方差分析

  • Table3 Effects and variance analysis of P uptake of Pinus massoniana seedlings to PSB fertilizer treatments

  • 图5 解磷菌肥处理对马尾松不同家系磷素吸收量的影响

  • Fig.5 Effects of PSB fertilizer treatments on P uptake of Pinus massoniana different families

  • 2.4 主要生长指标与苗木磷素吸收量的相关性

  • 由表4可知,施用解磷菌肥处理下,马尾松根长、根表面积、根体积等根系形态参数均与苗木磷素吸收量呈显著正相关;直径范围为0<D≤0.5 mm、0.5 mm<D≤1.0 mm的根系根长与苗木磷吸收量呈极显著正相关。根系磷吸收量与苗高、地径、根冠比、整株干物质量和磷吸收量均呈显著正相关。

  • 3 讨论

  • 微生物肥料通过其所含微生物的生命活动改良土壤状况,增加土壤中植物所需养分的供应量,从而改善植物的营养状况并促进植物生长(Hayatr et al.,2010; He &Wan,2022)。解磷菌肥 (PSB肥)是一类能够将土壤中难溶态磷降解为植物可以吸收利用态磷、增加植物磷营养的微生物肥料(Kumar &Shastri,2017; Purwaningsih et al.,2022)。俞新玲(2011)开展了解磷菌对桉树苗生长影响的盆栽试验,结果表明接种解磷菌处理对桉树生长具有一定的促进作用。本研究结果表明,PSB肥不同的施用方式对马尾松苗木生长和磷素吸收存在显著影响。PSB肥局部施用与均匀施用比较显著增加了苗木苗高、地径、根冠比、根系与整株干物质量等主要生长指标,促进了根、茎、叶和整株磷素吸收,其中根系磷吸收量增加幅度最大。根冠比反映了植物对环境的响应策略,是植物光合产物在地上和地下部分分配的体现(樊勇明等,2021)。本研究结果根冠比增加说明低磷条件下局部施用PSB肥能够显著诱导马尾松苗木根系的生长发育。李慧萍等(2022)研究表明接种溶磷细菌Pseudomonas sp.能够显著提高牧草白三叶的根干重。

  • 表4 马尾松苗木主要性状与磷素吸收量间的相关系数

  • Table4 Correlation coefficients between main traits and P uptake of Pinus massoniana seedlings

  • 植物根系具有较强的可塑性,其形态及功能受土壤中营养元素水平与分布影响显著(Li et al.,2014)。有研究表明,接种解磷菌能够增加土壤磷素的有效性,进而改善植物根系形态(Mommer et al.,2012; 张艺灿等,2020)。本文对马尾松根系的研究表明,施用PSB肥显著增加了马尾松苗木根长、根表面积、根体积和根尖数。与均匀施用相比,局部施用对马尾松苗木根系生长的促进作用更显著。该结果可能与局部施用解磷菌肥造成了土壤养分的异质性分布有关。Fransen和Kroon(2001)研究表明,养分异质环境下植物通过增加根系增生以获取富养斑块内的养分并促进地上部分的生长。富养斑块中充足的养分供应能够加速根系的伸长生长(Zhang &Forder,2000; He et al.,2003; Li et al.,2014)。

  • 另外,接种解磷菌能够显著影响植物不同径级根系的生长发育。王志刚等(2015)研究表明施用解磷菌剂显著增加了西瓜0~0.5 mm直径范围内根系根长所占的比例。徐子恒等(2021)研究表明施用生物菌肥能够显著提高青钱柳细根(D≤2 mm)表面积、体积及根系生物量。本研究结果表明,均匀和局部施用PSB肥均促进了马尾松根系直径D≤1.0 mm细根的生长,然而局部施用较均匀施用使0<D≤0.5 mm 细根根长增加了近2倍。细根是植物根系吸收土壤养分的主要部位,在不同的土壤养分环境下表现出较强的生理可塑性,其对植物养分的吸收和利用具有直接影响(刘洪凯等, 2020)。宋平等(2016)研究表明,D≤1.5 mm细根的增生发育及氮磷吸收效率的提高可能是磷高效马尾松应对低磷环境的重要机制。本研究结果表明,马尾松根系形态参数、D≤1.0 mm根系根长均与苗木磷素吸收量呈显著正相关。这是局部施用PSB肥与均匀施用相比马尾松磷素吸收量显著增加的重要原因。

  • 林木不同家系在养分异质分布环境中的觅养行为以及对养分的吸收利用存在显著的遗传差异(周志春等,2005; 刘洪凯等,2020)。本研究表明,马尾松3个家系生长及磷素吸收对施用PSB肥的响应存在显著差异。母本6627(江西)和父本5907(浙江)均为耐低磷种源的22号家系,在局部施用PSB肥处理下各生长指标均显著高于10号和50号家系。这与局部施用解磷菌肥显著诱导了其根系的增生发育有关。

  • 4 结论

  • 低磷环境下马尾松对PSB肥不同施用方式的响应存在显著差异,局部施用较均匀施用对马尾松苗木生长的促进效果更加明显。局部施用显著增加了苗木根冠比,促进了马尾松根系的生长,诱导了根系直径D≤1.0 mm细根的增生发育。苗木根系生长的差异是局部施用PSB肥苗木磷素吸收量及主要生长指标较均匀施用高的重要原因。另外,由于遗传背景不同,马尾松不同家系对施用PSB肥的表现有所差异,具有耐低磷种源背景的22号家系对施用解磷菌肥较敏感,其在局部处理下各生长指标均显著高于另外两个家系。该结果可能还与解磷菌和根系在根际的互作有关,有待于进一步开展施用PSB肥对马尾松不同家系有机酸分泌及土壤微生物群落影响的研究。

  • 参考文献

    • ADNANE B, WISSAL E, SAID K, et al. , 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus [J]. Microbiol Res, 252: 126842.

    • BERGKEMPER F, SCHLER A, ENGEL M, et al. , 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environ Microbiol, 18(6): 1988-2000.

    • FAN YM, LI W, WEN ZM, et al. , 2021. Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau [J]. Acta Ecol Sin, 41(24): 9824-9835. [樊勇明, 李伟, 温仲明, 等, 2021. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应 [J]. 生态学报, 41(24): 9824-9835. ]

    • FRANSEN B, KROON HD, 2001. Long-term disadvantages of selective root placement: Root proliferation and shoot biomass of two perennial grass species in a 2-year experiment [J]. J Ecol, 89: 711-722.

    • GAO CH, WANG G, DONG YZ, et al. , 2003. Effect of phosphorus bacteria in the pot and the field [J]. J Shanxi Agric Sci, (3): 40-43. [郜春花, 王岗, 董云中, 等, 2003. 解磷菌剂盆栽及大田施用效果 [J]. 山西农业科学, (3): 40-43. ]

    • HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.

    • HE D, WAN W, 2022. Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition [J]. Microbiol Spec: e00290-22.

    • HE Y, LIAO H, YAN XL, 2003. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant Soil, 248: 247-256.

    • HUANG PF, LIU JA, JIN AX, et al. , 2012. Isolation and screening, identification of phosphorus-solubilizing bacteria in rhizosphere soil of Pinus massonuana and its phosphate-degradation capacity [J]. Chin Agric Sci Bull, 28(19): 12-16. [黄鹏飞, 刘君昂, 靳爱仙, 等, 2012. 马尾松根际土壤溶磷菌分离筛选、鉴定及其溶磷效果研究 [J]. 中国农学通报, 28(19): 12-16. ]

    • KUMAR R, SHASTRI B, 2017. Role of phosphate-solubilizing microorganisms in sustainable agricultural development [J]. Agron Environ Sust, 2(13): 271-303.

    • LI CH, ZHANG YM, FENG LQ, et al. , 2016. Research summary of local root fertilization and water-fertilizer coupling technology [J]. Gansu Agric Sci Technol, (7): 61-66. [李翠红, 张永茂, 冯毓琴, 等, 2016. 根系局部施肥与肥水耦合技术研究综述 [J]. 甘肃农业科技, (7): 61-66. ]

    • LI HB, MA QH, LI HG, et al. , 2014. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits [J]. Plant Soil, 376: 151-163.

    • LI HP, GAN YN, HAN QQ, et al. , 2022. Isolation of phosphate solubilizing bacteria from soil of spruce forest in the Qilian Mountains and their growth promotion effects in white clover [J]. Acta Agr Sin, 30(4): 879-888. [李慧萍, 甘雅楠, 韩庆庆, 等, 2022. 祁连山云杉林土壤溶磷细菌的分离及对白三叶的促生效应 [J]. 草地学报, 30(4): 879-888. ]

    • LI QL, LI AB, HUANG ZY, et al. , 2022. Application of phosphorus solubilizing microorganisms in forest soil ecological restoration [J]. World For Res, 35(1): 15-20. [李巧玲, 李爱博, 黄志远, 等, 2022. 解磷微生物在林业土壤生态修复中的应用进展 [J]. 世界林业研究, 35(1): 15-20. ]

    • LIU HK, CHEN X, ZHANG MZ, et al. , 2020. Anatomical characteristics of fine roots of 11 tree species in the hilly foothills areas in central Shandong Province and their drought resistance strategies [J]. Sci Silv Sin, 56(7): 185-193. [刘洪凯, 陈旭, 张明忠, 等, 2020. 鲁中丘陵山地干旱生境上11个树种的细根解剖特征与耐旱策略 [J]. 林业科学, 56(7): 185-193. ]

    • LIU YH, LI XH, SHENG KY, et al. , 2022. Effects of phosphate-solubilizing bacteria Burkholderia ZP-4 and Klebsiella ZP-2 on soil phosphorus fraction and bacterial diversity [J]. Chin J Soil Sci, 53(2): 472-481. [刘耀辉, 李新华, 盛可银, 等, 2022. 溶磷菌Burkholderia ZP-4和Klebsiella ZP-2对土壤磷素的转化及细菌多样性的影响 [J]. 土壤通报, 53(2): 472-481. ]

    • LÜ J, PAN HX, YU C, 2020. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing Paraburkholderia sp. from pinus massoniana rhizosphere soil [J]. Biotechnol Bull, 36(9): 147-156. [吕俊, 潘洪祥, 于存, 2020. 马尾松根际溶磷细菌 Paraburkholderia sp. 的筛选、鉴定及溶磷特性研究 [J]. 生物技术通报, 36(9): 147-156. ]

    • LÜ J, YU C, 2020. Screening and identification of an effect phosphate-soluble Burkholderia sp. and its growth-promoting effect on Pinus massonuana seedlings [J]. J Appl Ecol, 31(9): 2923-2934. [吕俊, 于存, 2020. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用 [J]. 应用生态学报, 31(9): 2923-2934. ]

    • MOMMER L, VAN RUIJVEN J, JANSEN C, et al. , 2012. Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory [J]. Funct Ecol, 26: 66-73.

    • PURWANINGSIH S, SUTISNA E, NUGROHO AA, 2022. Characterization, diversity, and effectiveness phosphate solubilizing bacteria from the soil and rhizosphere on the growth of Glycine max L. in greenhouse [J]. Earth Environ Sci, 976(1): 012030.

    • QIAO H, WU XQ, WEI W, 2016. Effects of two phosphate-solubilizing Penicillium strains on microbial community structure and their growth-promoting in masson pine rhizosphere [J]. J Nanjing For Univ(Nat Sci Ed), 40(6): 109-116. [乔欢, 吴小芹, 魏伟, 2016. 两株解磷青霉对马尾松根际土壤的微生态效应及其促生作用 [J]. 南京林业大学学报(自然科学版), 40(6): 109-116. ]

    • SONG P, ZHANG R, ZHOU ZC, et al. , 2017. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency [J]. Chin J Plant Ecol, 41(6): 622-631. [宋平, 张蕊, 周志春, 等, 2017. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响 [J]. 植物生态学报, 41(6): 622-631. ]

    • SONG P, ZHANG R, ZHANG Y, et al. , 2016. Effects of simulated nitrogen deposition on fine root morphology, nitrogen and phosphorus efficiency of Pinus massoniana clones under phosphorus deficiency [J]. Chin J Plant Ecol, 40(11): 1136-1144. [宋平, 张蕊, 张一, 等, 2016. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响 [J]. 植物生态学报, 40(11): 1136-1144. ]

    • WANG ZG, HU YL, XU WH, et al. , 2015. Separation and identification of a phosphorus solubilizing bacteria and its promoting effect on watermelon root [J]. Acta Agric Zhejiang, 27(5): 798-803. [王志刚, 胡云龙, 徐伟慧, 等, 2015. 一株溶磷菌的分离鉴定及对西瓜根系的促生效应 [J]. 浙江农业学报, 27(5): 798-803. ]

    • WU WL, HONG JP, MENG HS, et al. , 2016. Effects of continuous application of phosphorus bacterial fertilizer on soil alkaline phosphatase activity and Hedley phosphorus forms in the reclaimed soil [J]. Soil Fert Chin, (4): 59-64. [吴文丽, 洪坚平, 孟会生, 等, 2016. 连续施用解磷菌肥对复垦土壤磷酸酶和Hedley磷形态的影响 [J]. 中国土壤与肥料, (4): 59-64. ]

    • XU ZH, WANG ZK, CHEN ZY, et al. , 2021. Biofertilizer applications affected root architecture and root morphology of Cyclocarya paliurus [J]. Soil Fert Chin, (4): 258-266. [徐子恒, 王志康, 陈紫云, 等, 2021. 生物菌肥对青钱柳根构型和根系形态的影响 [J]. 中国土壤与肥料, (4): 258-266. ]

    • YAN XL, HU WJ, MA YF, et al. , 2020. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies [J]. Sci Silv Sin, 56(2): 1-11. [闫小莉, 胡文佳, 马远帆, 等, 2020. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略 [J]. 林业科学, 56(2): 1-11. ]

    • YU XL, 2011. Screening of high-effect phosphate soluble microorganisms in Eucalyptus soil and that effect on the growth of Eucalyptus [D]. Fuzhou: Fujian Agriculture and Forestry University. [俞新玲, 2011. 桉树土壤高效解磷菌的筛选及其对桉树生长的影响 [D]. 福州: 福建农林大学. ]

    • ZHANG DB, WANG XH, ZHOU SC, et al. , 2019. Response of masson pine container seedlings from different families to substrate proportion and control released fertilizer [J]. J Zhejiang For Univ, 36(5): 1044-1050. [张东北, 王秀花, 周生财, 等, 2019. 不同家系马尾松容器苗对基质配比及控释肥的响应 [J]. 浙江农林大学学报, 36(5): 1044-1050. ]

    • ZHANG FS, CUI ZL, WANG JQ, et al. , 2007. Current status of soil and plant nutrient management in China and improvement strategies [J]. Chin Bull Bot, 24(6): 687-694. [张福锁, 崔振岭, 王激清, 等, 2007. 中国土壤和植物养分管理现状与改进策略 [J]. 植物学通报, 24(6): 687-694. ]

    • ZHANG H, FORDER BG, 2000. Regulation of Arabidopsis root development by nitrate availability [J]. J Exp Bot, 51: 51-59.

    • ZHANG Y, ZHOU ZC, JIN GQ, et al. , 2010. Genetic distances of parents of Pinus massoniana and relationship between growth traits and heterosis of progeny [J]. J Nanjing For Univ, 34(1): 9-14. [张一, 周志春, 金国庆, 等, 2010. 马尾松双列杂交亲本遗传距离与杂种生长优势相关性分析 [J]. 南京林业大学学报 (自然科学版), 34(1): 9-14. ]

    • ZHANG Y, ZHOU ZC, YANG Q, 2013. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions [J]. Plant Soil, 364: 93-104.

    • ZHENG QY, XIE YT, BIAN HY, et al. , 2022. Effects of phosphate solubilizing bio-fertilizer on phosphorus fractions and fertility of red soil [J]. J Jiangxi Agric Univ, 44(1): 233-244. [郑淇元, 谢意太, 卞海洋, 等, 2022. 溶磷菌肥对红壤磷组分及土壤肥力的影响 [J]. 江西农业大学学报, 44(1): 233-244. ]

    • ZHANG YC, LIU FZ, WANG HB, 2020. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soil Fert Chin, (2): 1-9. [张艺灿, 刘凤之, 王海波, 2020. 根际溶磷微生物促生机制研究进展 [J]. 中国土壤与肥料, (2): 1-9. ]

    • ZHOU ZC, XIE YR, JIN GQ, et al. , 2005. Study on phosphorus efficiency of different provenances of Pinus massoniana [J]. Sci Silv Sin, 41(4): 25-30. [周志春, 谢钰容, 金国庆, 等, 2005. 马尾松种源磷效率研究 [J]. 林业科学, 41(4): 25-30. ]

  • 参考文献

    • ADNANE B, WISSAL E, SAID K, et al. , 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus [J]. Microbiol Res, 252: 126842.

    • BERGKEMPER F, SCHLER A, ENGEL M, et al. , 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environ Microbiol, 18(6): 1988-2000.

    • FAN YM, LI W, WEN ZM, et al. , 2021. Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau [J]. Acta Ecol Sin, 41(24): 9824-9835. [樊勇明, 李伟, 温仲明, 等, 2021. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应 [J]. 生态学报, 41(24): 9824-9835. ]

    • FRANSEN B, KROON HD, 2001. Long-term disadvantages of selective root placement: Root proliferation and shoot biomass of two perennial grass species in a 2-year experiment [J]. J Ecol, 89: 711-722.

    • GAO CH, WANG G, DONG YZ, et al. , 2003. Effect of phosphorus bacteria in the pot and the field [J]. J Shanxi Agric Sci, (3): 40-43. [郜春花, 王岗, 董云中, 等, 2003. 解磷菌剂盆栽及大田施用效果 [J]. 山西农业科学, (3): 40-43. ]

    • HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.

    • HE D, WAN W, 2022. Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition [J]. Microbiol Spec: e00290-22.

    • HE Y, LIAO H, YAN XL, 2003. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant Soil, 248: 247-256.

    • HUANG PF, LIU JA, JIN AX, et al. , 2012. Isolation and screening, identification of phosphorus-solubilizing bacteria in rhizosphere soil of Pinus massonuana and its phosphate-degradation capacity [J]. Chin Agric Sci Bull, 28(19): 12-16. [黄鹏飞, 刘君昂, 靳爱仙, 等, 2012. 马尾松根际土壤溶磷菌分离筛选、鉴定及其溶磷效果研究 [J]. 中国农学通报, 28(19): 12-16. ]

    • KUMAR R, SHASTRI B, 2017. Role of phosphate-solubilizing microorganisms in sustainable agricultural development [J]. Agron Environ Sust, 2(13): 271-303.

    • LI CH, ZHANG YM, FENG LQ, et al. , 2016. Research summary of local root fertilization and water-fertilizer coupling technology [J]. Gansu Agric Sci Technol, (7): 61-66. [李翠红, 张永茂, 冯毓琴, 等, 2016. 根系局部施肥与肥水耦合技术研究综述 [J]. 甘肃农业科技, (7): 61-66. ]

    • LI HB, MA QH, LI HG, et al. , 2014. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits [J]. Plant Soil, 376: 151-163.

    • LI HP, GAN YN, HAN QQ, et al. , 2022. Isolation of phosphate solubilizing bacteria from soil of spruce forest in the Qilian Mountains and their growth promotion effects in white clover [J]. Acta Agr Sin, 30(4): 879-888. [李慧萍, 甘雅楠, 韩庆庆, 等, 2022. 祁连山云杉林土壤溶磷细菌的分离及对白三叶的促生效应 [J]. 草地学报, 30(4): 879-888. ]

    • LI QL, LI AB, HUANG ZY, et al. , 2022. Application of phosphorus solubilizing microorganisms in forest soil ecological restoration [J]. World For Res, 35(1): 15-20. [李巧玲, 李爱博, 黄志远, 等, 2022. 解磷微生物在林业土壤生态修复中的应用进展 [J]. 世界林业研究, 35(1): 15-20. ]

    • LIU HK, CHEN X, ZHANG MZ, et al. , 2020. Anatomical characteristics of fine roots of 11 tree species in the hilly foothills areas in central Shandong Province and their drought resistance strategies [J]. Sci Silv Sin, 56(7): 185-193. [刘洪凯, 陈旭, 张明忠, 等, 2020. 鲁中丘陵山地干旱生境上11个树种的细根解剖特征与耐旱策略 [J]. 林业科学, 56(7): 185-193. ]

    • LIU YH, LI XH, SHENG KY, et al. , 2022. Effects of phosphate-solubilizing bacteria Burkholderia ZP-4 and Klebsiella ZP-2 on soil phosphorus fraction and bacterial diversity [J]. Chin J Soil Sci, 53(2): 472-481. [刘耀辉, 李新华, 盛可银, 等, 2022. 溶磷菌Burkholderia ZP-4和Klebsiella ZP-2对土壤磷素的转化及细菌多样性的影响 [J]. 土壤通报, 53(2): 472-481. ]

    • LÜ J, PAN HX, YU C, 2020. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing Paraburkholderia sp. from pinus massoniana rhizosphere soil [J]. Biotechnol Bull, 36(9): 147-156. [吕俊, 潘洪祥, 于存, 2020. 马尾松根际溶磷细菌 Paraburkholderia sp. 的筛选、鉴定及溶磷特性研究 [J]. 生物技术通报, 36(9): 147-156. ]

    • LÜ J, YU C, 2020. Screening and identification of an effect phosphate-soluble Burkholderia sp. and its growth-promoting effect on Pinus massonuana seedlings [J]. J Appl Ecol, 31(9): 2923-2934. [吕俊, 于存, 2020. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用 [J]. 应用生态学报, 31(9): 2923-2934. ]

    • MOMMER L, VAN RUIJVEN J, JANSEN C, et al. , 2012. Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory [J]. Funct Ecol, 26: 66-73.

    • PURWANINGSIH S, SUTISNA E, NUGROHO AA, 2022. Characterization, diversity, and effectiveness phosphate solubilizing bacteria from the soil and rhizosphere on the growth of Glycine max L. in greenhouse [J]. Earth Environ Sci, 976(1): 012030.

    • QIAO H, WU XQ, WEI W, 2016. Effects of two phosphate-solubilizing Penicillium strains on microbial community structure and their growth-promoting in masson pine rhizosphere [J]. J Nanjing For Univ(Nat Sci Ed), 40(6): 109-116. [乔欢, 吴小芹, 魏伟, 2016. 两株解磷青霉对马尾松根际土壤的微生态效应及其促生作用 [J]. 南京林业大学学报(自然科学版), 40(6): 109-116. ]

    • SONG P, ZHANG R, ZHOU ZC, et al. , 2017. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency [J]. Chin J Plant Ecol, 41(6): 622-631. [宋平, 张蕊, 周志春, 等, 2017. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响 [J]. 植物生态学报, 41(6): 622-631. ]

    • SONG P, ZHANG R, ZHANG Y, et al. , 2016. Effects of simulated nitrogen deposition on fine root morphology, nitrogen and phosphorus efficiency of Pinus massoniana clones under phosphorus deficiency [J]. Chin J Plant Ecol, 40(11): 1136-1144. [宋平, 张蕊, 张一, 等, 2016. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响 [J]. 植物生态学报, 40(11): 1136-1144. ]

    • WANG ZG, HU YL, XU WH, et al. , 2015. Separation and identification of a phosphorus solubilizing bacteria and its promoting effect on watermelon root [J]. Acta Agric Zhejiang, 27(5): 798-803. [王志刚, 胡云龙, 徐伟慧, 等, 2015. 一株溶磷菌的分离鉴定及对西瓜根系的促生效应 [J]. 浙江农业学报, 27(5): 798-803. ]

    • WU WL, HONG JP, MENG HS, et al. , 2016. Effects of continuous application of phosphorus bacterial fertilizer on soil alkaline phosphatase activity and Hedley phosphorus forms in the reclaimed soil [J]. Soil Fert Chin, (4): 59-64. [吴文丽, 洪坚平, 孟会生, 等, 2016. 连续施用解磷菌肥对复垦土壤磷酸酶和Hedley磷形态的影响 [J]. 中国土壤与肥料, (4): 59-64. ]

    • XU ZH, WANG ZK, CHEN ZY, et al. , 2021. Biofertilizer applications affected root architecture and root morphology of Cyclocarya paliurus [J]. Soil Fert Chin, (4): 258-266. [徐子恒, 王志康, 陈紫云, 等, 2021. 生物菌肥对青钱柳根构型和根系形态的影响 [J]. 中国土壤与肥料, (4): 258-266. ]

    • YAN XL, HU WJ, MA YF, et al. , 2020. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies [J]. Sci Silv Sin, 56(2): 1-11. [闫小莉, 胡文佳, 马远帆, 等, 2020. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略 [J]. 林业科学, 56(2): 1-11. ]

    • YU XL, 2011. Screening of high-effect phosphate soluble microorganisms in Eucalyptus soil and that effect on the growth of Eucalyptus [D]. Fuzhou: Fujian Agriculture and Forestry University. [俞新玲, 2011. 桉树土壤高效解磷菌的筛选及其对桉树生长的影响 [D]. 福州: 福建农林大学. ]

    • ZHANG DB, WANG XH, ZHOU SC, et al. , 2019. Response of masson pine container seedlings from different families to substrate proportion and control released fertilizer [J]. J Zhejiang For Univ, 36(5): 1044-1050. [张东北, 王秀花, 周生财, 等, 2019. 不同家系马尾松容器苗对基质配比及控释肥的响应 [J]. 浙江农林大学学报, 36(5): 1044-1050. ]

    • ZHANG FS, CUI ZL, WANG JQ, et al. , 2007. Current status of soil and plant nutrient management in China and improvement strategies [J]. Chin Bull Bot, 24(6): 687-694. [张福锁, 崔振岭, 王激清, 等, 2007. 中国土壤和植物养分管理现状与改进策略 [J]. 植物学通报, 24(6): 687-694. ]

    • ZHANG H, FORDER BG, 2000. Regulation of Arabidopsis root development by nitrate availability [J]. J Exp Bot, 51: 51-59.

    • ZHANG Y, ZHOU ZC, JIN GQ, et al. , 2010. Genetic distances of parents of Pinus massoniana and relationship between growth traits and heterosis of progeny [J]. J Nanjing For Univ, 34(1): 9-14. [张一, 周志春, 金国庆, 等, 2010. 马尾松双列杂交亲本遗传距离与杂种生长优势相关性分析 [J]. 南京林业大学学报 (自然科学版), 34(1): 9-14. ]

    • ZHANG Y, ZHOU ZC, YANG Q, 2013. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions [J]. Plant Soil, 364: 93-104.

    • ZHENG QY, XIE YT, BIAN HY, et al. , 2022. Effects of phosphate solubilizing bio-fertilizer on phosphorus fractions and fertility of red soil [J]. J Jiangxi Agric Univ, 44(1): 233-244. [郑淇元, 谢意太, 卞海洋, 等, 2022. 溶磷菌肥对红壤磷组分及土壤肥力的影响 [J]. 江西农业大学学报, 44(1): 233-244. ]

    • ZHANG YC, LIU FZ, WANG HB, 2020. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soil Fert Chin, (2): 1-9. [张艺灿, 刘凤之, 王海波, 2020. 根际溶磷微生物促生机制研究进展 [J]. 中国土壤与肥料, (2): 1-9. ]

    • ZHOU ZC, XIE YR, JIN GQ, et al. , 2005. Study on phosphorus efficiency of different provenances of Pinus massoniana [J]. Sci Silv Sin, 41(4): 25-30. [周志春, 谢钰容, 金国庆, 等, 2005. 马尾松种源磷效率研究 [J]. 林业科学, 41(4): 25-30. ]