引用本文: | 李金梅, 钟 雨, 陈建桦, 明如宏, 姚绍嫦, 李良波,
谭 勇, 黄荣韶, 姚 春, 黄 鼎.基于SLAF-seq的广西八角种质资源遗传多样性分析[J].广西植物,2025,45(4):730-740.[点击复制] |
LI Jinmei, ZHONG Yu, CHEN Jianhua, MING Ruhong, YAO Shaochang,
LI Liangbo, TAN Yong, HUANG Rongshao, YAO Chun, HUANG Ding.Genetic diversity analysis of Illicium verum germplasm resources in Guangxi based on SLAF-seq[J].Guihaia,2025,45(4):730-740.[点击复制] |
|
|
|
本文已被:浏览 775次 下载 443次 |
 码上扫一扫! |
|
基于SLAF-seq的广西八角种质资源遗传多样性分析 |
李金梅1,2, 钟 雨1, 陈建桦1,2, 明如宏1,2, 姚绍嫦1,2, 李良波1,2,
谭 勇1,2, 黄荣韶1,2, 姚 春1, 黄 鼎1,2*
|
1. 广西中医药大学 药学院, 南宁 530200;2. 广西中医药大学 广西壮瑶药重点实验室, 南宁530200
|
|
摘要: |
八角作为广西重要的特色经济林木之一,其遗传多样性较为丰富。为揭示广西八角种质资源遗传多样性,该研究运用SLAF-seq技术,对源自广西不同地理区域的53份八角居群样本及42份人工筛选的优良种质样本的单核苷酸多态性(SNP)位点进行了深入挖掘; 基于SNP多态性,对这些八角样本进行了群体遗传结构和遗传多样性分析。结果表明:(1)从95份八角样本中,共获得1 588 Mb测序数据和643 690个SLAF标签,其中包含74 434个多态性SLAF标签,经过滤后得到2 690 564个群体SNP。(2)95份八角样本可分为2个类群,其中桂北、桂西及部分桂中部地区居群样本聚为类群Ⅰ; 42份人工筛选优良种质与桂南、桂东及部分桂中地区的居群样本聚为类群Ⅱ。(3)桂北地区居群的遗传多样性最高,其次依次为桂东、桂中、桂西和桂南地区居群样本,而人工筛选的八角优良种质的遗传多样性最低。综上认为,该研究基于SLAF-seq开发的SNP分子标记,能够有效地分析广西不同地区居群样本及人工筛选的优良种质的遗传多样性,为广西八角的种质资源保护、利用及优良种质筛选提供重要的理论参考。 |
关键词: 八角, SLAF-seq, SNP, 遗传结构, 遗传多样性 |
DOI:10.11931/guihaia.gxzw202407017 |
分类号:Q949.9 |
文章编号:1000-3142(2025)04-0730-11 |
基金项目:广西科技重大专项(桂科AA22096029, 桂科AA23023035); 广西自然科学基金青年基金(2024GXNSFBA010089); 广西中医药大学-柳药集团青年科技创新能力提升计划专项(GL-2023-01)。 |
|
Genetic diversity analysis of Illicium verum germplasm resources in Guangxi based on SLAF-seq |
LI Jinmei1,2, ZHONG Yu1, CHEN Jianhua1,2, MING Ruhong1,2, YAO Shaochang1,2,
LI Liangbo1,2, TAN Yong1,2, HUANG Rongshao1,2, YAO Chun1, HUANG Ding1,2*
|
1. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China;2. Guangxi Key Laboratory of
Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
1. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; 2. Guangxi Key Laboratory of
Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
|
Abstract: |
As one of the significant characteristic economic forestry species in Guangxi, star anise(Illicium verum)exihibits a rich genetic diversity. In order to uncover the genetic diversity of star anise germplasm resources in Guangxi, the specific locus amplified fragment sequencing(SLAF-seq)technology was employed. This enabled an in-depth investigation into the single nucleotide polymorphism(SNP)loci across 53 star anise population samples, gathered from a variety of geographical territories within Guangxi, as well as 42 samples of artificially selected superior germplasm. Based on SNP polymorphism, population genetic structure and genetic diversity analyses were conducted on these star anise samples. The results were as follows:(1)From 95 star anise samples, a total of 1 588 Mb of sequencing data and 643 690 SLAF tags were obtained, of which 74 434 were polymorphic SLAF tags. After filtering, 2 690 564 population SNPs were identified.(2)The 95 star anise samples were classified into two fundamental clusters: Cluster Ⅰ assimilated samples originating from the North Guangxi, West Guangxi, and some regions of Central Guangxi, whereas Cluster Ⅱ embraced the 42 samples of artificially selected superior germplasm, coupled with samples from South Guangxi, East Guangxi, and portions of Central Guangxi.(3)Populations from North Guangxi exhibited the highest level of genetic diversity, followed sequentially by those from East, Central, West, and South Guangxi. In contrast, the artificially selected superior germplasm samples displayed the lowest degree of genetic diversity. In conclusion, the study effectively demonstrates that SNP molecular markers, derived from SLAF-seq technology, are capable of efficiently assessing the genetic diversity in samples from different regions of Guangxi and the samples of artificially selected superior germplasm. This information acts as a significant theoretical guide for the conservation, utilization of the star anise genetic resources in Guangxi, as well as the selection of superior germplasms. |
Key words: Illicium verum, SLAF-seq, SNP, genetic structure, genetic diversity |
|
|
|
|
|